6502_65C02_functional_tests/bin_files/6502_functional_test.lst

13999 lines
693 KiB
Plaintext
Raw Normal View History

AS65 Assembler for R6502 [1.42]. Copyright 1994-2007, Frank A. Kingswood Page 1
---------------------------------------------------- 6502_functional_test.a65 ----------------------------------------------------
5803 lines read, no errors in pass 1.
;
; 6 5 0 2 F U N C T I O N A L T E S T
;
; Copyright (C) 2012-2013 Klaus Dormann
;
; This program is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program. If not, see <http://www.gnu.org/licenses/>.
; This program is designed to test all opcodes of a 6502 emulator using all
; addressing modes with focus on propper setting of the processor status
; register bits.
;
; version 16-aug-2013
; edited to provide a pre-configured bin file loadable at $0000 for full 64k
; contact info at http://2m5.de or email K@2m5.de
;
; assembled with AS65 from http://www.kingswood-consulting.co.uk/assemblers/
; command line switches: -l -m -s2 -w -h0
; | | | | no page headers in listing
; | | | wide listing (133 char/col)
; | | write intel hex file instead of binary
; | expand macros in listing
; generate pass2 listing
;
; No IO - should be run from a monitor with access to registers.
; To run load intel hex image with a load command, than alter PC to 400 hex
; (code_segment) and enter a go command.
; Loop on program counter determines error or successful completion of test.
; Check listing for relevant traps (jump/branch *).
; Please note that in early tests some instructions will have to be used before
; they are actually tested!
;
; RESET, NMI or IRQ should not occur and will be trapped if vectors are enabled.
; Tests documented behavior of the original NMOS 6502 only! No unofficial
; opcodes. Additional opcodes of newer versions of the CPU (65C02, 65816) will
; not be tested. Decimal ops will only be tested with valid BCD operands and
; N V Z flags will be ignored.
;
; Debugging hints:
; Most of the code is written sequentially. if you hit a trap, check the
; immediately preceeding code for the instruction to be tested. Results are
; tested first, flags are checked second by pushing them onto the stack and
; pulling them to the accumulator after the result was checked. The "real"
; flags are no longer valid for the tested instruction at this time!
; If the tested instruction was indexed, the relevant index (X or Y) must
; also be checked. Opposed to the flags, X and Y registers are still valid.
;
; versions:
; 28-jul-2012 1st version distributed for testing
; 29-jul-2012 fixed references to location 0, now #0
; added license - GPLv3
; 30-jul-2012 added configuration options
; 01-aug-2012 added trap macro to allow user to change error handling
; 01-dec-2012 fixed trap in branch field must be a branch
; 02-mar-2013 fixed PLA flags not tested
; 19-jul-2013 allowed ROM vectors to be loaded when load_data_direct = 0
; added test sequence check to detect if tests jump their fence
; 23-jul-2013 added RAM integrity check option
; 16-aug-2013 added error report to standard output option
; C O N F I G U R A T I O N
;ROM_vectors writable (0=no, 1=yes)
;if ROM vectors can not be used interrupts will not be trapped
;as a consequence BRK can not be tested but will be emulated to test RTI
0001 = ROM_vectors = 1
;load_data_direct (0=move from code segment, 1=load directly)
;loading directly is preferred but may not be supported by your platform
;0 produces only consecutive object code, 1 is not suitable for a binary image
0001 = load_data_direct = 1
;I_flag behavior (0=force enabled, 1=force disabled, 2=prohibit change, 3=allow
;change) 2 requires extra code and is not recommended. SEI & CLI can only be
;tested if you allow changing the interrupt status (I_flag = 3)
0003 = I_flag = 3
;configure memory - try to stay away from memory used by the system
;zero_page memory start address, $50 (80) consecutive Bytes required
; add 2 if I_flag = 2
000a = zero_page = $a
;data_segment memory start address, $5B (91) consecutive Bytes required
0200 = data_segment = $200
if (data_segment & $ff) != 0
ERROR ERROR ERROR low byte of data_segment MUST be $00 !!
endif
;code_segment memory start address, 13kB of consecutive space required
; add 2.5 kB if I_flag = 2
;parts of the code are self modifying and must reside in RAM
0400 = code_segment = $400
;report errors through I/O channel (0=use standard self trap loops, 1=include
;report.i65 as I/O channel, add 3.5 kB)
0000 = report = 0
;RAM integrity test option. Checks for undesired RAM writes.
