Code generated by one of the C compilers sets up the stack frame and
then maps the direct page on top of it. If the value at the top of
the stack is 16 bits, it will be referenced via address $ff. The
local variable editor was regarding this as illegal, because lvars are
currently only defined for direct page data, and the value doesn't
entirely fit there (unless you're doing an indirect JMP on an NMOS
6502, in which case it wraps around to $00... but let's ignore that).
The actual max width of a local variable is 257 because of the
possibility of a 16-bit access at $ff.
Older versions of SourceGen don't seem to have an issue when they
encounter this situation, as worrying about (start+width) is really
just an editor affectation. The access itself is still a direct-page
operation. You won't be able to edit the entry without reducing the
length, but otherwise everything works. I don't think there's a need
to bump the file version.
Added a compiled C implementation of strlen(). The most interesting
part about this is that it references a 16-bit value via direct-page
address $ff, which means you'd want a local variable with
address=$ff and width=2. The current UI prevents this.
We were using a very simple regex pattern for the label part, and
not performing additional validation checks later. This allowed
a symbol that started with a number (e.g. "4ALL") to get much farther
than it should have.
This change modifies the regex pattern to match only valid label
syntax.
Replaced the link at the top of the manual. Remove reference to
old tutorial doc. Added an obsolescence notice to the top of the
old tutorial. Updated tutorial message and link in README.
Also, fixed sidenav style.
If you changed the width of a column, and then clicked the "toggle
display of cycle counts" button in the toolbar, the column width
would revert. The problem appears unique to that toolbar button,
so for now the fix is localized there. The more general fix is to
ensure that column width changes don't get stomped, but that's a
larger change.
There's no need to use XHTML Transitional. The only change outside
the template was to use "id" for anchors instead of "name", as the
latter is deprecated.
The calculations were wrong for certain situations, generating
answers that were useless or that caused a false-positive overflow
error.
This adds a couple of simple regression tests, modeled after layout
of the Lode Runner sprite sheet (which worked fine before) and the
Empire II EWS3 font (which failed).
This also bumps up some of the arbitrary limits in the visualizer.
(issue #94)
The $Cxxx I/O locations are mapped into banks $E0/E1, and are usually
configured to appear in banks $00/01 as well. Direct access to
locations in banks $E0/E1 is common in 16-bit code, but we only had
definitions for $E0.
This adds a clone of definitions for $E1, and renames the symbols
to be _E0/_E1 instead of _GS.
This can also be solved with MULTI_MASK, but that will always use
$E0 as the base address, so references to $E1/Cxxx will have a large
adjustment added ("+$10000"), which is kind of ugly.
Note we still don't have definitions for $01/Cxxx. I'll add those
if I run into them in 16-bit code. (That might be a reasonable use
of MULTI_MASK; feels less ugly somehow.)
The test for max allowed value was assuming 16-bit addresses.
We had no tests for 24-bit values, so this adds a 65816-specific
version of 20170-external-symbols.
Generate a 6502 test from the 65816 version by substituting the
16-bit instructions with 8-bit no-ops. There's a lot of project
edits and weird stuff in the test, so this was much easier than
starting over.
The 65816 variant is largely unchanged, though it could now be
stripped down to the stack-offset instructions.
Split into 6502/65816 portions. The 6502 version is the original
with a few in-place substitutions (e.g. JMP for BRL). The 65816
version is only needed to exercise special handling of PEA/PER.
We have a single character-encoding test that is cloned 3x so we can
exercise the different values for the project's default character
set. It was a 65816 test because it tested 16-bit immediate char
operands, but that's a very small part of it.
The 65816-specific portion is now 20122-char-encoding. The rest is
now 201{2,3,4}0-char-encoding-X.
Tests 10022-embedded-instructions and 10032-flags-and-branches were
a mix of 6502 and 65816 code. The 6502 code has been separated into
its own file, so that the tests can be run on 8-bit-only assemblers.
We append an assembler identifier to generated code. For Merlin 32,
this was "_Merlin32". All of the other assemblers use a lower-case
string, which makes Merlin look a little weird, so it has been
changed to "_merlin32".
Windows filesystems are generally case-insensitive, so this won't
likely affect anything.
A few tweaks:
- Test now requires an ORG on offset +000002, not just a correct
address.
- Suppress on-screen display of the initial ORG directive when
a PRG file is detected. Subtle, but helpful.
- In new project setup, fix initial address for PRG projects that
load at $0000.
