/*
* Copyright 2019 faddenSoft
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;
using System.Text;
using System.Web.Script.Serialization;
using Asm65;
using CommonUtil;
namespace SourceGen {
///
/// Data pseudo-op formatter. Long operands, notably strings and dense hex blocks, may
/// be broken across multiple lines.
///
/// Assembler output will use Opcode and Operand, emitting multiple lines of ASC, HEX,
/// etc. The display list may treat it as a single item that is split across
/// multiple lines.
///
public class PseudoOp {
///
/// One piece of the pseudo-instruction.
///
public struct PseudoOut {
///
/// Opcode. Same for all entries in the list.
///
public string Opcode { get; set; }
///
/// Formatted form of this piece of the operand.
///
public string Operand { get; set; }
///
/// Copy constructor.
///
public PseudoOut(PseudoOut src) {
Opcode = src.Opcode;
Operand = src.Operand;
}
}
#region PseudoOpNames
///
/// Pseudo-op name collection. Instances are immutable.
///
public class PseudoOpNames {
public string EquDirective { get; private set; }
public string VarDirective { get; private set; }
public string OrgDirective { get; private set; }
public string RegWidthDirective { get; private set; }
public string DataBankDirective { get; private set; }
public string DefineData1 { get; private set; }
public string DefineData2 { get; private set; }
public string DefineData3 { get; private set; }
public string DefineData4 { get; private set; }
public string DefineBigData2 { get; private set; }
public string DefineBigData3 { get; private set; }
public string DefineBigData4 { get; private set; }
public string Fill { get; private set; }
public string Dense { get; private set; }
public string Junk { get; private set; }
public string Align { get; private set; }
public string StrGeneric { get; private set; }
public string StrReverse { get; private set; }
public string StrLen8 { get; private set; }
public string StrLen16 { get; private set; }
public string StrNullTerm { get; private set; }
public string StrDci { get; private set; }
///
/// Constructs an empty PseudoOp, for deserialization.
///
public PseudoOpNames() : this(new Dictionary()) { }
///
/// Constructor. Pass in a dictionary with name/value pairs. Unknown names
/// will be ignored, missing names will be assigned the empty string.
///
/// Dictionary of values.
public PseudoOpNames(Dictionary dict) {
foreach (PropertyInfo prop in GetType().GetProperties()) {
dict.TryGetValue(prop.Name, out string value);
if (value == null) {
value = string.Empty;
}
prop.SetValue(this, value);
}
}
public static bool operator ==(PseudoOpNames a, PseudoOpNames b) {
if (ReferenceEquals(a, b)) {
return true; // same object, or both null
}
if (ReferenceEquals(a, null) || ReferenceEquals(b, null)) {
return false; // one is null
}
return a.EquDirective == b.EquDirective &&
a.VarDirective == b.VarDirective &&
a.OrgDirective == b.OrgDirective &&
a.RegWidthDirective == b.RegWidthDirective &&
a.DataBankDirective == b.DataBankDirective &&
a.DefineData1 == b.DefineData1 &&
a.DefineData2 == b.DefineData2 &&
a.DefineData3 == b.DefineData3 &&
a.DefineData4 == b.DefineData4 &&
a.DefineBigData2 == b.DefineBigData2 &&
a.DefineBigData3 == b.DefineBigData3 &&
a.DefineBigData4 == b.DefineBigData4 &&
a.Fill == b.Fill &&
a.Dense == b.Dense &&
a.Junk == b.Junk &&
a.Align == b.Align &&
a.StrGeneric == b.StrGeneric &&
a.StrReverse == b.StrReverse &&
a.StrLen8 == b.StrLen8 &&
a.StrLen16 == b.StrLen16 &&
a.StrNullTerm == b.StrNullTerm &&
a.StrDci == b.StrDci;
}
public static bool operator !=(PseudoOpNames a, PseudoOpNames b) {
return !(a == b);
}
public override bool Equals(object obj) {
return obj is PseudoOpNames && this == (PseudoOpNames)obj;
}
public override int GetHashCode() {
// should be enough
return (EquDirective == null ? 0 : EquDirective.GetHashCode()) ^
(OrgDirective == null ? 0 : OrgDirective.GetHashCode()) ^
(DefineData1 == null ? 0 : DefineData1.GetHashCode()) ^
(Fill == null ? 0 : Fill.GetHashCode());
}
public string GetDefineData(int width) {
switch (width) {
case 1: return DefineData1;
case 2: return DefineData2;
case 3: return DefineData3;
case 4: return DefineData4;
default: Debug.Assert(false); return ".?!!";
}
}
public string GetDefineBigData(int width) {
switch (width) {
case 1: return DefineData1;
case 2: return DefineBigData2;
case 3: return DefineBigData3;
case 4: return DefineBigData4;
default: Debug.Assert(false); return ".!!?";
}
}
///
/// Merges the non-null, non-empty strings.