;set lowest non RAM or RAM mirror address page (-1=disable, 0=64k, $40=16k)
;leave disabled if a monitor, OS or background interrupt is allowed to alter RAM
ffff = ram_top = -1
noopt ;do not take shortcuts
;macros for error & success traps to allow user modification
;example:
;trap macro
; jsr my_error_handler
; endm
;trap_eq macro
; bne skip\?
; trap ;failed equal (zero)
;skip\?
; endm
;
; my_error_handler should pop the calling address from the stack and report it.
; putting larger portions of code (more than 3 bytes) inside the trap macro
; may lead to branch range problems for some tests.
if report = 0
trap macro
jmp * ;failed anyway
endm
trap_eq macro
beq * ;failed equal (zero)
endm
trap_ne macro
bne * ;failed not equal (non zero)
endm
trap_cs macro
bcs * ;failed carry set
endm
trap_cc macro
bcc * ;failed carry clear
endm
trap_mi macro
bmi * ;failed minus (bit 7 set)
endm
trap_pl macro
bpl * ;failed plus (bit 7 clear)
endm
trap_vs macro
bvs * ;failed overflow set
endm
trap_vc macro
bvc * ;failed overflow clear
endm
; please observe that during the test the stack gets invalidated
; therefore a RTS inside the success macro is not possible
success macro
jmp * ;test passed, no errors
endm
endif
if report = 1
trap macro
jsr report_error
endm
trap_eq macro
bne skip\?
trap ;failed equal (zero)
skip\?
endm
trap_ne macro
beq skip\?
trap ;failed not equal (non zero)
skip\?
endm
trap_cs macro
bcc skip\?
trap ;failed carry set
skip\?
endm
trap_cc macro
bcs skip\?
trap ;failed carry clear
skip\?
endm
trap_mi macro
bpl skip\?
trap ;failed minus (bit 7 set)
skip\?
endm
trap_pl macro
bmi skip\?
trap ;failed plus (bit 7 clear)
skip\?
endm
trap_vs macro
bvc skip\?
trap ;failed overflow set
skip\?
endm
trap_vc macro
bvs skip\?
trap ;failed overflow clear
skip\?
endm
; please observe that during the test the stack gets invalidated
; therefore a RTS inside the success macro is not possible
success macro
jsr report_success
endm
endif
0001 = carry equ %00000001 ;flag bits in status
0002 = zero equ %00000010
0004 = intdis equ %00000100
0008 = decmode equ %00001000
0010 = break equ %00010000
0020 = reserv equ %00100000
0040 = overfl equ %01000000
0080 = minus equ %10000000
0001 = fc equ carry
0002 = fz equ zero
0003 = fzc equ carry+zero
0040 = fv equ overfl
0042 = fvz equ overfl+zero
0080 = fn equ minus
0081 = fnc equ minus+carry
0082 = fnz equ minus+zero
0083 = fnzc equ minus+zero+carry
00c0 = fnv equ minus+overfl
0030 = fao equ break+reserv ;bits always on after PHP, BRK
0034 = fai equ fao+intdis ;+ forced interrupt disable
00ff = m8 equ $ff ;8 bit mask
00fb = m8i equ $ff&~intdis ;8 bit mask - interrupt disable
;macros to allow masking of status bits.
