mirror of
https://github.com/fadden/6502bench.git
synced 2025-01-21 05:31:13 +00:00
cb114be0f6
This allows regions that hold variable storage to be marked as data that is initialized by the program before it is used. Previously the choices were to treat it as bulk data (initialized) or junk (totally unused), neither of which are correct. This is functionally equivalent to "junk" as far as source code generation is concerned (though it doesn't have to be). For the code/data/junk counter, uninitialized data is counted as junk, because it technically does not need to be part of the binary.
1518 lines
70 KiB
C#
1518 lines
70 KiB
C#
/*
|
|
* Copyright 2019 faddenSoft
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
|
|
using Asm65;
|
|
using CommonUtil;
|
|
using PluginCommon;
|
|
using SourceGen.Sandbox;
|
|
|
|
namespace SourceGen {
|
|
/// <summary>
|
|
/// Instruction analyzer.
|
|
///
|
|
/// All data held in this object is transient, and will be discarded when analysis
|
|
/// completes. All user-defined values should be held elsewhere and provided as inputs
|
|
/// to the analyzer. Any change that merits re-analysis should be handled by creating a
|
|
/// new instance of this object.
|
|
///
|
|
/// See the comments at the top of UndoableChange for a list of things that can
|
|
/// mandate code re-analysis.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// This invokes methods in extension scripts to handle things like inline data
|
|
/// following a JSR. The added cost is generally low, because the AppDomain security
|
|
/// sandbox doesn't add a lot of overhead. Unfortunately this approach is deprecated
|
|
/// by Microsoft and may break or become unavailable. If that happens, and we have to
|
|
/// switch to a sandbox approach with significant overhead, we will most likely want
|
|
/// to move the code analyzer itself into the sandbox.
|
|
///
|
|
/// For this reason it's best to minimize direct interaction between the code here and
|
|
/// that elsewhere in the program.
|
|
/// </remarks>
|
|
public class CodeAnalysis {
|
|
/// <summary>
|
|
/// Analyzer tags are specified by the user. They identify an offset as being the
|
|
/// start or end of an executable code region, or part of an inline data block.
|
|
///
|
|
/// The tags are not used directly by the data analyzer, but the effects they
|
|
/// have on the Anattrib array are.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// THESE VALUES ARE SERIALIZED to the project data file. They cannot be renamed
|
|
/// without writing a translator in ProjectFile.
|
|
/// </remarks>
|
|
public enum AnalyzerTag : sbyte {
|
|
// No tag. Default value populated in new arrays.
|
|
None = 0,
|
|
|
|
// Byte is an instruction. If the code analyzer doesn't find this
|
|
// naturally, it will be scanned.
|
|
Code,
|
|
|
|
// Byte is inline data. Execution skips over the byte.
|
|
InlineData,
|
|
|
|
// Byte is data. Execution halts.
|
|
Data
|
|
}
|
|
|
|
/// <summary>
|
|
/// Class for handling callbacks from extension scripts.
|
|
/// </summary>
|
|
private class ScriptSupport : MarshalByRefObject, PluginCommon.IApplication {
|
|
private CodeAnalysis mOuter;
|
|
|
|
public ScriptSupport(CodeAnalysis ca) {
|
|
mOuter = ca;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Call this when analysis is complete, to ensure that over-active scripts
|
|
/// can't keep doing things. (This is not part of IApplication.)
|
|
/// </summary>
|
|
public void Shutdown() {
|
|
mOuter = null;
|
|
}
|
|
|
|
public void ReportError(string msg) {
|
|
DebugLog(msg);
|
|
}
|
|
|
|
public void DebugLog(string msg) {
|
|
mOuter.mDebugLog.LogI("PLUGIN: " + msg);
|
|
}
|
|
|
|
public bool SetOperandFormat(int offset, DataSubType subType, string label) {
|
|
return mOuter.SetOperandFormat(offset, subType, label);
|
|
}
|
|
|
|
public bool SetInlineDataFormat(int offset, int length, DataType type,
|
|
DataSubType subType, string label) {
|
|
return mOuter.SetInlineDataFormat(offset, length, type, subType, label);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Extension script manager.
|
|
/// </summary>
|
|
private ScriptManager mScriptManager;
|
|
|
|
/// <summary>
|
|
/// Local object that implements the IApplication interface for plugins.
|
|
/// </summary>
|
|
private ScriptSupport mScriptSupport;
|
|
|
|
/// <summary>
|
|
/// List of interesting plugins. If we have plugins that don't do code inlining we
|
|
/// can ignore them. (I'm using an array instead of a List<IPlugin> as a
|
|
/// micro-optimization; see https://stackoverflow.com/a/454923/294248 .)
|
|
/// </summary>
|
|
private IPlugin[] mScriptArray;
|
|
|
|
[Flags]
|
|
private enum PluginCap { NONE = 0, JSR = 1 << 0, JSL = 1 << 1, BRK = 1 << 2 };
|
|
private PluginCap[] mPluginCaps;
|
|
|
|
/// <summary>
|
|
/// CPU to use when analyzing data.
|
|
/// </summary>
|
|
private CpuDef mCpuDef;
|
|
|
|
/// <summary>
|
|
/// Map of offsets to addresses.
|
|
/// </summary>
|
|
private AddressMap mAddrMap;
|
|
|
|
/// <summary>
|
|
/// Reference to 65xx data.
|
|
/// </summary>
|
|
private byte[] mFileData;
|
|
|
|
/// <summary>
|
|
/// Attributes, one per byte in input file.
|
|
/// </summary>
|
|
private Anattrib[] mAnattribs;
|
|
|
|
/// <summary>
|
|
/// Reference to analyzer tag array, one entry per byte.
|
|
/// </summary>
|
|
private AnalyzerTag[] mAnalyzerTags;
|
|
|
|
/// <summary>
|
|
/// Reference to status flag override array, one entry per byte.
|
|
/// </summary>
|
|
private StatusFlags[] mStatusFlagOverrides;
|
|
|
|
/// <summary>
|
|
/// Initial status flags to use at entry points.
|
|
/// </summary>
|
|
private StatusFlags mEntryFlags;
|
|
|
|
/// <summary>
|
|
/// User-configurable analysis parameters.
|
|
/// </summary>
|
|
private ProjectProperties.AnalysisParameters mAnalysisParameters;
|
|
|
|
/// <summary>
|
|
/// Debug trace log.
|
|
/// </summary>
|
|
private DebugLog mDebugLog = new DebugLog(DebugLog.Priority.Silent);
|
|
|
|
|
|
/// <summary>
|
|
/// Constructor.
|
|
/// </summary>
|
|
/// <param name="data">65xx code stream.</param>
|
|
/// <param name="cpuDef">CPU definition to use when interpreting code.</param>
|
|
/// <param name="anattribs">Anattrib array. Expected to be newly allocated, all
|
|
/// entries set to default values.</param>
|
|
/// <param name="addrMap">Map of offsets to addresses.</param>
|
|
/// <param name="atags">Analyzer tags, one per byte.</param>
|
|
/// <param name="statusFlagOverrides">Status flag overrides for instruction-start
|
|
/// bytes.</param>
|
|
/// <param name="entryFlags">Status flags to use at code entry points.</param>
|
|
/// <param name="scriptMan">Extension script manager.</param>
|
|
/// <param name="parms">Analysis parameters.</param>
|
|
/// <param name="debugLog">Object that receives debug log messages.</param>
|
|
public CodeAnalysis(byte[] data, CpuDef cpuDef, Anattrib[] anattribs,
|
|
AddressMap addrMap, AnalyzerTag[] atags, StatusFlags[] statusFlagOverrides,
|
|
StatusFlags entryFlags, ProjectProperties.AnalysisParameters parms,
|
|
ScriptManager scriptMan, DebugLog debugLog) {
|
|
mFileData = data;
|
|
mCpuDef = cpuDef;
|
|
mAnattribs = anattribs;
|
|
mAddrMap = addrMap;
|
|
mAnalyzerTags = atags;
|
|
mStatusFlagOverrides = statusFlagOverrides;
|
|
mEntryFlags = entryFlags;
|
|
mScriptManager = scriptMan;
|
|
mAnalysisParameters = parms;
|
|
mDebugLog = debugLog;
|
|
|
|
mScriptSupport = new ScriptSupport(this);
|
|
}
|
|
|
|
// Internal log functions. If we're concerned about performance overhead due to
|
|
// call-site string concatenation, we can #ifdef these to nothing in release builds,
|
|
// which should allow the compiler to elide the concat.