///
public static PseudoOpNames Merge(PseudoOpNames basePon, PseudoOpNames newPon) {
Dictionary baseDict = PropsToDict(basePon);
Dictionary newDict = PropsToDict(newPon);
foreach (KeyValuePair kvp in newDict) {
if (string.IsNullOrEmpty(kvp.Value)) {
continue;
}
baseDict[kvp.Key] = kvp.Value;
}
return new PseudoOpNames(baseDict);
}
private static Dictionary PropsToDict(PseudoOpNames pon) {
Dictionary dict = new Dictionary();
foreach (PropertyInfo prop in pon.GetType().GetProperties()) {
string value = (string)prop.GetValue(pon);
if (!string.IsNullOrEmpty(value)) {
dict[prop.Name] = value;
}
}
return dict;
}
public string Serialize() {
// This results in a JSON-encoded string being stored in a JSON-encoded file,
// which means a lot of double-quote escaping. We could do something here
// that stored more nicely but it doesn't seem worth the effort.
JavaScriptSerializer ser = new JavaScriptSerializer();
Dictionary dict = PropsToDict(this);
return ser.Serialize(dict);
}
public static PseudoOpNames Deserialize(string cereal) {
JavaScriptSerializer ser = new JavaScriptSerializer();
try {
Dictionary dict =
ser.Deserialize>(cereal);
return new PseudoOpNames(dict);
} catch (Exception ex) {
Debug.WriteLine("PseudoOpNames deserialization failed: " + ex.Message);
return new PseudoOpNames();
}
}
}
///
/// Returns a PseudoOpNames instance with some reasonable defaults for on-screen display.
///
public static PseudoOpNames DefaultPseudoOpNames { get; } =
new PseudoOpNames(new Dictionary {
{ "EquDirective", ".eq" },
{ "VarDirective", ".var" },
{ "OrgDirective", ".org" },
{ "RegWidthDirective", ".rwid" },
{ "DataBankDirective", ".dbank" },
{ "DefineData1", ".dd1" },
{ "DefineData2", ".dd2" },
{ "DefineData3", ".dd3" },
{ "DefineData4", ".dd4" },
{ "DefineBigData2", ".dbd2" },
{ "DefineBigData3", ".dbd3" },
{ "DefineBigData4", ".dbd4" },
{ "Fill", ".fill" },
{ "Dense", ".bulk" },
{ "Junk", ".junk" },
{ "Align", ".align" },
{ "StrGeneric", ".str" },
{ "StrReverse", ".rstr" },
{ "StrLen8", ".l1str" },
{ "StrLen16", ".l2str" },
{ "StrNullTerm", ".zstr" },
{ "StrDci", ".dstr" }
});
#endregion PseudoOpNames
///
/// Computes the number of lines of output required to hold the formatted output.
///
/// Format definition.
/// Data format descriptor.
/// Line count.
public static int ComputeRequiredLineCount(Formatter formatter, PseudoOpNames opNames,
FormatDescriptor dfd, byte[] data, int offset) {
if (dfd.IsString) {
Debug.Assert(false); // shouldn't be calling here anymore
List lines = FormatStringOp(formatter, opNames, dfd, data,
offset, out string popcode);
return lines.Count;
}
switch (dfd.FormatType) {
case FormatDescriptor.Type.Default:
case FormatDescriptor.Type.NumericLE:
case FormatDescriptor.Type.NumericBE:
case FormatDescriptor.Type.Fill:
case FormatDescriptor.Type.Junk:
return 1;
case FormatDescriptor.Type.Dense: {
// no delimiter, two output bytes per input byte
int maxLen = formatter.OperandWrapLen;
int textLen = dfd.Length * formatter.CharsPerDenseByte;
return (textLen + maxLen - 1) / maxLen;
}
default:
Debug.Assert(false);
return 1;
}
}
///
/// Generates a pseudo-op statement for the specified data operation.
///
/// For most operations, only one output line will be generated. For larger items,
/// like dense hex, the value may be split into multiple lines. The sub-index
/// indicates which line should be formatted.
///
/// Format definition.
/// Table of pseudo-op names.
/// Project symbol table.
/// Symbol label map. May be null.
/// Data format descriptor.
/// File data array.
/// Start offset.
