6502-opcodes/TODO.md

44 lines
3.5 KiB
Markdown
Raw Permalink Normal View History

2024-01-17 00:26:46 +00:00
- normalize A, X, Y, ZP, and GP to "registers", allocated by an allocator
- X and Y are also index registers, so slightly special
- unit test: what if a for loop is three deep? the outermost loop must be a memory register
- it would be cool for the 22-tuple Scala code generator code writer to go to files
- and make the +1 methods optional (for when it is at max == 22)
2022-11-24 21:53:24 +00:00
- the payload/`xs` of a program should be an ADT of either chunks or one instruction
- where a chunk is just many instructions
- and an instruction already has the value X with its encoder, but chooses an eternal mode
- depending on the asm language or config
2022-09-12 01:51:44 +00:00
- create classes for read/write, read-only (volatile), and write-only memory locations
- zero page and absolute
- but how do we encode it? subclassing?
2022-11-14 19:28:17 +00:00
- writing a value does two things
1. establishes a fungible "init" phase (where we can take advantage of accumulator sharing)
2. allows read-leases for some known scope
2022-11-14 22:43:06 +00:00
- shared initialization can happen with constants but can also be shared with read side effects
- is the spec for reading from a register descriable as data? e.g. are these two requests semantically equal vs independent side-effects
2022-11-14 19:28:17 +00:00
- but what then is a write lease and how is it finite?
2022-11-15 18:03:18 +00:00
- every register must offer up read or write leases that other instructions can use and emit AsmN programs of
- a method that offers up a lease maybe has a return type completely inherited from its body (doesn't know N shape, other than that the register should participate somewhere)
- maybe the AXY registers don't offer up leases and are always consumed in predictable, prepackaged ways
2022-11-20 04:17:02 +00:00
- there needs to be another abstraction. just because reads and writes are tracked, doesn't mean they tie to exactly single addresses (think of a mechanism with many independent switches, all producing separate write actions)
2022-11-29 15:35:28 +00:00
- automatic address assignment; if you stack them in a list, you can at "compile" time just assign registers from 0 to n
- have an easy combinator to switch between byte and word length
- and another combinator to switch between zero and global (maybe global is the default and zero is opt-in)
- stack register assignment
- helper functions like multiplication (?) probably need a temp working area
- if always used like a well bounded resource, maybe you can keep reusing this temp area with different functions
- but if some one subroutine or "context" uses a function twice (e.g. 3 * 4 * 5) then the stack depth for that context is at least two now, which can be known at interpretation time by going through the call graph
- imagine the multiplier operation providing context/a lease and every operation on that lease actually pushes onto a stack
- 99% of the time the stack size would just be one but it could be for nested calls something else
- and then very late into register assignment (above) it would occupy N registers
- what if you model all functions using the same "bounce" area and then just use this as the canonical way to calculate stack depth
- this would maybe be "optimal" register allocation?
2023-01-20 19:58:39 +00:00
## Advanced vs basic interpreters
- Given "basic" elements `foo` and `bar`
- And given another advanced feature `superfoo`
- `foo` and `bar` should inhereit both `BasicInterpreter` and `AdvancedInterpreter`
- and `superfoo` should only inherit `AdvancedInterpreter`
- Then `superfoo` just be desugared into many `BasicInterpreter` blocks
- And then the interpretation for `foo` and `bar` under advanced just echos them as `BasicInterpreter`