;masking of interrupt enable/disable on load and compare
;masking of always on bits after PHP or BRK (unused & break) on compare
if I_flag = 0
load_flag macro
lda #\1&m8i ;force enable interrupts (mask I)
endm
cmp_flag macro
cmp #(\1|fao)&m8i ;I_flag is always enabled + always on bits
endm
eor_flag macro
eor #(\1&m8i|fao) ;mask I, invert expected flags + always on bits
endm
endif
if I_flag = 1
load_flag macro
lda #\1|intdis ;force disable interrupts
endm
cmp_flag macro
cmp #(\1|fai)&m8 ;I_flag is always disabled + always on bits
endm
eor_flag macro
eor #(\1|fai) ;invert expected flags + always on bits + I
endm
endif
if I_flag = 2
load_flag macro
lda #\1
ora flag_I_on ;restore I-flag
and flag_I_off
endm
cmp_flag macro
eor flag_I_on ;I_flag is never changed
cmp #(\1|fao)&m8i ;expected flags + always on bits, mask I
endm
eor_flag macro
eor flag_I_on ;I_flag is never changed
eor #(\1&m8i|fao) ;mask I, invert expected flags + always on bits
endm
endif
if I_flag = 3
load_flag macro
lda #\1 ;allow test to change I-flag (no mask)
endm
cmp_flag macro
cmp #(\1|fao)&m8 ;expected flags + always on bits
endm
eor_flag macro
eor #\1|fao ;invert expected flags + always on bits
endm
endif
;macros to set (register|memory|zeropage) & status
set_stat macro ;setting flags in the processor status register
load_flag \1
pha ;use stack to load status
plp
endm
set_a macro ;precharging accu & status
load_flag \2
pha ;use stack to load status
lda #\1 ;precharge accu
plp
endm
set_x macro ;precharging index & status
load_flag \2
pha ;use stack to load status
ldx #\1 ;precharge index x
plp
endm
set_y macro ;precharging index & status
load_flag \2
pha ;use stack to load status
ldy #\1 ;precharge index y
plp
endm
set_ax macro ;precharging indexed accu & immediate status
load_flag \2
pha ;use stack to load status
lda \1,x ;precharge accu
plp
endm
set_ay macro ;precharging indexed accu & immediate status
load_flag \2
pha ;use stack to load status
lda \1,y ;precharge accu
plp
endm
set_z macro ;precharging indexed zp & immediate status
load_flag \2
pha ;use stack to load status
lda \1,x ;load to zeropage
sta zpt
plp
endm
set_zx macro ;precharging zp,x & immediate status
load_flag \2
pha ;use stack to load status
lda \1,x ;load to indexed zeropage
sta zpt,x
plp
endm
set_abs macro ;precharging indexed memory & immediate status
load_flag \2
pha ;use stack to load status
lda \1,x ;load to memory
sta abst
plp
endm
set_absx macro ;precharging abs,x & immediate status
load_flag \2
pha ;use stack to load status
lda \1,x ;load to indexed memory
sta abst,x
plp
endm
;macros to test (register|memory|zeropage) & status & (mask)
tst_stat macro ;testing flags in the processor status register
php ;save status
pla ;use stack to retrieve status
pha
cmp_flag \1
trap_ne
plp ;restore status
endm
tst_a macro ;testing result in accu & flags
php ;save flags
cmp #\1 ;test result
trap_ne
pla ;load status
pha
cmp_flag \2
trap_ne
plp ;restore status
endm
tst_x macro ;testing result in x index & flags
php ;save flags
cpx #\1 ;test result
trap_ne
pla ;load status
pha
cmp_flag \2
trap_ne
plp ;restore status
endm
tst_y macro ;testing result in y index & flags
php ;save flags
cpy #\1 ;test result
trap_ne
pla ;load status
pha
cmp_flag \2
trap_ne
plp ;restore status
endm
tst_ax macro ;indexed testing result in accu & flags
php ;save flags
cmp \1,x ;test result
trap_ne
pla ;load status
eor_flag \3
cmp \2,x ;test flags
trap_ne ;
endm
tst_ay macro ;indexed testing result in accu & flags
php ;save flags
cmp \1,y ;test result
trap_ne ;
pla ;load status
eor_flag \3
cmp \2,y ;test flags
trap_ne
endm
tst_z macro ;indexed testing result in zp & flags
php ;save flags
lda zpt
cmp \1,x ;test result
trap_ne
pla ;load status
eor_flag \3
cmp \2,x ;test flags
trap_ne
endm
tst_zx macro ;testing result in zp,x & flags
php ;save flags
lda zpt,x
cmp \1,x ;test result
trap_ne
pla ;load status
eor_flag \3
cmp \2,x ;test flags
trap_ne
endm
tst_abs macro ;indexed testing result in memory & flags
php ;save flags
lda abst
cmp \1,x ;test result
trap_ne
pla ;load status
eor_flag \3
cmp \2,x ;test flags
trap_ne
endm
tst_absx macro ;testing result in abs,x & flags
php ;save flags
lda abst,x
cmp \1,x ;test result
trap_ne
pla ;load status
eor_flag \3
cmp \2,x ;test flags
trap_ne
endm
; RAM integrity test
; verifies that none of the previous tests has altered RAM outside of the
; designated write areas.