/// For multi-line items, which line.
public static PseudoOut FormatDataOp(Formatter formatter, PseudoOpNames opNames,
SymbolTable symbolTable, Dictionary labelMap,
FormatDescriptor dfd, byte[] data, int offset, int subIndex) {
if (dfd == null) {
// should never happen
//Debug.Assert(false, "Null dfd at offset+" + offset.ToString("x6"));
PseudoOut failed = new PseudoOut();
failed.Opcode = failed.Operand = "!FAILED!+" + offset.ToString("x6");
return failed;
}
int length = dfd.Length;
Debug.Assert(length > 0);
// All outputs for a given offset show the same offset and length, even for
// multi-line items.
PseudoOut po = new PseudoOut();
if (dfd.IsString) {
Debug.Assert(false); // shouldn't be calling here anymore
List lines = FormatStringOp(formatter, opNames, dfd, data,
offset, out string popcode);
po.Opcode = popcode;
po.Operand = lines[subIndex];
} else {
switch (dfd.FormatType) {
case FormatDescriptor.Type.Default:
if (length != 1) {
// This shouldn't happen.
Debug.Assert(false);
length = 1;
}
po.Opcode = opNames.GetDefineData(length);
int operand = RawData.GetWord(data, offset, length, false);
po.Operand = formatter.FormatHexValue(operand, length * 2);
break;
case FormatDescriptor.Type.NumericLE:
po.Opcode = opNames.GetDefineData(length);
operand = RawData.GetWord(data, offset, length, false);
po.Operand = FormatNumericOperand(formatter, symbolTable, labelMap,
dfd, operand, length, FormatNumericOpFlags.None);
break;
case FormatDescriptor.Type.NumericBE:
po.Opcode = opNames.GetDefineBigData(length);
operand = RawData.GetWord(data, offset, length, true);
po.Operand = FormatNumericOperand(formatter, symbolTable, labelMap,
dfd, operand, length, FormatNumericOpFlags.None);
break;
case FormatDescriptor.Type.Fill:
po.Opcode = opNames.Fill;
po.Operand = length + "," + formatter.FormatHexValue(data[offset], 2);
break;
case FormatDescriptor.Type.Junk:
if (dfd.FormatSubType != FormatDescriptor.SubType.None) {
po.Opcode = opNames.Align;
int alignPow = FormatDescriptor.AlignmentToPower(dfd.FormatSubType);
po.Operand = formatter.FormatHexValue(1 << alignPow, 2) +
" (" + length.ToString() + " bytes)";
} else {
po.Opcode = opNames.Junk;
po.Operand = length.ToString();
}
break;
case FormatDescriptor.Type.Dense: {
int maxPerLine = formatter.OperandWrapLen / formatter.CharsPerDenseByte;
offset += subIndex * maxPerLine;
length -= subIndex * maxPerLine;
if (length > maxPerLine) {
length = maxPerLine;
}
po.Opcode = opNames.Dense;
po.Operand = formatter.FormatDenseHex(data, offset, length);
//List outList = new List();
//GenerateTextLines(text, "", "", po, outList);
//po = outList[subIndex];
}
break;
default:
Debug.Assert(false);
po.Opcode = ".???";
po.Operand = "$" + data[offset].ToString("x2");
break;
}
}
return po;
}
///
/// Adds an additional annotation to an EQU directive, indicating whether the symbol
/// is a constant or an address, and (if address) how many bytes it spans.
///
/// Formatter object.
/// Formatted operand string.
/// Project/platform/variable symbol.
///
public static string AnnotateEquDirective(Formatter formatter, string operand,
DefSymbol defSym) {
string typeStr;
if (defSym.IsConstant) {
if (defSym.SymbolSource == Symbol.Source.Variable) {
typeStr = Res.Strings.EQU_STACK_RELATIVE;
} else {
typeStr = Res.Strings.EQU_CONSTANT;
}
} else {
typeStr = Res.Strings.EQU_ADDRESS;
}
if (!defSym.HasWidth && !defSym.IsConstant) {
// It's an address without an explicit width, do not annotate.
return operand;
}
StringBuilder sb = new StringBuilder(operand.Length + typeStr.Length + 16);
sb.Append(operand);
int spacesNeeded = 7 - operand.Length;
do { // always output at least one space
sb.Append(' ');
} while (--spacesNeeded > 0);
sb.Append("{");
sb.Append(typeStr);
if (defSym.HasWidth) {
sb.Append('/');
sb.Append(defSym.DataDescriptor.Length);
}
sb.Append("}");
return sb.ToString();
}
///
/// Converts a collection of bytes that represent a string into an array of formatted
/// string operands.
///
/// Formatter object.
/// Pseudo-opcode name table.
/// Format descriptor.
/// File data.
/// Offset, within data, of start of string.
/// Pseudo-opcode string.