|
|
#if false
|
|
private void LogV(int offset, string msg) {
|
|
if (mDebugLog.IsLoggable(DebugLog.Priority.Verbose)) {
|
|
mDebugLog.LogV("+" + offset.ToString("x6") + " " + msg);
|
|
}
|
|
}
|
|
#else
|
|
private void LogV(int offset, string msg) { }
|
|
#endif
|
|
#if true
|
|
private void LogD(int offset, string msg) {
|
|
if (mDebugLog.IsLoggable(DebugLog.Priority.Debug)) {
|
|
mDebugLog.LogD("+" + offset.ToString("x6") + " " + msg);
|
|
}
|
|
}
|
|
private void LogI(int offset, string msg) {
|
|
if (mDebugLog.IsLoggable(DebugLog.Priority.Info)) {
|
|
mDebugLog.LogI("+" + offset.ToString("x6") + " " + msg);
|
|
}
|
|
}
|
|
private void LogW(int offset, string msg) {
|
|
if (mDebugLog.IsLoggable(DebugLog.Priority.Warning)) {
|
|
mDebugLog.LogW("+" + offset.ToString("x6") + " " + msg);
|
|
}
|
|
}
|
|
private void LogE(int offset, string msg) {
|
|
if (mDebugLog.IsLoggable(DebugLog.Priority.Error)) {
|
|
mDebugLog.LogE("+" + offset.ToString("x6") + " " + msg);
|
|
}
|
|
}
|
|
#else
|
|
private void LogD(int offset, string msg) { }
|
|
private void LogI(int offset, string msg) { }
|
|
private void LogW(int offset, string msg) { }
|
|
private void LogE(int offset, string msg) { }
|
|
#endif
|
|
|
|
/// <summary>
|
|
/// Analyze a blob of code and data, annotating all code areas.
|
|
///
|
|
/// Also identifies data embedded in code, e.g. parameter blocks following a JSR,
|
|
/// with the help of extension scripts.
|
|
///
|
|
/// Failing here can leave us in a strange state, so prefer to work around unexpected
|
|
/// inputs rather than bailing entirely.
|
|
/// </summary>
|
|
public void Analyze() {
|
|
List<int> scanOffsets = new List<int>();
|
|
|
|
mDebugLog.LogI("Analyzing code: " + mFileData.Length + " bytes, CPU=" + mCpuDef.Name);
|
|
|
|
PrepareScripts();
|
|
|
|
SetAddresses();
|
|
|
|
// Set values in the anattrib array based on the user-specified analyzer tags.
|
|
// This tells us to stop processing or skip over bytes as we work. We set values
|
|
// for the code start tags so we can show them in the "info" window.
|
|
//
|
|
// The data recognizers may spot additional inline data offsets as we work. This
|
|
// can cause a race if it mis-identifies code that is also a branch target;
|
|
// whichever marks the code first will win.
|
|
UnpackAnalyzerTags();
|
|
|
|
// Find starting place, based on analyzer tags.
|
|
//
|
|
// We only set the "visited" flag on the instruction start, so if the user
|
|
// puts a code start in the middle of an instruction, we will find it and
|
|
// treat it as an entry point. (This is useful for embedded instructions
|
|
// that are branched to by code we aren't able to detect.)
|
|
int searchStart = FindFirstUnvisitedInstruction(0);
|
|
while (searchStart >= 0) {
|
|
mAnattribs[searchStart].IsEntryPoint = true;
|
|
mAnattribs[searchStart].StatusFlags = mEntryFlags;
|
|
mAnattribs[searchStart].ApplyStatusFlags(mStatusFlagOverrides[searchStart]);
|
|
|
|
int offset = searchStart;
|
|
while (true) {
|
|
bool embedded = (mAnattribs[offset].IsInstruction &&
|
|
!mAnattribs[offset].IsVisited);
|
|
LogI(offset, "Scan chunk (vis=" + mAnattribs[offset].IsVisited +
|
|
" chg=" + mAnattribs[offset].IsChanged +
|
|
(embedded ? " embedded " : "") + ")");
|
|
|
|
AnalyzeSegment(offset, scanOffsets);
|
|
|
|
// Did anything new get added?
|
|
if (scanOffsets.Count == 0) {
|
|
break;
|
|
}
|
|
|
|
// Pop one off the end.
|
|
int lastItem = scanOffsets.Count - 1;
|
|
offset = scanOffsets[lastItem];
|
|
scanOffsets.RemoveAt(lastItem);
|
|
}
|
|
|
|
searchStart = FindFirstUnvisitedInstruction(searchStart);
|
|
}
|
|
|
|
if (mScriptManager != null) {
|
|
mScriptManager.UnprepareScripts();
|
|
}
|
|
mScriptSupport.Shutdown();
|
|
|
|
MarkUnexecutedEmbeddedCode();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Prepare a list of relevant extension scripts.
|
|
/// </summary>
|
|
private void PrepareScripts() {
|
|
if (mScriptManager == null) {
|
|
// Currently happens for regression tests with no external files.
|
|
mScriptArray = new IPlugin[0];
|
|
mPluginCaps = new PluginCap[0];
|
|
return;
|
|
}
|
|
|
|
// Include all scripts.
|
|
mScriptArray = mScriptManager.GetAllInstances().ToArray();
|
|
mPluginCaps = new PluginCap[mScriptArray.Length];
|
|
for (int i = 0; i < mScriptArray.Length; i++) {
|
|
PluginCap cap = PluginCap.NONE;
|
|
if (mScriptArray[i] is IPlugin_InlineJsr) {
|
|
cap |= PluginCap.JSR;
|
|
}
|
|
if (mScriptArray[i] is IPlugin_InlineJsl) {
|
|
cap |= PluginCap.JSL;
|
|
}
|
|
if (mScriptArray[i] is IPlugin_InlineBrk) {
|
|
cap |= PluginCap.BRK;
|
|
}
|
|
mPluginCaps[i] = cap;
|
|
}
|
|
|
|
// Prep them.
|
|
mScriptManager.PrepareScripts(mScriptSupport);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sets the address for every byte in the input.
|
|
/// </summary>
|
|
private void SetAddresses() {
|
|
IEnumerator<AddressMap.AddressChange> addrIter = mAddrMap.AddressChangeIterator;
|
|
addrIter.MoveNext();
|
|
int addr = 0;
|
|
bool nonAddr = false;
|
|
bool addrChange = false;
|
|
|
|
for (int offset = 0; offset < mAnattribs.Length; offset++) {
|
|
AddressMap.AddressChange change = addrIter.Current;
|
|
|
|
// Process all start events at this offset. The new address takes effect
|
|
// immediately.
|
|
while (change != null && change.IsStart && change.Offset == offset) {
|
|
addr = change.Address;
|
|
if (addr == Address.NON_ADDR) {
|
|
addr = 0;
|
|
nonAddr = true;
|
|
} else {
|
|
nonAddr = false;
|
|
}
|
|
addrChange = true;
|
|
addrIter.MoveNext();
|
|
change = addrIter.Current;
|
|
}
|
|
|
|
mAnattribs[offset].Address = addr++;
|
|
mAnattribs[offset].IsAddrRegionChange = addrChange;
|
|
mAnattribs[offset].IsNonAddressable = nonAddr;
|
|
addrChange = false;
|
|
|
|
// Process all end events at this offset. The new address and "address
|
|
// region change" flag take effect on the *following* offset.
|
|
while (change != null && !change.IsStart && change.Offset == offset) {
|
|
addr = change.Address;
|
|
if (addr == Address.NON_ADDR) {
|
|
addr = 0;
|
|
nonAddr = true;
|
|
} else {
|
|
nonAddr = false;
|
|
}
|
|
addrChange = true;
|
|
addrIter.MoveNext();
|
|
change = addrIter.Current;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sets the "is xxxxx" flags on analyzer-tagged entries, so that the code analyzer
|
|
/// can find them easily.
|
|
/// </summary>
|
|
private void UnpackAnalyzerTags() {
|
|
Debug.Assert(mAnalyzerTags.Length == mAnattribs.Length);
|
|
int offset = 0;
|
|
foreach (AnalyzerTag atag in mAnalyzerTags) {
|
|
switch (atag) {
|
|
case AnalyzerTag.Code:
|
|
// Set the IsInstruction flag to prevent inline data from being
|
|
// placed here.