; uses zpt word as indirect pointer, zpt+2 word as checksum
if ram_top > -1
check_ram macro
cld
lda #0
sta zpt ;set low byte of indirect pointer
sta zpt+3 ;checksum high byte
sta range_adr ;reset self modifying code
sta tandi1
sta tandi2
sta teori1
sta teori2
sta torai1
sta torai2
sta chkdadi
sta chkdsbi
sta chkadi
sta chksbi
clc
ldx #zp_bss-zero_page ;zeropage - write test area
ccs3\? adc zero_page,x
bcc ccs2\?
inc zpt+3 ;carry to high byte
clc
ccs2\? inx
bne ccs3\?
ldx #hi(data_segment) ;set high byte of indirect pointer
stx zpt+1
ldy #lo(data_bss) ;data after write test area
ccs5\? adc (zpt),y
bcc ccs4\?
inc zpt+3 ;carry to high byte
clc
ccs4\? iny
bne ccs5\?
inx ;advance RAM high address
stx zpt+1
cpx #ram_top
bne ccs5\?
sta zpt+2 ;checksum low is
cmp ram_chksm ;checksum low expected
trap_ne ;checksum mismatch
lda zpt+3 ;checksum high is
cmp ram_chksm+1 ;checksum high expected
trap_ne ;checksum mismatch
endm
else
check_ram macro
;RAM check disabled - RAM size not set
endm
endif
next_test macro ;make sure, tests don't jump the fence
lda test_case ;previous test
cmp #test_num
trap_ne ;test is out of sequence
test_num = test_num + 1
lda #test_num ;*** next tests' number
sta test_case
;check_ram ;uncomment to find altered RAM after each test
endm
if load_data_direct = 1
data
else
bss ;uninitialized segment, copy of data at end of code!
endif
; org zero_page
0000 = org 0 ;edited to provide binaries loading from 0
0000 : 00000000000000.. ds zero_page
;break test interrupt save
000a : 00 irq_a ds 1 ;a register
000b : 00 irq_x ds 1 ;x register
if I_flag = 2
;masking for I bit in status
flag_I_on ds 1 ;or mask to load flags
flag_I_off ds 1 ;and mask to load flags
endif
000c : zpt ;5 bytes store/modify test area
;add/subtract operand generation and result/flag prediction
000c : 00 adfc ds 1 ;carry flag before op
000d : 00 ad1 ds 1 ;operand 1 - accumulator
000e : 00 ad2 ds 1 ;operand 2 - memory / immediate
000f : 00 adrl ds 1 ;expected result bits 0-7
0010 : 00 adrh ds 1 ;expected result bit 8 (carry)
0011 : 00 adrf ds 1 ;expected flags NV0000ZC (only binary mode)
0012 : 00 sb2 ds 1 ;operand 2 complemented for subtract
0013 : zp_bss
0013 : c3824100 zp1 db $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
0017 : 7f zp7f db $7f ;test pattern for compare
;logical zeropage operands
0018 : 001f7180 zpOR db 0,$1f,$71,$80 ;test pattern for OR
001c : 0fff7f80 zpAN db $0f,$ff,$7f,$80 ;test pattern for AND
0020 : ff0f8f8f zpEO db $ff,$0f,$8f,$8f ;test pattern for EOR
;indirect addressing pointers
0024 : 0802 ind1 dw abs1 ;indirect pointer to pattern in absolute memory
0026 : 0902 dw abs1+1
0028 : 0a02 dw abs1+2
002a : 0b02 dw abs1+3
002c : 0c02 dw abs7f
002e : 1001 inw1 dw abs1-$f8 ;indirect pointer for wrap-test pattern
0030 : 0302 indt dw abst ;indirect pointer to store area in absolute memory
0032 : 0402 dw abst+1
0034 : 0502 dw abst+2
0036 : 0602 dw abst+3
0038 : 0b01 inwt dw abst-$f8 ;indirect pointer for wrap-test store
003a : 3f02 indAN dw absAN ;indirect pointer to AND pattern in absolute memory
003c : 4002 dw absAN+1