/// Array of operand strings.
public static List FormatStringOp(Formatter formatter, PseudoOpNames opNames,
FormatDescriptor dfd, byte[] data, int offset, out string popcode) {
int hiddenLeadingBytes = 0;
int trailingBytes = 0;
StringOpFormatter.ReverseMode revMode = StringOpFormatter.ReverseMode.Forward;
Formatter.DelimiterSet delSet = formatter.Config.mStringDelimiters;
Formatter.DelimiterDef delDef;
CharEncoding.Convert charConv;
switch (dfd.FormatSubType) {
case FormatDescriptor.SubType.Ascii:
if (dfd.FormatType == FormatDescriptor.Type.StringDci) {
charConv = CharEncoding.ConvertLowAndHighAscii;
} else {
charConv = CharEncoding.ConvertAscii;
}
delDef = delSet.Get(CharEncoding.Encoding.Ascii);
break;
case FormatDescriptor.SubType.HighAscii:
if (dfd.FormatType == FormatDescriptor.Type.StringDci) {
charConv = CharEncoding.ConvertLowAndHighAscii;
} else {
charConv = CharEncoding.ConvertHighAscii;
}
delDef = delSet.Get(CharEncoding.Encoding.HighAscii);
break;
case FormatDescriptor.SubType.C64Petscii:
if (dfd.FormatType == FormatDescriptor.Type.StringDci) {
charConv = CharEncoding.ConvertLowAndHighC64Petscii;
} else {
charConv = CharEncoding.ConvertC64Petscii;
}
delDef = delSet.Get(CharEncoding.Encoding.C64Petscii);
break;
case FormatDescriptor.SubType.C64Screen:
if (dfd.FormatType == FormatDescriptor.Type.StringDci) {
charConv = CharEncoding.ConvertLowAndHighC64ScreenCode;
} else {
charConv = CharEncoding.ConvertC64ScreenCode;
}
delDef = delSet.Get(CharEncoding.Encoding.C64ScreenCode);
break;
default:
Debug.Assert(false);
charConv = CharEncoding.ConvertAscii;
delDef = delSet.Get(CharEncoding.Encoding.Ascii);
break;
}
if (delDef == null) {
delDef = Formatter.DOUBLE_QUOTE_DELIM;
}
switch (dfd.FormatType) {
case FormatDescriptor.Type.StringGeneric:
// Generic character data.
popcode = opNames.StrGeneric;
break;
case FormatDescriptor.Type.StringReverse:
// Character data, full width specified by formatter. Show characters
// in reverse order.
popcode = opNames.StrReverse;
revMode = StringOpFormatter.ReverseMode.FullReverse;
break;
case FormatDescriptor.Type.StringNullTerm:
// Character data with a terminating null. Don't show the null byte.
popcode = opNames.StrNullTerm;
trailingBytes = 1;
//if (strLen == 0) {
// showHexZeroes = 1;
//}
break;
case FormatDescriptor.Type.StringL8:
// Character data with a leading length byte. Don't show the length.
hiddenLeadingBytes = 1;
//if (strLen == 0) {
// showHexZeroes = 1;
//}
popcode = opNames.StrLen8;
break;
case FormatDescriptor.Type.StringL16:
// Character data with a leading length word. Don't show the length.
Debug.Assert(dfd.Length > 1);
hiddenLeadingBytes = 2;
//if (strLen == 0) {
// showHexZeroes = 2;
//}
popcode = opNames.StrLen16;
break;
case FormatDescriptor.Type.StringDci:
// High bit on last byte is flipped.
popcode = opNames.StrDci;
break;
default:
Debug.Assert(false);
popcode = ".!!!";
break;
}
StringOpFormatter stropf = new StringOpFormatter(formatter, delDef,
StringOpFormatter.RawOutputStyle.CommaSep, charConv);
stropf.FeedBytes(data, offset + hiddenLeadingBytes,
dfd.Length - hiddenLeadingBytes - trailingBytes, 0, revMode);
return stropf.Lines;
}
///
/// Special formatting flags for the FormatNumericOperand() method.
///
[Flags]
public enum FormatNumericOpFlags {
None = 0,
IsPcRel = 1, // opcode is PC relative, e.g. branch or PER
IsAbsolutePBR = 1 << 1, // operand implicitly uses 'K' on 65816 (JMP/JSR)
HasHashPrefix = 1 << 2, // operand has a leading '#', reducing ambiguity
OmitLabelPrefixSuffix = 1 << 3, // don't show annotation char or non-unique prefix
}
///
/// Converts a FormatDescriptor SubType to a CharEncoding.Encoding value.
///
/// FormatDescriptor sub-type.