|
|
OpDef op = mCpuDef.GetOpDef(mFileData[offset]);
|
|
if (op == OpDef.OpInvalid) {
|
|
// Might want to set the "has tag" value anyway, since it won't
|
|
// appear in the "Info" window if we don't. Or maybe we need a
|
|
// message about "invisible" code start tags?
|
|
LogI(offset, "Ignoring code start tag on illegal opcode");
|
|
} else {
|
|
mAnattribs[offset].HasAnalyzerTag = true;
|
|
mAnattribs[offset].IsInstruction = true;
|
|
}
|
|
break;
|
|
case AnalyzerTag.Data:
|
|
// Tells the code analyzer to stop.
|
|
mAnattribs[offset].HasAnalyzerTag = true;
|
|
mAnattribs[offset].IsData = true;
|
|
break;
|
|
case AnalyzerTag.InlineData:
|
|
// Tells the code analyzer to walk across these.
|
|
mAnattribs[offset].HasAnalyzerTag = true;
|
|
mAnattribs[offset].IsInlineData = true;
|
|
break;
|
|
case AnalyzerTag.None:
|
|
break;
|
|
default:
|
|
Debug.Assert(false);
|
|
break;
|
|
}
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Finds the first offset that is tagged as code start but hasn't yet been visited.
|
|
///
|
|
/// This might be in the middle of an already-visited instruction.
|
|
/// </summary>
|
|
/// <param name="start">Offset at which to start the search.</param>
|
|
/// <returns>Offset found.</returns>
|
|
private int FindFirstUnvisitedInstruction(int start) {
|
|
for (int i = start; i < mAnattribs.Length; i++) {
|
|
if (mAnattribs[i].HasAnalyzerTag && mAnalyzerTags[i] == AnalyzerTag.Code &&
|
|
!mAnattribs[i].IsVisited) {
|
|
LogD(i, "Unvisited code start tag");
|
|
if (mAnattribs[i].IsData || mAnattribs[i].IsInlineData) {
|
|
// Maybe the user put a code start tag on something that was
|
|
// later recognized as inline data? Shouldn't have been allowed.
|
|
LogW(i, "Weird: code start tag on data/inline");
|
|
continue;
|
|
}
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Finds bits of code that are part of embedded instructions but not actually
|
|
/// executed, and marks them as inline data.
|
|
/// </summary>
|
|
private void MarkUnexecutedEmbeddedCode() {
|
|
// The problem arises when you have a line like 4C 60 EA, with a branch to the
|
|
// middle byte. The formatter will print "JMP $EA60", then "<label> RTS", and
|
|
// then should print NOP. The problem is that the NOP wasn't reached by the
|
|
// code analyzer, and so isn't tagged as an instruction start. It's effectively
|
|
// inline data, so we need to mark it that way.
|
|
//
|
|
// We don't have a quick way to find these, so we just run through the list.
|
|
for (int offset = 0; offset < mFileData.Length; ) {
|
|
if (mAnattribs[offset].IsInstructionStart) {
|
|
int len;
|
|
for (len = 1; len < mAnattribs[offset].Length; len++) {
|
|
if (mAnattribs[offset + len].IsInstructionStart) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
offset += len;
|
|
} else if (mAnattribs[offset].IsInstruction) {
|
|
// bingo
|
|
LogI(offset, "Fixing embedded orphan");
|
|
mAnattribs[offset].IsInstruction = false;
|
|
mAnattribs[offset].IsInlineData = true;
|
|
mAnattribs[offset].DataDescriptor = FormatDescriptor.Create(1,
|
|
FormatDescriptor.Type.NumericLE, FormatDescriptor.SubType.None);
|
|
offset++;
|
|
} else {
|
|
offset++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Analyzes a code segment. A code segment is a contiguous series of instructions.
|
|
/// We halt if we encounter a return, always-taken branch, or the end of the
|
|
/// current address map section.
|
|
///
|
|
/// If we find branches to unvisited code, or previously-visited code that has
|
|
/// different status flags, we add that to the list of offsets to scan.
|
|
/// </summary>
|
|
/// <param name="offset">Starting offset.</param>
|
|
/// <param name="scanOffsets">Collection to which additional offsets of interest will
|
|
/// be added.</param>
|
|
private void AnalyzeSegment(int offset, List<int> scanOffsets) {
|
|
while (offset < mFileData.Length) {
|
|
if (mAnattribs[offset].IsVisited && !mAnattribs[offset].IsChanged) {
|
|
// already visited, not changed; nothing to do
|
|
LogD(offset, "Visited and not changed, bailing");
|
|
return;
|
|
}
|
|
|
|
bool firstVisit = !mAnattribs[offset].IsVisited;
|
|
|
|
// Set "visited" flag, clear "changed".
|
|
mAnattribs[offset].IsVisited = true;
|
|
mAnattribs[offset].IsChanged = false;
|
|
|
|
if (mAnattribs[offset].IsData) {
|
|
// This area was declared to be data. Go no further. This shouldn't
|
|
// usually happen -- either we should have stopped tracing, or we
|
|
// should have identified the data area as code.
|
|
LogI(offset, "Code ran into data section");
|
|
Debug.Assert(false);
|
|
return;
|
|
} else if (mAnattribs[offset].IsInlineData) {
|
|
// Generally this won't happen, because we ignore branches into inline data
|
|
// areas, we reject attempts to convert code to inline data, and we can't
|
|
// start in an inline area because the tag is wrong. However, it's possible
|
|
// for a JSR to a new section to be registered, and then before we get to
|
|
// it an extension script formats the area as inline data. In that case
|
|
// the inline data "wins", and we stop here.
|
|
LogW(offset, "Code ran into inline data section");
|
|
return;
|
|
} else if (mAnattribs[offset].IsNonAddressable) {
|
|
mAnattribs[offset].IsInstruction = false;
|
|
LogW(offset, "Code ran into non-addressable area");
|
|
return;
|
|
}
|
|
|
|
// Identify the instruction, and see if it runs off the end of the file.
|
|
// If it does, treat it as data.
|
|
OpDef op = mCpuDef.GetOpDef(mFileData[offset]);
|
|
int instrLen = op.GetLength(mAnattribs[offset].StatusFlags);
|
|
LogV(offset, "OP $" + mFileData[offset].ToString("X2") + " len=" + instrLen);
|
|
if (offset + instrLen > mFileData.Length) {
|
|
// Instruction runs off the end. It's possible we visited here before with
|
|
// short M/X flags, or some other code jumps to code embedded in our
|
|
// operand. Whatever the case, we want to clear the instruction flag from
|
|
// the first byte. We can mark it as data so subsequent passes don't
|
|
// bump into this.
|
|
LogW(offset, "Instruction runs off end of file");
|
|
mAnattribs[offset].IsInstructionStart = false;
|
|
mAnattribs[offset].IsInstruction = false;
|
|
mAnattribs[offset].IsData = true;
|
|
return;
|
|
}
|
|
|
|
// Check for mid-instruction address region changes. An address change on the
|
|
// first byte is fine.
|
|
for (int i = offset + 1; i < offset + instrLen; i++) {
|
|
if (mAnattribs[i].IsAddrRegionChange) {
|
|
// Found a region start and/or end. Mark this offset as data and return.
|
|
LogW(offset, "Detected address change mid-instruction");
|
|
mAnattribs[offset].IsInstructionStart = false;
|
|
mAnattribs[offset].IsInstruction = false;
|
|
mAnattribs[offset].IsData = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Instruction not defined for this CPU. Treat as data.
|
|
if (op.AddrMode == OpDef.AddressMode.Unknown) {
|
|
LogW(offset, "Instruction stream encountered invalid opcode ($" +
|
|
mFileData[offset].ToString("x2") + ")");
|
|
return;
|
|
}
|
|
|
|
// Flag as start of valid instruction, and mark all bytes as instructions.
|
|
// There's a possible conflict here if the first byte is marked as an
|
|
// instruction, but bytes within the instruction are marked as data. The
|
|
// easiest thing to do here is steamroll the data flags.
|
|
//
|
|
// (To cause this, tag a 3-byte instruction as code-stop/inline-data, then
|
|
// tag the first byte of the instruction as code.)
