/*
* Copyright 2020 faddenSoft
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Text;
namespace PluginCommon {
///
/// Simple 4x4 matrix.
///
public class Matrix33 {
private const int DIM = 3;
public double[,] Val {
get { return mVal; }
private set { mVal = value; }
}
private double[,] mVal;
public Matrix33() {
Val = new double[DIM, DIM];
}
public void Clear() {
for (int col = 0; col < DIM; col++) {
for (int row = 0; row < DIM; row++) {
Val[col, row] = 0.0;
}
}
}
public void SetToIdentity() {
Clear();
Val[0, 0] = Val[1, 1] = Val[2, 2] = 1.0;
}
///
/// Rotation mode. Determines the order in which axes are rotated, and whether the
/// rotation is for a right-handed or left-handed system.
///
public enum RotMode { XYZ_RRR, ZYX_RRR, ZYX_LLL, ZXY_RRR };
///
/// Sets the matrix to perform rotation about Euler angles X/Y/Z, with a
/// configurable order.
///
/// Rotation about the X axis, in degrees.
/// Rotation about the Y axis, in degrees.
/// Rotation about the Z axis, in degrees.
public void SetRotationEuler(int xdeg, int ydeg, int zdeg, RotMode mode) {
const double degToRad = Math.PI / 180.0;
double xrad = xdeg * degToRad;
double yrad = ydeg * degToRad;
double zrad = zdeg * degToRad;
double cx = Math.Cos(xrad);
double sx = Math.Sin(xrad);
double cy = Math.Cos(yrad);
double sy = Math.Sin(yrad);
double cz = Math.Cos(zrad);
double sz = Math.Sin(zrad);
double sycx = sy * cx;
double sysx = sy * sx;
switch (mode) {
case RotMode.ZYX_RRR:
// R = Rz * Ry * Rx, right-handed
Val[0, 0] = cz * cy;
Val[0, 1] = sz * cy;
Val[0, 2] = -sy;
Val[1, 0] = cz * sysx - sz * cx;
Val[1, 1] = sz * sysx + cz * cx;
Val[1, 2] = cy * sx;
Val[2, 0] = cz * sycx + sz * sx;
Val[2, 1] = sz * sycx - cz * sx;
Val[2, 2] = cy * cx;
break;
case RotMode.ZYX_LLL:
// R = Rz * Ry * Rx, left-handed
Val[0, 0] = cz * cy;
Val[0, 1] = -sz * cy;
Val[0, 2] = sy;
Val[1, 0] = cz * sysx + sz * cx;
Val[1, 1] = -sz * sysx + cz * cx;
Val[1, 2] = -cy * sx;
Val[2, 0] = -cz * sycx + sz * sx;
Val[2, 1] = sz * sycx + cz * sx;
Val[2, 2] = cy * cx;
break;
case RotMode.XYZ_RRR:
// R = Rx * Ry * Rz
Val[0, 0] = cz * cy;
Val[0, 1] = -sz * cy;
Val[0, 2] = sy;
Val[1, 0] = cz * sysx + sz * cx;
Val[1, 1] = -sz * sysx + cz * cx;
Val[1, 2] = -cy * sx;
Val[2, 0] = -cz * sycx + sz * sx;
Val[2, 1] = sz * sycx + cz * sx;
Val[2, 2] = cy * cx;
break;
case RotMode.ZXY_RRR:
// R = Rz * Rx * Ry
double cysx = cy * sx;
Val[0, 0] = cz * cy + sz * sysx;
Val[0, 1] = -sz * cy + cz * sysx;
Val[0, 2] = sy * cx;
Val[1, 0] = sz * cx;
Val[1, 1] = cz * cx;
Val[1, 2] = -sx;
Val[2, 0] = -cz * sy + sz * cysx;
Val[2, 1] = sz * sy + cz * cysx;
Val[2, 2] = cy * cx;
break;
}
}
///
/// Multiplies a 3-element vector.
///
/// Column vector to multiply.
/// Result vector.
public Vector3 Multiply(Vector3 vec) {
double rx = vec.X * Val[0, 0] + vec.Y * Val[1, 0] + vec.Z * Val[2, 0];
double ry = vec.X * Val[0, 1] + vec.Y * Val[1, 1] + vec.Z * Val[2, 1];
double rz = vec.X * Val[0, 2] + vec.Y * Val[1, 2] + vec.Z * Val[2, 2];
return new Vector3(rx, ry, rz);
}
public override string ToString() {
StringBuilder sb = new StringBuilder();
for (int row = 0; row < DIM; row++) {
sb.AppendLine();
sb.AppendFormat("|{0,8:N3} {1,8:N3} {2,8:N3}|",
Val[0, row], Val[1, row], Val[2, row]);
}
return sb.ToString();
}
}
}