/// The corresponding CharEncoding.Encoding value, or Encoding.Unknown
/// if the sub-type isn't a character encoding.
public static CharEncoding.Encoding SubTypeToEnc(FormatDescriptor.SubType subType) {
switch (subType) {
case FormatDescriptor.SubType.Ascii:
return CharEncoding.Encoding.Ascii;
case FormatDescriptor.SubType.HighAscii:
return CharEncoding.Encoding.HighAscii;
case FormatDescriptor.SubType.C64Petscii:
return CharEncoding.Encoding.C64Petscii;
case FormatDescriptor.SubType.C64Screen:
return CharEncoding.Encoding.C64ScreenCode;
default:
return CharEncoding.Encoding.Unknown;
}
}
///
/// Format a numeric operand value according to the specified sub-format.
///
/// Text formatter.
/// Full table of project symbols.
/// Symbol label remap, for local label conversion. May be
/// null.
/// Operand format descriptor.
/// Operand's value. For most things this comes directly
/// out of the code, for relative branches it's a 24-bit absolute address.
/// Length of operand, in bytes. For an instruction, this
/// does not include the opcode byte. For a relative branch, this will be 2.
/// Special handling.
public static string FormatNumericOperand(Formatter formatter, SymbolTable symbolTable,
Dictionary labelMap, FormatDescriptor dfd, int operandValue,
int operandLen, FormatNumericOpFlags flags) {
return FormatNumericOperand(formatter, symbolTable, null, labelMap, dfd, -1,
operandValue, operandLen, flags);
}
///
/// Format a numeric operand value according to the specified sub-format. This
/// version takes additional arguments to support local variables.
///
/// Text formatter.
/// Full table of project symbols.
/// Local variable lookup object. May be null if not
/// formatting an instruction.
/// Symbol label remap, for local label conversion. May be
/// null.
/// Operand format descriptor.
/// Offset of start of instruction or data pseudo-op, for
/// variable name lookup. Okay to pass -1 when not formatting an instruction.
/// Operand's value. For most things this comes directly
/// out of the code, for relative branches it's a 24-bit absolute address.
/// Length of operand, in bytes. For an instruction, this
/// does not include the opcode byte. For a relative branch, this will be 2.
/// Special handling.
public static string FormatNumericOperand(Formatter formatter, SymbolTable symbolTable,
LocalVariableLookup lvLookup, Dictionary labelMap,
FormatDescriptor dfd, int offset, int operandValue, int operandLen,
FormatNumericOpFlags flags) {
Debug.Assert(operandLen > 0);
int hexMinLen = operandLen * 2;
switch (dfd.FormatSubType) {
case FormatDescriptor.SubType.None:
case FormatDescriptor.SubType.Hex:
case FormatDescriptor.SubType.Address:
if ((formatter.ExpressionMode == Formatter.FormatConfig.ExpressionMode.Cc65 ||
formatter.ExpressionMode == Formatter.FormatConfig.ExpressionMode.Merlin) &&
(flags & FormatNumericOpFlags.IsAbsolutePBR) != 0) {
// cc65 really doesn't like 24-bit values for JMP/JSR. If it sees a
// 24-bit hex constant it emits JML/JSL. Merlin works either way, and
// I think it looks better as a 16-bit value.
operandValue &= 0xffff;
}
return formatter.FormatHexValue(operandValue, hexMinLen);
case FormatDescriptor.SubType.Decimal:
return formatter.FormatDecimalValue(operandValue);
case FormatDescriptor.SubType.Binary:
return formatter.FormatBinaryValue(operandValue, hexMinLen * 4);
case FormatDescriptor.SubType.Ascii:
case FormatDescriptor.SubType.HighAscii:
case FormatDescriptor.SubType.C64Petscii:
case FormatDescriptor.SubType.C64Screen:
CharEncoding.Encoding enc = SubTypeToEnc(dfd.FormatSubType);
return formatter.FormatCharacterValue(operandValue, enc);
case FormatDescriptor.SubType.Symbol:
if (lvLookup != null && dfd.SymbolRef.IsVariable) {
Debug.Assert(operandLen == 1); // only doing 8-bit stuff
DefSymbol defSym = lvLookup.GetSymbol(offset, dfd.SymbolRef);
if (defSym != null) {
// For local variables we're doing a trivial add and don't
// wrap, so the "common" format works for everybody.