003e : 4102 dw absAN+2
0040 : 4202 dw absAN+3
0042 : 4302 indEO dw absEO ;indirect pointer to EOR pattern in absolute memory
0044 : 4402 dw absEO+1
0046 : 4502 dw absEO+2
0048 : 4602 dw absEO+3
004a : 3b02 indOR dw absOR ;indirect pointer to OR pattern in absolute memory
004c : 3c02 dw absOR+1
004e : 3d02 dw absOR+2
0050 : 3e02 dw absOR+3
;add/subtract indirect pointers
0052 : 0302 adi2 dw ada2 ;indirect pointer to operand 2 in absolute memory
0054 : 0402 sbi2 dw sba2 ;indirect pointer to complemented operand 2 (SBC)
0056 : 0401 adiy2 dw ada2-$ff ;with offset for indirect indexed
0058 : 0501 sbiy2 dw sba2-$ff
005a : zp_bss_end
0200 = org data_segment
0200 : 00 test_case ds 1 ;current test number
0201 : 0000 ram_chksm ds 2 ;checksum for RAM integrity test
;add/subtract operand copy - abs tests write area
0203 : abst ;5 bytes store/modify test area
0203 : 00 ada2 ds 1 ;operand 2
0204 : 00 sba2 ds 1 ;operand 2 complemented for subtract
0205 : 000000 ds 3 ;fill remaining bytes
0208 : data_bss
0208 : c3824100 abs1 db $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
020c : 7f abs7f db $7f ;test pattern for compare
;loads
020d : 80800002 fLDx db fn,fn,0,fz ;expected flags for load
;shifts
0211 : rASL ;expected result ASL & ROL -carry
0211 : 86048200 rROL db $86,$04,$82,0 ; "
0215 : 87058301 rROLc db $87,$05,$83,1 ;expected result ROL +carry
0219 : rLSR ;expected result LSR & ROR -carry
0219 : 61412000 rROR db $61,$41,$20,0 ; "
021d : e1c1a080 rRORc db $e1,$c1,$a0,$80 ;expected result ROR +carry
0221 : fASL ;expected flags for shifts
0221 : 81018002 fROL db fnc,fc,fn,fz ;no carry in
0225 : 81018000 fROLc db fnc,fc,fn,0 ;carry in
0229 : fLSR
0229 : 01000102 fROR db fc,0,fc,fz ;no carry in
022d : 81808180 fRORc db fnc,fn,fnc,fn ;carry in
;increments (decrements)
0231 : 7f80ff0001 rINC db $7f,$80,$ff,0,1 ;expected result for INC/DEC
0236 : 0080800200 fINC db 0,fn,fn,fz,0 ;expected flags for INC/DEC
;logical memory operand
023b : 001f7180 absOR db 0,$1f,$71,$80 ;test pattern for OR
023f : 0fff7f80 absAN db $0f,$ff,$7f,$80 ;test pattern for AND
0243 : ff0f8f8f absEO db $ff,$0f,$8f,$8f ;test pattern for EOR
;logical accu operand
0247 : 00f11f00 absORa db 0,$f1,$1f,0 ;test pattern for OR
024b : f0ffffff absANa db $f0,$ff,$ff,$ff ;test pattern for AND
024f : fff0f00f absEOa db $ff,$f0,$f0,$0f ;test pattern for EOR
;logical results
0253 : 00ff7f80 absrlo db 0,$ff,$7f,$80
0257 : 02800080 absflo db fz,fn,0,fn
025b : data_bss_end
code
0400 = org code_segment
0400 : d8 start cld
0401 : a2ff ldx #$ff
0403 : 9a txs
0404 : a900 lda #0 ;*** test 0 = initialize
0406 : 8d0002 sta test_case
0000 = test_num = 0
;stop interrupts before initializing BSS
if I_flag = 1
sei
endif
;initialize I/O for report channel
if report = 1
jsr report_init
endif
;initialize BSS segment
if load_data_direct != 1
ldx #zp_end-zp_init-1
ld_zp lda zp_init,x
sta zp_bss,x
dex
bpl ld_zp
ldx #data_end-data_init-1
ld_data lda data_init,x
sta data_bss,x
dex
bpl ld_data
if ROM_vectors = 1
ldx #5
ld_vect lda vec_init,x
sta vec_bss,x
dex
bpl ld_vect
endif
endif