|
|
mAnattribs[offset].IsInstructionStart = true;
|
|
mAnattribs[offset].Length = instrLen;
|
|
for (int i = offset; i < offset + instrLen; i++) {
|
|
if (mAnattribs[i].IsData) {
|
|
LogW(i, "Stripping mid-instruction data flag");
|
|
mAnattribs[i].IsData = false;
|
|
mAnattribs[i].DataDescriptor = null;
|
|
} else if (mAnattribs[i].IsInlineData) {
|
|
LogW(i, "Stripping mid-instruction inline-data flag");
|
|
mAnattribs[i].IsInlineData = false;
|
|
mAnattribs[i].DataDescriptor = null;
|
|
}
|
|
mAnattribs[i].IsInstruction = true;
|
|
}
|
|
|
|
// Compute the effect on the status flags.
|
|
StatusFlags newFlags, condBranchTakenFlags;
|
|
if (op == OpDef.OpPLP_StackPull) {
|
|
// PLP restores flags from the stack.
|
|
newFlags = condBranchTakenFlags = GuessFlagsForPLP(offset);
|
|
} else {
|
|
op.ComputeFlagChanges(mAnattribs[offset].StatusFlags, mFileData, offset,
|
|
out newFlags, out condBranchTakenFlags);
|
|
}
|
|
|
|
// Handle stuff that won't be different on a subsequent visit.
|
|
if (firstVisit) {
|
|
// Decode the operand for instructions that reference an address. If
|
|
// the target address is within the file's address space, record the
|
|
// offset as well. This doesn't examine immediate operands.
|
|
DecodeOperandAddress(offset, op);
|
|
}
|
|
|
|
int branchOffset = -1;
|
|
bool doBranch, doContinue;
|
|
|
|
// Check for branching.
|
|
if (op.IsBranchOrSubCall) {
|
|
if (mAnattribs[offset].IsOperandOffsetDirect) {
|
|
branchOffset = mAnattribs[offset].OperandOffset;
|
|
}
|
|
if (branchOffset >= 0 && branchOffset < mFileData.Length) {
|
|
doBranch = true;
|
|
} else {
|
|
// External branch. Very common for JSR to ROM routines and JMP
|
|
// through an indirect address. Not usually expected for relative
|
|
// branches.
|
|
if (op.Effect != OpDef.FlowEffect.CallSubroutine) {
|
|
LogD(offset, "Branch goes external");
|
|
}
|
|
doBranch = false;
|
|
mAnattribs[offset].IsExternalBranch = true;
|
|
}
|
|
} else {
|
|
doBranch = false;
|
|
}
|
|
|
|
// Check continuation to next instruction.
|
|
switch (op.Effect) {
|
|
case OpDef.FlowEffect.Cont:
|
|
case OpDef.FlowEffect.CallSubroutine:
|
|
case OpDef.FlowEffect.ConditionalBranch:
|
|
doContinue = true;
|
|
break;
|
|
default:
|
|
doContinue = false;
|
|
break;
|
|
}
|
|
|
|
// Some 6502 code works around the lack of a branch-always instruction with
|
|
// a complement pair (e.g. BCC + BCS), so we don't want to continue past a branch
|
|
// always taken. The converse is also true: don't pursue a branch if it's
|
|
// never taken. An example from 6502.org:
|
|
// "... a common sequence on the 6502 family is:
|
|
// CLEAR_FLAG CLC
|
|
// DB $B0
|
|
// SET_FLAG SEC
|
|
// ROR FLAG
|
|
// RTS
|
|
// When entering via CLEAR_FLAG, the $B0 becomes a 2-cycle BCS instruction, which
|
|
// is not taken (since the carry is clear). Since BCS does not affect any flags,
|
|
// it serves, in this situation, as a two byte, two cycle NOP and provides a
|
|
// subtle, but useful way to efficiently skip the SEC instruction."
|
|
|
|
// Revise branch/cont for conditional branch instructions.
|
|
if (op.Effect == OpDef.FlowEffect.ConditionalBranch) {
|
|
OpDef.BranchTaken taken =
|
|
OpDef.IsBranchTaken(op, mAnattribs[offset].StatusFlags);
|
|
if (taken == OpDef.BranchTaken.Never) {
|
|
doBranch = false;
|
|
} else if (taken == OpDef.BranchTaken.Always) {
|
|
doContinue = false;
|
|
}
|
|
mAnattribs[offset].BranchTaken = taken;
|
|
}
|
|
|
|
// Make sure destination isn't already flagged as data.
|
|
if (doBranch) {
|
|
Debug.Assert(branchOffset >= 0);
|
|
if (mAnattribs[branchOffset].IsData || mAnattribs[branchOffset].IsInlineData) {
|
|
LogW(offset, "Ignoring branch to +" + branchOffset.ToString("x6") +
|
|
" (data region)");
|
|
doBranch = false;
|
|
branchOffset = -1;
|
|
}
|
|
}
|
|
|
|
LogV(offset, "doBranch=" + doBranch + ", doCont=" + doContinue);
|
|
|
|
if (doBranch) {
|
|
// Flag the destination offset as a branch target.
|
|
mAnattribs[branchOffset].IsBranchTarget = true;
|
|
|
|
// Merge our status flags with theirs.
|
|
StatusFlags branchStatusBefore = mAnattribs[branchOffset].StatusFlags;
|
|
mAnattribs[branchOffset].MergeStatusFlags(condBranchTakenFlags);
|
|
mAnattribs[branchOffset].ApplyStatusFlags(mStatusFlagOverrides[branchOffset]);
|
|
|
|
// If we need to (re-)scan this offset, add it to the list.
|
|
//AttribFlags branchFlags = mAnattribs[branchOffset].mAttribFlags;
|
|
bool addToScan = false;
|
|
string why;
|
|
if (!mAnattribs[branchOffset].IsVisited) {
|
|
// Not yet visited. Some flags may have been set by earlier branch.
|
|
// Merge status flags and add to scan list if not already present.
|
|
addToScan = true;
|
|
why = "(not visited)";
|
|
} else {
|
|
// Visited before. If the status flags changed, set "changed" and
|
|
// add to scan offsets.
|
|
if (branchStatusBefore != mAnattribs[branchOffset].StatusFlags) {
|
|
mAnattribs[branchOffset].IsChanged = true;
|
|
addToScan = true;
|
|
}
|
|
why = "(flags: " + branchStatusBefore + " -> " +
|
|
mAnattribs[branchOffset].StatusFlags + ")";
|
|
}
|
|
if (addToScan && !scanOffsets.Contains(branchOffset)) {
|
|
LogD(offset, "Adding " + branchOffset.ToString("x4") +
|
|
" to scan list " + why);
|
|
scanOffsets.Add(branchOffset);
|
|
}
|
|
}
|
|
|
|
// On every visit, check for BRK inline call. The default behavior for BRK
|
|
// is no-continue, the opposite of JSR/JSL.
|
|
// TODO: Ideally we'd have an explicit flag (maybe make NoContinueScript a
|
|
// tri-state) to avoid calling the plugin repeatedly.
|
|
//if (firstVisit) {
|
|
if (op == OpDef.OpBRK_Implied || op == OpDef.OpBRK_StackInt) {
|
|
bool noContinue = CheckForInlineCall(op, offset, !doContinue);
|
|
if (!noContinue) {
|
|
// We're expected to continue execution past the BRK.
|
|
doContinue = true;
|
|
}
|
|
}
|
|
//}
|
|
|
|
mAnattribs[offset].NoContinue = !doContinue;
|
|
if (mAnattribs[offset].DoesNotContinue) {
|
|
// If we just decided not to continue, or an extension script set a flag
|
|
// on a previous visit, stop scanning forward.
|
|
break;
|
|
}
|
|
|
|
// Sanity check to avoid infinite loop.
|
|
if (instrLen <= 0) {
|
|
LogE(offset, "Internal error: instruction length " + instrLen);
|
|
throw new Exception("Instruction length was " + instrLen);
|
|
}
|
|
|
|
int nextOffset = offset + instrLen;
|
|
if (nextOffset >= mFileData.Length) {
|
|
// next instruction is off the end of the file
|
|
LogW(offset, "Execution ran off the end of the file");
|
|
break;
|
|
}
|
|
|
|
// On first visit, check for JSR/JSL inline call. If it's "no-continue",
|
|
// set a flag and halt here.