StringBuilder sb = new StringBuilder();
FormatNumericSymbolCommon(formatter, defSym, null,
dfd, operandValue, operandLen, flags, sb);
return sb.ToString();
} else {
Debug.WriteLine("Local variable format failed");
Debug.Assert(false);
return formatter.FormatHexValue(operandValue, hexMinLen);
}
} else if (symbolTable.TryGetNonVariableValue(dfd.SymbolRef.Label,
out Symbol sym)) {
StringBuilder sb = new StringBuilder();
switch (formatter.ExpressionMode) {
case Formatter.FormatConfig.ExpressionMode.Common:
FormatNumericSymbolCommon(formatter, sym, labelMap,
dfd, operandValue, operandLen, flags, sb);
break;
case Formatter.FormatConfig.ExpressionMode.Cc65:
FormatNumericSymbolCc65(formatter, sym, labelMap,
dfd, operandValue, operandLen, flags, sb);
break;
case Formatter.FormatConfig.ExpressionMode.Merlin:
FormatNumericSymbolMerlin(formatter, sym, labelMap,
dfd, operandValue, operandLen, flags, sb);
break;
default:
Debug.Assert(false, "Unknown expression mode " +
formatter.ExpressionMode);
return "???";
}
return sb.ToString();
} else {
return formatter.FormatHexValue(operandValue, hexMinLen);
}
default:
// should not see REMOVE or ASCII_GENERIC here
Debug.Assert(false);
return "???";
}
}
///
/// Format the symbol and adjustment using common expression syntax.
///
private static void FormatNumericSymbolCommon(Formatter formatter, Symbol sym,
Dictionary labelMap, FormatDescriptor dfd,
int operandValue, int operandLen, FormatNumericOpFlags flags, StringBuilder sb) {
// We could have some simple code that generated correct output, shifting and
// masking every time, but that's ugly and annoying. For single-byte ops we can
// just use the byte-select operators, for wider ops we get only as fancy as we
// need to be.
// Start by remapping the label, if necessary. The remapped label may have a
// local-variable prefix character.
string symLabel = sym.Label;
if (labelMap != null && labelMap.TryGetValue(symLabel, out string newLabel)) {
symLabel = newLabel;
}
if (sym.IsVariable) {
symLabel = formatter.FormatVariableLabel(symLabel);
}
// Now put the prefix/suffix back on if desired. We don't want to mess with it
// if it's from the assembler.
if ((flags & FormatNumericOpFlags.OmitLabelPrefixSuffix) == 0) {
symLabel = Symbol.ConvertLabelForDisplay(symLabel, sym.LabelAnno,
true, formatter);
}
if (operandLen == 1) {
// Use the byte-selection operator to get the right piece. In 64tass the
// selection operator has a very low precedence, similar to Merlin 32.
int symbolValue;
string selOp;
if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.Bank) {
symbolValue = (sym.Value >> 16) & 0xff;
if (formatter.Config.mBankSelectBackQuote) {
selOp = "`";
} else {
selOp = "^";
}
} else if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.High) {
symbolValue = (sym.Value >> 8) & 0xff;
selOp = ">";
} else {
symbolValue = sym.Value & 0xff;
if (symbolValue == sym.Value) {
selOp = string.Empty;
} else {
selOp = "<";
}
}
operandValue &= 0xff;
if (operandValue != symbolValue &&
dfd.SymbolRef.ValuePart != WeakSymbolRef.Part.Low) {
// Adjustment is required to an upper-byte part.
sb.Append('(');
sb.Append(selOp);
sb.Append(symLabel);
sb.Append(')');
} else {
// no adjustment required, or no byte-selection
sb.Append(selOp);
sb.Append(symLabel);
}
int adjustment = operandValue - symbolValue;
sb.Append(formatter.FormatAdjustment(adjustment));
} else if (operandLen <= 4) {
// Operands and values should be 8/16/24 bit unsigned quantities. 32-bit
// support is really there so you can have a 24-bit pointer in a 32-bit hole.
// Might need to adjust this if 32-bit signed quantities become interesting.
uint mask = 0xffffffff >> ((4 - operandLen) * 8);
int rightShift, symbolValue;
if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.Bank) {
symbolValue = (sym.Value >> 16);
rightShift = 16;
} else if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.High) {
symbolValue = (sym.Value >> 8);
rightShift = 8;
} else {
symbolValue = sym.Value;
rightShift = 0;
}
bool hasShift = (rightShift != 0);
if ((flags & FormatNumericOpFlags.IsPcRel) != 0) {
// PC-relative operands are funny, because an 8- or 16-bit value is always
// expanded to 24 bits. We output a 16-bit value that the assembler will
// convert back to 8-bit or 16-bit. In any event, the bank byte is never
// relevant to our computations.
operandValue &= 0xffff;
symbolValue &= 0xffff;
}
if ((flags & FormatNumericOpFlags.IsAbsolutePBR) != 0) {
if ((operandValue & 0x00ff0000) == (symbolValue & 0x00ff0000)) {
// JMP or JSR to something within the same bank. We don't need to
// mask the value.
symbolValue &= 0xffff;
} else {
// This is an absolute JMP/JSR to an out-of-bank location, which is
// bogus and should probably be prevented at a higher level. We handle
// it by altering the mask so an adjustment that covers the difference
// in bank values is generated.