;retain status of interrupt flag
if I_flag = 2
php
pla
and #4 ;isolate flag
sta flag_I_on ;or mask
eor #lo(~4) ;reverse
sta flag_I_off ;and mask
endif
;generate checksum for RAM integrity test
if ram_top > -1
lda #0
sta zpt ;set low byte of indirect pointer
sta ram_chksm+1 ;checksum high byte
sta range_adr ;reset self modifying code
sta tandi1
sta tandi2
sta teori1
sta teori2
sta torai1
sta torai2
sta chkdadi
sta chkdsbi
sta chkadi
sta chksbi
clc
ldx #zp_bss-zero_page ;zeropage - write test area
gcs3 adc zero_page,x
bcc gcs2
inc ram_chksm+1 ;carry to high byte
clc
gcs2 inx
bne gcs3
ldx #hi(data_segment) ;set high byte of indirect pointer
stx zpt+1
ldy #lo(data_bss) ;data after write test area
gcs5 adc (zpt),y
bcc gcs4
inc ram_chksm+1 ;carry to high byte
clc
gcs4 iny
bne gcs5
inx ;advance RAM high address
stx zpt+1
cpx #ram_top
bne gcs5
sta ram_chksm ;checksum complete
endif
next_test
0409 : ad0002 > lda test_case ;previous test
040c : c900 > cmp #test_num
> trap_ne ;test is out of sequence
040e : d0fe > bne * ;failed not equal (non zero)
>
0001 = >test_num = test_num + 1
0410 : a901 > lda #test_num ;*** next tests' number
0412 : 8d0002 > sta test_case
> ;check_ram ;uncomment to find altered RAM after each test
;testing relative addressing with BEQ
0415 : a0fe ldy #$fe ;testing maximum range, not -1/-2 (invalid/self adr)
0417 : range_loop
0417 : 88 dey ;next relative address
0418 : 98 tya
0419 : aa tax ;precharge count to end of loop
041a : 1003 bpl range_fw ;calculate relative address
041c : 18 clc ;avoid branch self or to relative address of branch
041d : 6902 adc #2
041f : range_fw
041f : 497f eor #$7f ;complement except sign
0421 : 8da804 sta range_adr ;load into test target
0424 : a900 lda #0 ;should set zero flag in status register
0426 : 4ca704 jmp range_op
;relative address target field with branch under test in the middle
0429 : ca dex ;-128 - max backward
042a : ca dex
042b : ca dex
042c : ca dex
042d : ca dex
042e : ca dex
042f : ca dex
0430 : ca dex
0431 : ca dex ;-120
0432 : ca dex
0433 : ca dex
0434 : ca dex
0435 : ca dex
0436 : ca dex
0437 : ca dex
0438 : ca dex
0439 : ca dex
043a : ca dex
043b : ca dex ;-110
043c : ca dex
043d : ca dex
043e : ca dex
043f : ca dex
0440 : ca dex
0441 : ca dex
0442 : ca dex
0443 : ca dex
0444 : ca dex
0445 : ca dex ;-100
0446 : ca dex
0447 : ca dex
0448 : ca dex
0449 : ca dex
044a : ca dex
044b : ca dex
044c : ca dex
044d : ca dex
044e : ca dex
044f : ca dex ;-90
0450 : ca dex
0451 : ca dex
0452 : ca dex
0453 : ca dex
0454 : ca dex
0455 : ca dex
0456 : ca dex
0457 : ca dex
0458 : ca dex
0459 : ca dex ;-80
045a : ca dex
045b : ca dex
045c : ca dex
045d : ca dex
045e : ca dex
045f : ca dex
0460 : ca dex
0461 : ca dex
0462 : ca dex
0463 : ca dex ;-70
0464 : ca dex
0465 : ca dex
0466 : ca dex
0467 : ca dex
0468 : ca dex
0469 : ca dex
046a : ca dex
046b : ca dex
046c : ca dex
046d : ca dex ;-60
046e : ca dex
046f : ca dex
0470 : ca dex
0471 : ca dex
0472 : ca dex
0473 : ca dex
0474 : ca dex
0475 : ca dex
0476 : ca dex
0477 : ca dex ;-50
0478 : ca dex
0479 : ca dex
047a : ca dex
047b : ca dex