|
|
if (firstVisit) {
|
|
// Currently ignoring OpDef.OpJSR_AbsIndexXInd
|
|
if (op == OpDef.OpJSR_Abs || op == OpDef.OpJSR_AbsLong) {
|
|
bool noContinue = CheckForInlineCall(op, offset, false);
|
|
if (noContinue) {
|
|
LogD(offset, "Script declared inline call no-continue");
|
|
mAnattribs[offset].NoContinueScript = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if (mAnattribs[offset].NoContinueScript) {
|
|
// Wanted to stop last time.
|
|
break;
|
|
}
|
|
|
|
// Are we about to walk into inline data?
|
|
int inlineDataGapLen = 0;
|
|
while (nextOffset < mFileData.Length && mAnattribs[nextOffset].IsInlineData) {
|
|
// Skip over it to find next instruction (or next inline data chunk).
|
|
// Note Anattrib.Length==0 unless a format has been applied, so we just
|
|
// walk forward a byte at a time.
|
|
inlineDataGapLen++;
|
|
nextOffset++;
|
|
}
|
|
|
|
// Re-check after inline data advance.
|
|
if (nextOffset >= mFileData.Length) {
|
|
// next instruction is off the end of the file
|
|
LogW(offset, "Execution ran off the end of the file");
|
|
break;
|
|
}
|
|
if (mAnattribs[nextOffset].IsData) {
|
|
// Drove into a data section
|
|
LogW(offset, "Execution ran into a data area");
|
|
break;
|
|
}
|
|
|
|
// Make sure we don't "continue" across an address change. This is different
|
|
// from the earlier mid-instruction check in that we don't actually care if
|
|
// there's a region change between instructions so long as the next address
|
|
// has the expected value.
|
|
int expectedAddr = mAnattribs[offset].Address + mAnattribs[offset].Length +
|
|
inlineDataGapLen;
|
|
if (mAnattribs[nextOffset].Address != expectedAddr) {
|
|
LogW(offset, "Execution ran across address change (" +
|
|
expectedAddr.ToString("x4") + " vs. " +
|
|
mAnattribs[nextOffset].Address.ToString("x4") + ")");
|
|
break;
|
|
}
|
|
|
|
// Merge the updated status flags into the next instruction.
|
|
StatusFlags nextStatusBefore = mAnattribs[nextOffset].StatusFlags;
|
|
mAnattribs[nextOffset].MergeStatusFlags(newFlags);
|
|
mAnattribs[nextOffset].ApplyStatusFlags(mStatusFlagOverrides[nextOffset]);
|
|
|
|
// If we've already visited the next offset, and the updated status flags are
|
|
// the same as the previous status flags, then there's nothing to gain by
|
|
// continuing forward.
|
|
if (mAnattribs[nextOffset].IsVisited && !mAnattribs[nextOffset].IsChanged) {
|
|
if (nextStatusBefore == mAnattribs[nextOffset].StatusFlags) {
|
|
// Instruction has been visited, hasn't been flagged as changed,
|
|
// and our status flag merge had no effect. No need to continue
|
|
// through.
|
|
LogV(offset, "Not re-examining " + nextOffset);
|
|
break;
|
|
} else {
|
|
// We changed the flags, need to re-evaluate conditional branches.
|
|
mAnattribs[nextOffset].IsChanged = true;
|
|
}
|
|
}
|
|
|
|
offset = nextOffset;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Attempts to guess what the flags will be after a PLP instruction.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// We're not tracking stack contents or register contents, so this just
|
|
/// generally won't work. However, there's a lot of code that uses PHP to
|
|
/// save the current state and PLP to restore it, so if we can find a nearby
|
|
/// PHP we can just grab from that.
|
|
///
|
|
/// Failing that, we mark all flags as "indeterminate" and let the user sort
|
|
/// out what it should be. It's unlikely to matter except for M/X flags on
|
|
/// the 65816.
|
|
///
|
|
/// The emulation flag is not part of the status register, even if we do carry
|
|
/// it around like one. The E-flag is always carried over from the previous
|
|
/// instruction.
|
|
/// </remarks>
|
|
/// <param name="plpOffset">Offset of PLP instruction.</param>
|
|
/// <returns>Best guess at status flags.</returns>
|
|
private StatusFlags GuessFlagsForPLP(int plpOffset) {
|
|
StatusFlags flags = StatusFlags.AllIndeterminate;
|
|
if (mAnalysisParameters.SmartPlpHandling) {
|
|
// TODO: this is broken. In some cases we end up latching the result from the
|
|
// first visit only. When the PHP instruction gets updated, the subsequent
|
|
// instructions are only re-evaluated if the flags have changed. If we reach
|
|
// an instruction where the flags match, we stop looking forward, and might
|
|
// not re-visit the PLP.
|
|
int backOffsetLimit = plpOffset - 128; // arbitrary 128-byte reach
|
|
if (backOffsetLimit < 0) {
|
|
backOffsetLimit = 0;
|
|
}
|
|
for (int offset = plpOffset - 1; offset >= backOffsetLimit; offset--) {
|
|
Anattrib attr = mAnattribs[offset];
|
|
if (!attr.IsInstructionStart || !attr.IsVisited) {
|
|
continue;
|
|
}
|
|
OpDef op = mCpuDef.GetOpDef(mFileData[offset]);
|
|
if (op == OpDef.OpPHP_StackPush) {
|
|
LogI(plpOffset, "Found visited PHP at +" + offset.ToString("x6"));
|
|
flags = mAnattribs[offset].StatusFlags;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags == StatusFlags.AllIndeterminate &&
|
|
(mCpuDef.Type == CpuDef.CpuType.Cpu65816 ||
|
|
mCpuDef.Type == CpuDef.CpuType.Cpu65802)) {
|
|
// Having indeterminate M/X flags is really bad. If "smart" handling failed or
|
|
// is disabled, copy flags from previous instruction.
|
|
flags.M = mAnattribs[plpOffset].StatusFlags.M;
|
|
flags.X = mAnattribs[plpOffset].StatusFlags.X;
|
|
}
|
|
|
|
// Transfer the 'E' flag.
|
|
flags.E = mAnattribs[plpOffset].StatusFlags.E;
|
|
return flags;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Extracts the address from the operand of an absolute or relative operation.
|
|
/// Anything that could be referenced by a label or address equate is appropriate.
|
|
/// The goal is to identify data and branch targets, not generate a second copy
|
|
/// of the operand.
|
|
///
|
|
/// The operand's address, and if applicable, the operand's file offset, are
|
|
/// stored in the Anattrib array.
|
|
///
|
|
/// Doesn't do anything with immediate data.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// For PC-relative operands (e.g. branches) it's tempting to simply adjust the file
|
|
/// offset by the specified amount and convert that to an address. If the file
|
|
/// has multiple ORGs, this can produce incorrect results. We need to convert the
|
|
/// opcode's offset to an address, adjust by the operand, and then find the file
|
|
/// offset that corresponds to the target address.
|
|
///
|
|
/// This is called once per instruction, on the analyzer's first visit.
|
|
/// </remarks>
|
|
/// <param name="offset">Offset of the instruction opcode.</param>
|
|
/// <param name="op">Opcode being handled. (Passed in because the caller has it
|
|
/// handy.)</param>
|
|
private void DecodeOperandAddress(int offset, OpDef op) {
|
|
//StatusFlags flags = mAnattribs[offset].StatusFlags;
|
|
|
|
int operand = op.GetOperand(mFileData, offset, mAnattribs[offset].StatusFlags);
|
|
|
|
// Add the bank to get a 24-bit address. For some instructions the relevant bank
|
|
// is known, because the operand is merged with the Program Bank Register (K) or
|
|
// is always in bank 0. For some we need the Data Bank Register (B).
|
|
//
|
|
// Instead of trying to track the B register during code analysis, we mark the
|
|
// relevant instructions now and fix them up later. We can get away with this
|
|
// because the DBR is only applied to data-load instructions, which don't affect
|
|
// the flow of the analysis pass. The value of B *is* affected by the analysis
|
|
// pass because a "smart PLB" handler needs to know where all the code is, so it's
|
|
// more efficient to figure it out later.
|
|
int bank = mAnattribs[offset].Address & 0x7fff0000;
|
|
|
|
// Extract target address.
|
|
switch (op.AddrMode) {
|
|
// These might refer to a location in the file, or might be external.