mask = 0x00ffffff;
}
}
bool needMask = false;
if (symbolValue > mask) {
// Post-shift value won't fit in an operand-size box.
symbolValue = (int) (symbolValue & mask);
needMask = true;
}
operandValue = (int)(operandValue & mask);
int adjustment = operandValue - symbolValue;
// Possibilities:
// label
// label + adj
// label >> rightShift
// (label >> rightShift) + adj
// label & mask
// (label & mask) + adj
// (label >> rightShift) & mask
// ((label >> rightShift) & mask) + adj
sb.Append(symLabel);
if (rightShift != 0) {
sb.Append(" >> ");
sb.Append(rightShift.ToString());
}
if (needMask) {
if (rightShift != 0) {
sb.Insert(0, '(');
sb.Append(')');
}
sb.Append(" & ");
sb.Append(formatter.FormatHexValue((int)mask, 2));
}
if (adjustment != 0) {
if (needMask || rightShift != 0) {
sb.Insert(0, '(');
sb.Append(')');
}
sb.Append(formatter.FormatAdjustment(adjustment));
}
// Starting with a '(' makes it look like an indirect operand, so we need
// to prefix the expression with a no-op addition.
if (sb[0] == '(' && (flags & FormatNumericOpFlags.HasHashPrefix) == 0) {
sb.Insert(0, "0+");
}
} else {
Debug.Assert(false, "bad numeric len");
sb.Append("?????");
}
}
///
/// Format the symbol and adjustment using cc65 expression syntax.
///
private static void FormatNumericSymbolCc65(Formatter formatter, Symbol sym,
Dictionary labelMap, FormatDescriptor dfd,
int operandValue, int operandLen, FormatNumericOpFlags flags, StringBuilder sb) {
// The key difference between cc65 and other assemblers with general expressions
// is that the bitwise shift and AND operators have higher precedence than the
// arithmetic ops like add and subtract. (The bitwise ops are equal to multiply
// and divide.) This means that, if we want to mask off the low 16 bits and add one
// to a label, we can write "start & $ffff + 1" rather than "(start & $ffff) + 1".
//
// This is particularly convenient for PEA, since "PEA (start & $ffff) + 1" looks like
// we're trying to use a (non-existent) indirect form of PEA. We can write things
// in a simpler way.
int adjustment, symbolValue;
string symLabel = sym.Label;
if (labelMap != null && labelMap.TryGetValue(symLabel, out string newLabel)) {
symLabel = newLabel;
}
if ((flags & FormatNumericOpFlags.OmitLabelPrefixSuffix) == 0) {
symLabel = Symbol.ConvertLabelForDisplay(symLabel, sym.LabelAnno,
true, formatter);
}
if (operandLen == 1) {
// Use the byte-selection operator to get the right piece.
string selOp;
if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.Bank) {
symbolValue = (sym.Value >> 16) & 0xff;
selOp = "^";
} else if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.High) {
symbolValue = (sym.Value >> 8) & 0xff;
selOp = ">";
} else {
symbolValue = sym.Value & 0xff;
if (symbolValue == sym.Value) {
selOp = string.Empty;
} else {
selOp = "<";
}
}
sb.Append(selOp);
sb.Append(symLabel);
operandValue &= 0xff;
} else if (operandLen <= 4) {
uint mask = 0xffffffff >> ((4 - operandLen) * 8);
string shOp;
if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.Bank) {
symbolValue = (sym.Value >> 16);
shOp = " >> 16";
} else if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.High) {
symbolValue = (sym.Value >> 8);
shOp = " >> 8";
} else {
symbolValue = sym.Value;
shOp = "";
}
if ((flags & FormatNumericOpFlags.IsPcRel) != 0) {
// PC-relative operands are funny, because an 8- or 16-bit value is always
// expanded to 24 bits. We output a 16-bit value that the assembler will
// convert back to 8-bit or 16-bit. In any event, the bank byte is never
// relevant to our computations.
operandValue &= 0xffff;
symbolValue &= 0xffff;
}
sb.Append(symLabel);
sb.Append(shOp);
if (symbolValue > mask) {
// Post-shift value won't fit in an operand-size box.
symbolValue = (int)(symbolValue & mask);
sb.Append(" & ");
sb.Append(formatter.FormatHexValue((int)mask, 2));
}
operandValue = (int)(operandValue & mask);
// If we've added stuff, and we're going to add an adjustment later, stick
// an extra space in between for readability.
if (sb.Length != symLabel.Length && operandValue != symbolValue) {
sb.Append(' ');
}
} else {
Debug.Assert(false, "bad numeric len");
sb.Append("?????");
symbolValue = 0;
}
adjustment = operandValue - symbolValue;
sb.Append(formatter.FormatAdjustment(adjustment));
}
///
/// Format the symbol and adjustment using Merlin expression syntax.