047c : ca dex
047d : ca dex
047e : ca dex
047f : ca dex
0480 : ca dex
0481 : ca dex ;-40
0482 : ca dex
0483 : ca dex
0484 : ca dex
0485 : ca dex
0486 : ca dex
0487 : ca dex
0488 : ca dex
0489 : ca dex
048a : ca dex
048b : ca dex ;-30
048c : ca dex
048d : ca dex
048e : ca dex
048f : ca dex
0490 : ca dex
0491 : ca dex
0492 : ca dex
0493 : ca dex
0494 : ca dex
0495 : ca dex ;-20
0496 : ca dex
0497 : ca dex
0498 : ca dex
0499 : ca dex
049a : ca dex
049b : ca dex
049c : ca dex
049d : ca dex
049e : ca dex
049f : ca dex ;-10
04a0 : ca dex
04a1 : ca dex
04a2 : ca dex
04a3 : ca dex
04a4 : ca dex
04a5 : ca dex
04a6 : ca dex ;-3
04a7 : range_op ;test target with zero flag=0, z=1 if previous dex
04a8 = range_adr = *+1 ;modifiable relative address
04a7 : f03e beq *+64 ;if called without modification
04a9 : ca dex ;+0
04aa : ca dex
04ab : ca dex
04ac : ca dex
04ad : ca dex
04ae : ca dex
04af : ca dex
04b0 : ca dex
04b1 : ca dex
04b2 : ca dex
04b3 : ca dex ;+10
04b4 : ca dex
04b5 : ca dex
04b6 : ca dex
04b7 : ca dex
04b8 : ca dex
04b9 : ca dex
04ba : ca dex
04bb : ca dex
04bc : ca dex
04bd : ca dex ;+20
04be : ca dex
04bf : ca dex
04c0 : ca dex
04c1 : ca dex
04c2 : ca dex
04c3 : ca dex
04c4 : ca dex
04c5 : ca dex
04c6 : ca dex
04c7 : ca dex ;+30
04c8 : ca dex
04c9 : ca dex
04ca : ca dex
04cb : ca dex
04cc : ca dex
04cd : ca dex
04ce : ca dex
04cf : ca dex
04d0 : ca dex
04d1 : ca dex ;+40
04d2 : ca dex
04d3 : ca dex
04d4 : ca dex
04d5 : ca dex
04d6 : ca dex
04d7 : ca dex
04d8 : ca dex
04d9 : ca dex
04da : ca dex
04db : ca dex ;+50
04dc : ca dex
04dd : ca dex
04de : ca dex
04df : ca dex
04e0 : ca dex
04e1 : ca dex
04e2 : ca dex
04e3 : ca dex
04e4 : ca dex
04e5 : ca dex ;+60
04e6 : ca dex
04e7 : ca dex
04e8 : ca dex
04e9 : ca dex
04ea : ca dex
04eb : ca dex
04ec : ca dex
04ed : ca dex
04ee : ca dex
04ef : ca dex ;+70
04f0 : ca dex
04f1 : ca dex
04f2 : ca dex
04f3 : ca dex
04f4 : ca dex
04f5 : ca dex
04f6 : ca dex
04f7 : ca dex
04f8 : ca dex
04f9 : ca dex ;+80
04fa : ca dex
04fb : ca dex
04fc : ca dex
04fd : ca dex
04fe : ca dex
04ff : ca dex
0500 : ca dex
0501 : ca dex
0502 : ca dex
0503 : ca dex ;+90
0504 : ca dex
0505 : ca dex
0506 : ca dex
0507 : ca dex
0508 : ca dex
0509 : ca dex
050a : ca dex
050b : ca dex
050c : ca dex
050d : ca dex ;+100
050e : ca dex
050f : ca dex
0510 : ca dex
0511 : ca dex
0512 : ca dex
0513 : ca dex
0514 : ca dex
0515 : ca dex
0516 : ca dex
0517 : ca dex ;+110
0518 : ca dex
0519 : ca dex
051a : ca dex
051b : ca dex
051c : ca dex
051d : ca dex
051e : ca dex
051f : ca dex
0520 : ca dex
0521 : ca dex ;+120
0522 : ca dex
0523 : ca dex
0524 : ca dex
0525 : ca dex
0526 : ca dex
0527 : ca dex
0528 : f003 beq range_ok ;+127 - max forward
trap ; bad range
052a : 4c2a05 > jmp * ;failed anyway
052d : range_ok
052d : c000 cpy #0
052f : f003 beq range_end
0531 : 4c1704 jmp range_loop
0534 : range_end ;range test successful
next_test
0534 : ad0002 > lda test_case ;previous test
0537 : c901 > cmp #test_num
> trap_ne ;test is out of sequence
0539 : d0fe > bne * ;failed not equal (non zero)
>
0002 = >test_num = test_num + 1