|
|
case OpDef.AddressMode.Abs: // uses DBR iff !IsAbsolutePBR
|
|
case OpDef.AddressMode.AbsIndexX: // uses DBR
|
|
case OpDef.AddressMode.AbsIndexY: // uses DBR
|
|
if (!op.IsAbsolutePBR) {
|
|
mAnattribs[offset].UsesDataBankReg = true;
|
|
}
|
|
// Merge the PBR even if we eventually want the DBR; less to fix later.
|
|
mAnattribs[offset].OperandAddress = operand | bank;
|
|
break;
|
|
case OpDef.AddressMode.StackAbs: // assume PBR
|
|
case OpDef.AddressMode.AbsIndexXInd: // JMP (addr,X); uses program bank
|
|
mAnattribs[offset].OperandAddress = operand | bank;
|
|
break;
|
|
case OpDef.AddressMode.AbsInd: // JMP (addr); always bank 0
|
|
case OpDef.AddressMode.AbsIndLong: // JMP [addr]; always bank 0
|
|
case OpDef.AddressMode.DP:
|
|
case OpDef.AddressMode.DPIndexX:
|
|
case OpDef.AddressMode.DPIndexY:
|
|
case OpDef.AddressMode.DPIndexXInd:
|
|
case OpDef.AddressMode.DPInd:
|
|
case OpDef.AddressMode.DPIndLong:
|
|
case OpDef.AddressMode.DPIndIndexY:
|
|
case OpDef.AddressMode.DPIndIndexYLong:
|
|
case OpDef.AddressMode.StackDPInd:
|
|
// always bank 0
|
|
mAnattribs[offset].OperandAddress = operand;
|
|
break;
|
|
case OpDef.AddressMode.AbsIndexXLong:
|
|
case OpDef.AddressMode.AbsLong:
|
|
// 24-bit address, don't alter bank
|
|
mAnattribs[offset].OperandAddress = operand;
|
|
break;
|
|
case OpDef.AddressMode.PCRel: // rel operand; convert to absolute addr
|
|
mAnattribs[offset].OperandAddress =
|
|
Asm65.Helper.RelOffset8(mAnattribs[offset].Address,
|
|
(sbyte)operand) | bank;
|
|
break;
|
|
case OpDef.AddressMode.DPPCRel:
|
|
// Like PCRel, but part of a 2-byte operand, so we use the 16-bit offset
|
|
// function. We totally ignore the DP byte.
|
|
mAnattribs[offset].OperandAddress =
|
|
Asm65.Helper.RelOffset16(mAnattribs[offset].Address,
|
|
(sbyte)(operand >> 8)) | bank;
|
|
break;
|
|
case OpDef.AddressMode.PCRelLong:
|
|
case OpDef.AddressMode.StackPCRelLong:
|
|
mAnattribs[offset].OperandAddress =
|
|
Asm65.Helper.RelOffset16(mAnattribs[offset].Address,
|
|
(short)operand) | bank;
|
|
break;
|
|
default:
|
|
// Immediate, implied, accumulator, stack relative. We can't do
|
|
// immediate yet because we won't necessarily have a final assessment
|
|
// of the operand width on the 16-bit CPUs.
|
|
Debug.Assert(mAnattribs[offset].OperandAddress == -1);
|
|
break;
|
|
}
|
|
|
|
if (mAnattribs[offset].OperandAddress >= 0) {
|
|
int operandOffset = mAddrMap.AddressToOffset(offset,
|
|
mAnattribs[offset].OperandAddress);
|
|
if (operandOffset >= 0) {
|
|
mAnattribs[offset].OperandOffset = operandOffset;
|
|
|
|
// Set a flag if this is a direct offset. This is used when tracing
|
|
// through jump instructions, as we can't necessarily decode an indirect
|
|
// jump. (There are *some* indirect JMPs we can handle, if the operand
|
|
// is an address in the file data area.)
|
|
switch (op.AddrMode) {
|
|
case OpDef.AddressMode.Abs:
|
|
case OpDef.AddressMode.AbsLong:
|
|
case OpDef.AddressMode.DP:
|
|
case OpDef.AddressMode.DPPCRel:
|
|
case OpDef.AddressMode.PCRel:
|
|
case OpDef.AddressMode.PCRelLong:
|
|
case OpDef.AddressMode.StackPCRelLong:
|
|
case OpDef.AddressMode.StackAbs:
|
|
mAnattribs[offset].IsOperandOffsetDirect = true;
|
|
break;
|
|
default:
|
|
mAnattribs[offset].IsOperandOffsetDirect = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
Debug.Assert(mAnattribs[offset].OperandOffset == -1);
|
|
Debug.Assert(!mAnattribs[offset].IsOperandOffsetDirect);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Queries script extensions to check to see if a JSR or JSL is actually an inline call.
|
|
/// The script may format things.
|
|
/// </summary>
|
|
/// <param name="op">Instruction being examined.</param>
|
|
/// <param name="offset">File offset of start of instruction.</param>
|
|
/// <param name="noContinue">Set if any plugin declares the call to be no-continue.</param>
|
|
/// <returns>Updated value for noContinue.</returns>
|
|
private bool CheckForInlineCall(OpDef op, int offset, bool noContinue) {
|
|
int operand = op.GetOperand(mFileData, offset, mAnattribs[offset].StatusFlags);
|
|
for (int i = 0; i < mScriptArray.Length; i++) {
|
|
try {
|
|
IPlugin script = mScriptArray[i];
|
|
// The IPlugin object is a MarshalByRefObject, which doesn't define the
|
|
// interface directly. A simple test showed it was fairly quick when the
|
|
// interface was implemented but a bit slow when it wasn't. For performance
|
|
// we query the capability flags instead.
|
|
if (op == OpDef.OpJSR_Abs && (mPluginCaps[i] & PluginCap.JSR) != 0) {
|
|
((IPlugin_InlineJsr)script).CheckJsr(offset, operand, out bool noCont);
|
|
noContinue |= noCont;
|
|
} else if (op == OpDef.OpJSR_AbsLong && (mPluginCaps[i] & PluginCap.JSL) != 0) {
|
|
((IPlugin_InlineJsl)script).CheckJsl(offset, operand, out bool noCont);
|
|
noContinue |= noCont;
|
|
} else if ((op == OpDef.OpBRK_Implied || op == OpDef.OpBRK_StackInt) &&
|
|
(mPluginCaps[i] & PluginCap.BRK) != 0) {
|
|
((IPlugin_InlineBrk)script).CheckBrk(offset, op == OpDef.OpBRK_StackInt,
|
|
out bool noCont);
|
|
noContinue &= noCont;
|
|
}
|
|
} catch (PluginException plex) {
|
|
LogW(offset, "Uncaught PluginException: " + plex.Message);
|
|
} catch (Exception ex) {
|
|
LogW(offset, "Plugin threw exception: " + ex);
|
|
}
|
|
}
|
|
return noContinue;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sets the format of an instruction operand.
|
|
/// </summary>
|
|
/// <param name="offset">Offset of opcode.</param>
|
|
/// <param name="subType">Format sub-type.</param>
|
|
/// <param name="label">Label, for subType=Symbol.</param>
|
|
/// <returns>True if the format was applied.</returns>
|
|
private bool SetOperandFormat(int offset, DataSubType subType, string label) {
|
|
if (offset <= 0 || offset > mFileData.Length) {
|
|
throw new PluginException("SOF: bad args: offset=+" + offset.ToString("x6") +
|
|
" subType=" + subType + " label='" + label + "'; file length is" +
|
|
mFileData.Length);
|
|
}
|
|
|
|
// Don't overwrite existing format.
|
|
if (mAnattribs[offset].DataDescriptor != null) {
|
|
LogW(offset, "SOF: already have a descriptor here");
|
|
return false;
|
|
}
|
|
|
|
// Must be the start of an instruction.