- In new project setup, add a "load address" comment to the first line.
Also, fix some out-of-date documentation.
(issue #90)
The 10042-data-recognition test has no 65816-specific content, so it
should be named 10040-data-recognition.
Also, remove header comment from 20102-label-dp.
C64 PRG files are pretty common. Their salient feature is that they
start with a 16-bit value that is used as the load address. The
value is commonly generated by the assembler itself, rather than
explicitly added to the source file.
Not all assemblers know what a PRG file is, and some of them handle
it in ways that are difficult to guarantee in SourceGen. ACME adds
the 16-bit header when the output file name ends in ".prg", cc65
uses a modified config file, 64tass uses a different command-line
option, and Merlin 32 has no idea what they are.
This change adds PRG file detection and handling to the 64tass code
generator. Doing so required making a few changes to the gen/asm
interfaces, because we now need to have the generator pass additional
flags to the assembler, and sometimes we need code generation to
start somewhere other than offset zero. Overall the changes were
pretty minor.
The 20042-address-changes test needed a 6502-only variant. A new test
(20040-address-changes) has been added and given a PRG header. As
part of this change the 65816 variant was changed to use addresses
in bank 2, which uncovered a code generation bug that this change
also fixes.
The 64tass --long-address flag doesn't appear to be necessary for
files <= 65536 bytes long, so we no longer emit it for those.
(issue #90)
One of the most confusing things you can do is select a bunch of
lines and apply a code start tag (nee "code hint"). We now ask for
confirmation when applying start/stop hints to multiple lines.
(issue #89)
Variables, types, and comments have been updated to reflect the new
naming scheme.
The project file serialization code is untouched, because the data
is output as serialized enumerated values. Adding a string conversion
layer didn't seem worthwhile.
No changes in behavior.
(issue #89)
Before:
Hint As Code Entry Point
Hint As Data Start
Hint As Inline Data
Remove Hints
After:
Tag Address As Code Start Point
Tag Address As Code Stop Point
Tag Bytes As Inline Data
Remove Analyzer Tags
The goal is to reduce confusion. The old nomenclature was causing
problems because it's inaccurate -- they're directives, not hints --
and made it look like you need to mark data items explicitly. The
new action names emphasize the idea that you should be tagging a
single address for start/stop, not blanketing a region.
This change updates the user interface, manual, and tutorials, but
does not change how the items are referred to in code, and does not
change how the program works.
(issue #89)
Modified the asm source generators and on-screen display to show the
DP arg for BBR/BBS as hex. The instructions are otherwise treated
as relative branches, e.g. the DP arg doesn't get factored into the
cross-reference table.
ACME/cc65 put the bit number in the mnemonic, 64tass wants it to be
in the first argument, and Merlin32 wants nothing to do with any of
this because it's incompatible with the 65816.
Added an "all ops" test for W65C02.
Created the "all ops" tests for W65C02. Filled in enough of the
necessary infrastructure to be able to create the project and
disassemble the file, though we're not yet handling the instructions
correctly.
We were claiming W65C02S, but it turns out that CPU has the Rockwell
extensions and the STP/WAI instructions. We need to change existing
references to be "WDC 65C02", and add a new CPU definition for the
actual W65C02S chip.
This adds the new CPU definition, the instruction definitions for
the Rockwell extensions, and updates the selectors in project properties
and the instruction chart tool.
This change shouldn't affect any existing projects. Still more to do
before W65C02 works though, mostly because the Rockwell instructions
introduced a new two-argument address mode that has to be handled in
various places.
Sometimes you just want to turn cycle counts on for a bit, and going
through app settings is tiresome. Now there's a toolbar checkbox
for it. The icon isn't ideal, but it'll do.
Renaming a user label doesn't cause a re-analysis, just a display
update, because nothing structural is changing. However, that's not
quite true when you have a reference to a non-existent label (e.g.
"LDA hoser"), and you rename a label to match (e.g. change "blah"
to "hoser"). The most obvious consequence was that the Message list,
which enumerates the broken symbolic references, was not being
updated.
We now identify broken references during the refactoring rename, and
change the reanalysis mode accordingly.
There is a deeper problem, where undoing the label rename does the
wrong thing with the previously-broken symbolic references (in the
earlier example, it "undoes" them to "blah" rather than back to
"hoser"). I added some notes about that, but it's harder to fix.
Also, clean up some code that was still treating ReanalysisScope as
if it were bit flags.