053b : a902 > lda #test_num ;*** next tests' number
053d : 8d0002 > sta test_case
> ;check_ram ;uncomment to find altered RAM after each test
;partial test BNE & CMP, CPX, CPY immediate
0540 : c001 cpy #1 ;testing BNE true
0542 : d003 bne test_bne
trap
0544 : 4c4405 > jmp * ;failed anyway
0547 : test_bne
0547 : a900 lda #0
0549 : c900 cmp #0 ;test compare immediate
trap_ne
054b : d0fe > bne * ;failed not equal (non zero)
trap_cc
054d : 90fe > bcc * ;failed carry clear
trap_mi
054f : 30fe > bmi * ;failed minus (bit 7 set)
0551 : c901 cmp #1
trap_eq
0553 : f0fe > beq * ;failed equal (zero)
trap_cs
0555 : b0fe > bcs * ;failed carry set
trap_pl
0557 : 10fe > bpl * ;failed plus (bit 7 clear)
0559 : aa tax
055a : e000 cpx #0 ;test compare x immediate
trap_ne
055c : d0fe > bne * ;failed not equal (non zero)
trap_cc
055e : 90fe > bcc * ;failed carry clear
trap_mi
0560 : 30fe > bmi * ;failed minus (bit 7 set)
0562 : e001 cpx #1
trap_eq
0564 : f0fe > beq * ;failed equal (zero)
trap_cs
0566 : b0fe > bcs * ;failed carry set
trap_pl
0568 : 10fe > bpl * ;failed plus (bit 7 clear)
056a : a8 tay
056b : c000 cpy #0 ;test compare y immediate
trap_ne
056d : d0fe > bne * ;failed not equal (non zero)
trap_cc
056f : 90fe > bcc * ;failed carry clear
trap_mi
0571 : 30fe > bmi * ;failed minus (bit 7 set)
0573 : c001 cpy #1
trap_eq
0575 : f0fe > beq * ;failed equal (zero)
trap_cs
0577 : b0fe > bcs * ;failed carry set
trap_pl
0579 : 10fe > bpl * ;failed plus (bit 7 clear)
next_test
057b : ad0002 > lda test_case ;previous test
057e : c902 > cmp #test_num
> trap_ne ;test is out of sequence
0580 : d0fe > bne * ;failed not equal (non zero)
>
0003 = >test_num = test_num + 1
0582 : a903 > lda #test_num ;*** next tests' number
0584 : 8d0002 > sta test_case
> ;check_ram ;uncomment to find altered RAM after each test
;testing stack operations PHA PHP PLA PLP
0587 : a2ff ldx #$ff ;initialize stack
0589 : 9a txs
058a : a955 lda #$55
058c : 48 pha
058d : a9aa lda #$aa
058f : 48 pha
0590 : cdfe01 cmp $1fe ;on stack ?
trap_ne
0593 : d0fe > bne * ;failed not equal (non zero)
0595 : ba tsx
0596 : 8a txa ;overwrite accu
0597 : c9fd cmp #$fd ;sp decremented?
trap_ne
0599 : d0fe > bne * ;failed not equal (non zero)
059b : 68 pla
059c : c9aa cmp #$aa ;successful retreived from stack?
trap_ne
059e : d0fe > bne * ;failed not equal (non zero)
05a0 : 68 pla
05a1 : c955 cmp #$55
trap_ne
05a3 : d0fe > bne * ;failed not equal (non zero)
05a5 : cdff01 cmp $1ff ;remains on stack?
trap_ne
05a8 : d0fe > bne * ;failed not equal (non zero)
05aa : ba tsx
05ab : e0ff cpx #$ff ;sp incremented?
trap_ne
05ad : d0fe > bne * ;failed not equal (non zero)
next_test
05af : ad0002 > lda test_case ;previous test
05b2 : c903 > cmp #test_num
> trap_ne ;test is out of sequence
05b4 : d0fe > bne * ;failed not equal (non zero)
>
0004 = >test_num = test_num + 1
05b6 : a904 > lda #test_num ;*** next tests' number
05b8 : 8d0002 > sta test_case
> ;check_ram ;uncomment to find altered RAM after each test
;testing branch decisions BPL BMI BVC BVS BCC BCS BNE BEQ
set_stat $ff ;all on
> load_flag $ff