|
|
if (!mAnattribs[offset].IsInstructionStart) {
|
|
LogW(offset, "SOF: not an instruction start");
|
|
return false;
|
|
}
|
|
|
|
if (subType == DataSubType.Symbol && string.IsNullOrEmpty(label)) {
|
|
LogW(offset, "SOF rej: label required for subType=" + subType);
|
|
return false;
|
|
}
|
|
|
|
FormatDescriptor.SubType subFmt = ConvertPluginSubType(subType, out bool isStringSub);
|
|
if (subFmt == FormatDescriptor.SubType.None) {
|
|
LogW(offset, "SOF: bad sub-type " + subType);
|
|
return false;
|
|
}
|
|
|
|
int instrLen = mAnattribs[offset].Length;
|
|
Debug.Assert(instrLen > 0);
|
|
|
|
FormatDescriptor fd;
|
|
if (subType == DataSubType.Symbol) {
|
|
fd = FormatDescriptor.Create(instrLen,
|
|
new WeakSymbolRef(label, WeakSymbolRef.Part.Low),
|
|
false);
|
|
} else {
|
|
fd = FormatDescriptor.Create(instrLen, FormatDescriptor.Type.NumericLE, subFmt);
|
|
}
|
|
mAnattribs[offset].DataDescriptor = fd;
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Handles a set inline data format call from an extension script.
|
|
/// </summary>
|
|
/// <param name="offset">Offset of start of data item.</param>
|
|
/// <param name="length">Length of data item. Must be greater than zero.</param>
|
|
/// <param name="type">Data type.</param>
|
|
/// <param name="subType">Data sub-type.</param>
|
|
/// <param name="label">Label, for type=Symbol.</param>
|
|
private bool SetInlineDataFormat(int offset, int length, DataType type,
|
|
DataSubType subType, string label) {
|
|
if (offset <= 0 || length <= 0 || offset + length > mFileData.Length) {
|
|
throw new PluginException("SIDF: bad args: offset=+" + offset.ToString("x6") +
|
|
" len=" + length + " type=" + type + " subType=" + subType +
|
|
" label='" + label + "'; file length is" + mFileData.Length);
|
|
}
|
|
|
|
// NOTE: might be faster to check Anattrib IsAddrRegionChange for short regions
|
|
if (!mAddrMap.IsRangeUnbroken(offset, length)) {
|
|
LogW(offset, "SIDF: format crosses address map boundary (len=" + length + ")");
|
|
return false;
|
|
}
|
|
|
|
// Already formatted? We only check the initial offset -- overlapping format
|
|
// descriptors aren't strictly illegal.
|
|
if (mAnattribs[offset].DataDescriptor != null) {
|
|
LogW(offset, "SIDF: already have a descriptor here");
|
|
return false;
|
|
}
|
|
|
|
// Don't allow formatting of any bytes that are identified as instructions or
|
|
// were tagged by the user as something other than inline data. If the code
|
|
// analyzer comes crashing through later they'll just stomp on what we've done.
|
|
for (int i = offset; i < offset + length; i++) {
|
|
if (mAnalyzerTags[i] != AnalyzerTag.None && mAnalyzerTags[i] != AnalyzerTag.InlineData) {
|
|
LogW(offset, "SIDF rej: already an atag at " + i.ToString("x6") +
|
|
" (" + mAnalyzerTags[i] + ")");
|
|
return false;
|
|
}
|
|
if (mAnattribs[offset].IsInstruction) {
|
|
LogW(offset, "SIDF rej: not for use with instructions");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Convert types to FormatDescriptor types, and do some validity checks.
|
|
//
|
|
FormatDescriptor.Type fmt = ConvertPluginType(type, out bool isStringType);
|
|
FormatDescriptor.SubType subFmt = ConvertPluginSubType(subType, out bool isStringSub);
|
|
|
|
if (type == DataType.Dense && subType != DataSubType.None) {
|
|
throw new PluginException("SIDF rej: dense data must use subType=None");
|
|
}
|
|
if (type == DataType.Fill && subType != DataSubType.None) {
|
|
throw new PluginException("SIDF rej: fill data must use subType=None");
|
|
}
|
|
|
|
if (isStringType && !isStringSub) {
|
|
throw new PluginException("SIDF rej: bad type/subType combo: type=" +
|
|
type + " subType= " + subType);
|
|
}
|
|
if ((type == DataType.NumericLE || type == DataType.NumericBE) &&
|
|
(length < 1 || length > 4)) {
|
|
throw new PluginException("SIDF rej: bad length for numeric item (" +
|
|
length + ")");
|
|
}
|
|
if (subType == DataSubType.Symbol && string.IsNullOrEmpty(label)) {
|
|
throw new PluginException("SIDF rej: label required for subType=" + subType);
|
|
}
|
|
|
|
if (isStringType) {
|
|
if (!DataAnalysis.VerifyStringData(mFileData, offset, length, fmt,
|
|
out string failMsg)) {
|
|
LogW(offset, failMsg);
|
|
return false;
|
|
}
|
|
} else if (type == DataType.Fill) {
|
|
if (!VerifyFillData(offset, length)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Looks good, create a descriptor, and mark all bytes as inline data.
|
|
FormatDescriptor fd;
|
|
if (subType == DataSubType.Symbol) {
|
|
fd = FormatDescriptor.Create(length,
|
|
new WeakSymbolRef(label, WeakSymbolRef.Part.Low),
|
|
type == DataType.NumericBE);
|
|
} else {
|
|
fd = FormatDescriptor.Create(length, fmt, subFmt);
|
|
}
|
|
mAnattribs[offset].DataDescriptor = fd;
|
|
for (int i = offset; i < offset + length; i++) {
|
|
mAnattribs[i].IsInlineData = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
private bool VerifyFillData(int offset, int length) {
|
|
byte first = mFileData[offset];
|
|
while (--length != 0) {
|
|
if (mFileData[++offset] != first) {
|
|
LogW(offset, "SIDF: mismatched fill data");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private FormatDescriptor.Type ConvertPluginType(DataType pluginType,
|
|
out bool isStringType) {
|
|
isStringType = false;
|
|
switch (pluginType) {
|
|
case DataType.NumericLE:
|
|
return FormatDescriptor.Type.NumericLE;
|
|
case DataType.NumericBE:
|
|
return FormatDescriptor.Type.NumericBE;
|
|
case DataType.StringGeneric:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringGeneric;
|
|
case DataType.StringReverse:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringReverse;
|
|
case DataType.StringNullTerm:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringNullTerm;
|
|
case DataType.StringL8:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringL8;
|
|
case DataType.StringL16:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringL16;
|
|
case DataType.StringDci:
|
|
isStringType = true;
|
|
return FormatDescriptor.Type.StringDci;
|
|
case DataType.Fill:
|
|
return FormatDescriptor.Type.Fill;
|
|
case DataType.Uninit:
|
|
return FormatDescriptor.Type.Uninit;
|
|
case DataType.Dense:
|
|
return FormatDescriptor.Type.Dense;
|
|
default:
|
|
Debug.Assert(false);
|
|
throw new PluginException("Instr format rej: unknown format type " + pluginType);
|
|
}
|
|
}
|
|
|
|
private FormatDescriptor.SubType ConvertPluginSubType(DataSubType pluginSubType,
|
|
out bool isStringSub) {
|
|
isStringSub = false;
|
|
switch (pluginSubType) {
|
|
case DataSubType.None:
|
|
return FormatDescriptor.SubType.None;
|
|
case DataSubType.Hex:
|
|
return FormatDescriptor.SubType.Hex;
|
|
case DataSubType.Decimal:
|
|
return FormatDescriptor.SubType.Decimal;
|
|
case DataSubType.Binary:
|
|
return FormatDescriptor.SubType.Binary;
|
|
case DataSubType.Address:
|
|
return FormatDescriptor.SubType.Address;
|
|
case DataSubType.Symbol:
|
|
return FormatDescriptor.SubType.Symbol;
|
|
case DataSubType.Ascii:
|
|
isStringSub = true;
|
|
return FormatDescriptor.SubType.Ascii;
|
|
case DataSubType.HighAscii:
|
|
isStringSub = true;
|
|
return FormatDescriptor.SubType.HighAscii;
|
|
case DataSubType.C64Petscii:
|
|
isStringSub = true;
|
|
return FormatDescriptor.SubType.C64Petscii;
|
|
case DataSubType.C64Screen:
|
|
isStringSub = true;
|
|
return FormatDescriptor.SubType.C64Screen;
|
|
default:
|
|
throw new PluginException("Instr format rej: unknown sub type " + pluginSubType);
|
|
}
|
|
}
|
|
|
|
#region Data Bank Register management
|
|
|
|
/// <summary>
|
|
/// Data Bank Register value.
|
|
/// </summary>
|
|
public class DbrValue {
|
|
public const short UNKNOWN = -1;
|
|
public const short USE_PBR = -2;
|
|
|
|
/// <summary>
|
|
/// If true, ignore Bank, use Program Bank Register instead.