///
private static void FormatNumericSymbolMerlin(Formatter formatter, Symbol sym,
Dictionary labelMap, FormatDescriptor dfd,
int operandValue, int operandLen, FormatNumericOpFlags flags, StringBuilder sb) {
// Merlin expressions are compatible with the original 8-bit Merlin. They're
// evaluated from left to right, with (almost) no regard for operator precedence.
//
// The part-selection operators differ from "simple" in two ways:
// (1) They always happen last. If FOO=$10f0, "#>FOO+$18" == $11. One of the
// few cases where left-to-right evaluation is overridden.
// (2) They select words, not bytes. If FOO=$123456, "#>FOO" is $1234. This is
// best thought of as a shift operator, rather than byte-selection. For
// 8-bit code this doesn't matter.
//
// This behavior leads to simpler expressions for simple symbol adjustments.
string symLabel = sym.Label;
if (labelMap != null && labelMap.TryGetValue(symLabel, out string newLabel)) {
symLabel = newLabel;
}
if ((flags & FormatNumericOpFlags.OmitLabelPrefixSuffix) == 0) {
symLabel = Symbol.ConvertLabelForDisplay(symLabel, sym.LabelAnno,
true, formatter);
}
int adjustment;
// If we add or subtract an adjustment, it will be done on the full value, which
// is then shifted to the appropriate part. So we need to left-shift the operand
// value to match. We fill in the low bytes with the contents of the symbol, so
// that the adjustment doesn't include unnecessary values. (For example, let
// FOO=$10f0, with operand "#>FOO" ($10). We shift the operand to get $1000, then
// OR in the low byte to get $10f0, so that when we subtract we get adjustment==0.)
int adjOperand, keepLen;
if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.Bank) {
adjOperand = operandValue << 16 | (int)(sym.Value & 0xff00ffff);
keepLen = 3;
} else if (dfd.SymbolRef.ValuePart == WeakSymbolRef.Part.High) {
adjOperand = (operandValue << 8) | (sym.Value & 0xff);
keepLen = 2;
} else {
adjOperand = operandValue;
keepLen = 1;
}
keepLen = Math.Max(keepLen, operandLen);
adjustment = adjOperand - sym.Value;
if (keepLen == 1) {
int origAdjust = adjustment;
adjustment %= 256;
// Adjust for aesthetics. The assembler implicitly applies a modulo operation,
// so we can use the value closest to zero.
if (adjustment > 127) {
adjustment = -(256 - adjustment) /*% 256*/;
} else if (adjustment < -128) {
adjustment = (256 + adjustment) /*% 256*/;
}
// We have a problem with ambiguous direct-page arguments if the adjusted
// value crosses a bank boundary. For example, "LDA $fff0+24" is computed
// as $010008, which is too big for a DP arg, so Merlin treats it as absolute
// (LDA $0008) instead of DP. If Merlin had done the implicit "& $ffff" before
// testing the value for DP range, this would behave correctly. Unfortunately
// there is no "force DP" modifier, so we either need to add an explicit mask
// or just punt and use the original adjustment.
//
// Note DP is only relevant for bank zero.
//
// TODO(someday): we only need to do this for ambiguous DP. If the instruction
// is imm or doesn't have an abs equivalent, or it's a fixed-width data item
// like .DD1, we can still use the nicer-looking adjustment. We don't currently
// pass the OpDef in here.
if ((sym.Value & 0xff0000) == 0 && ((sym.Value + adjustment) & 0xff0000) != 0) {
adjustment = origAdjust;
}
} else if (keepLen == 2) {
adjustment %= 65536;
if (adjustment > 32767) {
adjustment = -(65536 - adjustment) /*% 65536*/;
} else if (adjustment < -32768) {
adjustment = (65536 + adjustment) /*% 65536*/;
}
}
// Use the label from sym, not dfd's weak ref; might be different if label
// comparisons are case-insensitive.
switch (dfd.SymbolRef.ValuePart) {
case WeakSymbolRef.Part.Unknown:
case WeakSymbolRef.Part.Low:
// For Merlin, "<" is effectively a no-op. We can put it in for
// aesthetics when grabbing the low byte of a 16-bit value.
if ((operandLen == 1) && sym.Value > 0xff) {
sb.Append('<');
}
sb.Append(symLabel);
break;
case WeakSymbolRef.Part.High:
sb.Append('>');
sb.Append(symLabel);
break;
case WeakSymbolRef.Part.Bank:
sb.Append('^');
sb.Append(symLabel);
break;
default:
Debug.Assert(false, "bad part");
sb.Append("???");
break;
}
sb.Append(formatter.FormatAdjustment(adjustment));
}
}
}