|
|
/// </summary>
|
|
public bool FollowPbr;
|
|
|
|
/// <summary>
|
|
/// Bank number (0-255).
|
|
/// </summary>
|
|
public byte Bank { get; private set; }
|
|
|
|
public enum Source { Unknown = 0, User, Auto };
|
|
/// <summary>
|
|
/// From whence this value originates.
|
|
/// </summary>
|
|
public Source ValueSource { get; private set; }
|
|
|
|
/// <summary>
|
|
/// Representation of the object state as a short integer. 0-255 specifies the
|
|
/// bank, while negative values are used for special conditions.
|
|
/// </summary>
|
|
public short AsShort {
|
|
get {
|
|
if (FollowPbr) {
|
|
return USE_PBR;
|
|
} else {
|
|
return Bank;
|
|
}
|
|
}
|
|
}
|
|
|
|
public DbrValue(bool followPbr, byte bank, Source source) {
|
|
FollowPbr = followPbr;
|
|
Bank = bank;
|
|
ValueSource = source;
|
|
}
|
|
|
|
public override string ToString() {
|
|
return "DBR:" + (FollowPbr ? "K" : "$" + Bank.ToString("x2"));
|
|
}
|
|
|
|
public static bool operator ==(DbrValue a, DbrValue b) {
|
|
if (ReferenceEquals(a, b)) {
|
|
return true; // same object, or both null
|
|
}
|
|
if (ReferenceEquals(a, null) || ReferenceEquals(b, null)) {
|
|
return false; // one is null
|
|
}
|
|
// All fields must be equal.
|
|
return a.Bank == b.Bank && a.FollowPbr == b.FollowPbr &&
|
|
a.ValueSource == b.ValueSource;
|
|
}
|
|
public static bool operator !=(DbrValue a, DbrValue b) {
|
|
return !(a == b);
|
|
}
|
|
public override bool Equals(object obj) {
|
|
return obj is Symbol && this == (DbrValue)obj;
|
|
}
|
|
public override int GetHashCode() {
|
|
return Bank + (FollowPbr ? 0x100 : 0);
|
|
}
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
/// Determines the value of the Data Bank Register (DBR, register 'B') for relevant
|
|
/// instructions, and updates the Anattrib OperandOffset value.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// This is of questionable value when we have reliable relocation data. OTOH it's
|
|
/// pretty quick even on very large files.
|
|
/// </remarks>
|
|
public void ApplyDataBankRegister(Dictionary<int, DbrValue> userValues,
|
|
Dictionary<int, DbrValue> dbrChanges) {
|
|
Debug.Assert(!mCpuDef.HasAddr16); // 65816 only
|
|
|
|
dbrChanges.Clear();
|
|
|
|
if (mAnalysisParameters.SmartPlbHandling) {
|
|
GenerateSmartPlbChanges(dbrChanges);
|
|
}
|
|
|
|
// Apply the user-specified values, overwriting auto-generated values.
|
|
foreach (KeyValuePair<int, DbrValue> kvp in userValues) {
|
|
dbrChanges[kvp.Key] = kvp.Value;
|
|
}
|
|
|
|
// Create a full-file array for fast access.
|
|
short[] bval = new short[mAnattribs.Length];
|
|
Misc.Memset(bval, DbrValue.UNKNOWN);
|
|
foreach (KeyValuePair<int, DbrValue> kvp in dbrChanges) {
|
|
bval[kvp.Key] = kvp.Value.AsShort;
|
|
}
|
|
|
|
// Run through file, updating instructions as needed.
|
|
short curVal = DbrValue.UNKNOWN;
|
|
for (int offset = 0; offset < mAnattribs.Length; offset++) {
|
|
if (mAnattribs[offset].IsNonAddressable) {
|
|
continue;
|
|
}
|
|
if (curVal == DbrValue.UNKNOWN) {
|
|
// On first encounter with addressable memory, init curVal so B=K.
|
|
curVal = (byte)(mAddrMap.OffsetToAddress(offset) >> 16);
|
|
}
|
|
if (bval[offset] != DbrValue.UNKNOWN) {
|
|
curVal = bval[offset];
|
|
}
|
|
if (!mAnattribs[offset].UsesDataBankReg) {
|
|
// Not a relevant instruction, move on to next.
|
|
continue;
|
|
}
|
|
Debug.Assert(mAnattribs[offset].IsInstructionStart);
|
|
Debug.Assert(curVal != DbrValue.UNKNOWN);
|
|
|
|
int bank;
|
|
if (curVal == DbrValue.USE_PBR) {
|
|
bank = mAnattribs[offset].Address & 0x00ff0000;
|
|
} else {
|
|
Debug.Assert(curVal >= 0 && curVal < 256);
|
|
bank = curVal << 16;
|
|
}
|
|
|
|
int newAddr = (mAnattribs[offset].OperandAddress & 0x0000ffff) | bank;
|
|
int newOffset = mAddrMap.AddressToOffset(offset, newAddr);
|
|
if (newAddr != mAnattribs[offset].OperandAddress ||
|
|
newOffset != mAnattribs[offset].OperandOffset) {
|
|
//Debug.WriteLine("DBR rewrite at +" + offset.ToString("x6") + ": $" +
|
|
// mAnattribs[offset].OperandAddress.ToString("x6") + "/+" +
|
|
// mAnattribs[offset].OperandOffset.ToString("x6") + " --> $" +
|
|
// newAddr.ToString("x6") + "/+" + newOffset.ToString("x6"));
|
|
|
|
mAnattribs[offset].OperandAddress = newAddr;
|
|
mAnattribs[offset].OperandOffset = newOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
private void GenerateSmartPlbChanges(Dictionary<int, DbrValue> dbrChanges) {
|
|
#if false
|
|
// Set B=K every time we cross an address boundary and the program bank changes.
|
|
short prevBank = DbrValue.UNKNOWN;
|
|
foreach (AddressMap.AddressMapEntry ent in mAddrMap) {
|
|
short mapBank = (short)(ent.Addr >> 16);
|
|
if (mapBank != prevBank) {
|
|
prevBank = mapBank;
|
|
dbrChanges.Add(ent.Offset, new DbrValue(false, (byte)mapBank,
|
|
DbrValue.Source.Auto));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Run through the file, looking for PLB. If the preceding code was something
|
|
// we can reliably pull a value out of, create an entry for it.
|
|
for (int offset = 0; offset < mAnattribs.Length; offset++) {
|
|
if (!mAnattribs[offset].IsInstructionStart) {
|
|
continue;
|
|
}
|
|
OpDef op = mCpuDef.GetOpDef(mFileData[offset]);
|
|
if (op != OpDef.OpPLB_StackPull) {
|
|
continue;
|
|
}
|
|
if (offset < 1) {
|
|
continue;
|
|
}
|
|
// TODO(maybe): strictly speaking this is incorrect, because we're not verifying
|
|
// that the previous bytes are at adjacent addresses in memory. It's possible
|
|
// somebody did a PHA or PHK at the end of a chunk of code, then started
|
|
// assembling elsewhere with a PLB, and we'll mistakenly assign the wrong value.
|
|
// Seems unlikely, and the penalty for getting it "wrong" is slight.
|
|
if (!mAnattribs[offset - 1].IsInstructionStart) {
|
|
continue;
|
|
}
|
|
op = mCpuDef.GetOpDef(mFileData[offset - 1]);
|
|
if (op == OpDef.OpPHK_StackPush) {
|
|
// output B=K
|
|
dbrChanges.Add(offset, new DbrValue(true, 0, DbrValue.Source.Auto));
|
|
} else if (op == OpDef.OpPHA_StackPush && offset >= 4) {
|
|
// check for LDA imm
|
|
if (!mAnattribs[offset - 3].IsInstructionStart) {
|
|
continue;
|
|
}
|
|
op = mCpuDef.GetOpDef(mFileData[offset - 3]);
|
|
if (!(op == OpDef.OpLDA_ImmLongA || op == OpDef.OpLDA_Imm)) {
|
|
continue;
|
|
}
|
|
|
|
byte bank = mFileData[offset - 2];
|
|
dbrChanges.Add(offset, new DbrValue(false, bank, DbrValue.Source.Auto));
|
|
}
|
|
}
|
|
}
|
|
#endregion Data Bank Register management
|
|
}
|
|
} |