/* * Copyright (c) 2011-2012, Preston Skupinski * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ function run_tests() { test_cpu_load_binary(); test_lda(); test_inc(); test_inx(); test_iny(); test_dec(); test_stz(); test_rep(); test_sep(); test_branching(); test_adc(); test_sbc(); test_cmp(); test_subroutines(); test_mvn_and_mvp(); test_emulation_mode(); test_cpu_memory_mapped_io_devices(); } function test_lda() { module("LDA"); test("Make sure LDA with a constant properly loads an 8-bit value in "+ "8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff, "The accumulator should be 0xff when 0xff is "+ "given as its argument in 8-bit memory/accumulator mode."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode"); }); test("Make sure LDA with a constant properly loads a 16-bit value in "+ "16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff when "+ "0xffff is given as its argument in 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode"); }); test("Make sure LDA with a direct page address loads an 8-bit value in "+ "8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba90185fea5fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 1, "The accumulator should be 1 when 1 is "+ "loaded from $fe(direct page) in 8-bit memory/accumulator "+ "mode."); strictEqual(cpu.p.m, 1, "m flag of the p status register should be 1 for "+ "8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The Hidden e flag of the p status register "+ "should be 0 for native mode"); }); test("Make sure LDA with a direct page address loads a 16-bit value in "+ "16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a901ff85fea5fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff01, "The accumulator should be 0xff01 when "+ "0xff01 is loaded from $fe(direct page) in 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Make sure LDA with an absolute address loads an 8-bit value in "+ "8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe8dff0aa900adff0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfe, "The accumulator should be 0xfe when 0xfe is "+ "loaded from $0aff(absolute) in 8-bit memory/accumulator "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Make sure LDA with an absolute address loads a 16-bit value in "+ "16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff8dff0aa90000adff0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff when "+ "0xffff is loaded from $0aff and $0b00(absolute) in 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.m, 0, "m flag of the p status register should be 0 for "+ "16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "Hidden e flag of the p status register should "+ "be 0 for native mode."); }); test("Make sure LDA with a direct page address indexed with the x "+ "register loads an 8-bit value in 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba201a9ff85ffa900b5fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff, "The accumulator should be 0xff when 0xff "+ "is loaded from direct page address $fe indexed "+ "with x(which is 1) and thus loaded from $ff in "+ "8-bit memory/accumulator mode."); strictEqual(cpu.r.x, 1, "The x register should be 1 in order to be used "+ "as an index with the base address to get to the desired "+ "address."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Make sure LDA with a direct page address indexed with the x "+ "register loads a 16-bit value in 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a201a9ffff85fea90000bdfd", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff when "+ "0xffff is loaded from direct page addresses $fe and $ff "+ "after $fd is indexed with the x register(which is 1) in "+ "16-bit memory/accumulator mode."); strictEqual(cpu.r.x, 1, "The x register should be 1 in order to be used "+ "as an index with the base address to get to the desired "+ "address."); strictEqual(cpu.p.m, 0, "m flag of the p status register should be 0 for "+ "16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Make sure LDA indirect given a direct page address loads an 8-bit "+ "value in 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff85fea90a85ffa9068dff0aa900b2fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 6, "The accumulator should be 6 when LDA loads an "+ "8-bit value using an indirect address in 8-bit mode "+ "memory/accumulator mode."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Make sure LDA indirect given a direct page address loads a 16-bit "+ "value in 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ff0a85fea9ffff8dff0aa90000b2fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff when "+ "LDA loads a 16-bit value using an indirect address loaded "+ "from a direct page address."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be "+ "0 for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute indexed by the x register works for 8-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fa8dff0aa201a900bdfe0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfa, "The accumulator should be 0xfa when LDA loads "+ "an 8-bit value using absolute indexed x mode from $0aff"); strictEqual(cpu.r.x, 1, "The x register should be 1 to properly load "+ "the value added to the base address."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be "+ "1 for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute indexed by the x register works for 16-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9fefa8dff0aa203bdfc0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfafe, "The accumulator should be 0xfafe when LDA "+ "loads a 16-bit value from $0aff using absolute indexed x "+ "addressing mode."); strictEqual(cpu.r.x, 3, "The x register should be 3 to properly load "+ "the value added to the base address."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute indexed by the y register works for 8-bit "+ "memory/acccumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe8dff0aa002a900b9fd0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfe, "The accumulator should be 0xfe when LDA "+ "loads an 8-bit value from $0aff using absolute indexed y "+ "addressing mode."); strictEqual(cpu.r.y, 2, "The y register should be 2 to properly load the "+ "value added to the base address."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute indexed by the y register works for 16-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9fefa8dff0aa003a90000b9fc0a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfafe, "The accumulator should be 0xfafe when LDA "+ "loads a 16-bit value from $0aff using absolute indexed y "+ "addressing mode."); strictEqual(cpu.r.y, 3, "The y register should be 3 to properly load the "+ "value added to the base address."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA stack relative works for 8-bit memory/accumulator "+ "mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe48a90148a900a302", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfe, "The accumulator should be 0xfe when LDA loads "+ "an 8-bit value from the stack using LDA stack relative "+ "addressing mode."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA stack relative works for 16-bit memory/accumulator "+ "mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9fefa48a9010048a90000a303", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfafe, "The accumulator should be 0xfafe when LDA "+ "loads a 16-bit value from the stack using LDA stack "+ "relative addressing mode."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute long works for 8-bit memory/accumulator "+ "mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fa8fffeeaaa900afffeeaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfa, "The accumulator should be 0xfa when LDA "+ "loads an 8-bit value from $aaeeff using absolute long "+ "addressing mode."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute long works for 16-bit memory/accumulator "+ "mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9fefa8fffeeaaa90000afffeeaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfafe, "The accumulator should be 0xfafe when LDA "+ "loads a 16-bit value from $aaeeff using absolute long "+ "addressing mode."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute long indexed by the x register works for "+ "8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe8fffeeaaa202a900bffdeeaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfe, "The accumulator should be 0xfe when LDA "+ "loads an 8-bit value from $aaeeff using absolute long "+ "indexed x addressing mode."); strictEqual(cpu.r.x, 2, "The x register should be 2 in order to be used "+ "as an index to reach the correct address."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Ensure that LDA absolute long indexed by the x register works for "+ "16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9fefa8fffeeaaa203a90000bffceeaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfafe, "The accumulator should be 0xfafe when LDA "+ "loads a 16-bit value from $aaeeff using absolute long "+ "indexed x addressing mode."); strictEqual(cpu.r.x, 3, "The x register should be 3 in order to be used "+ "as an index to reach the correct address."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); } function test_inc() { module("INC"); test("Test INC accumulator for 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe1a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff, "The accumulator should be 0xff after "+ "incrementing 0xfe by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.n, 1, "The n flag should be one to represent a negative "+ "number."); strictEqual(cpu.p.z, 0, "The z flag should be zero to represent a non-zero"+ "number."); cpu.reset(); cpu.load_binary("18fba9ff1a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after "+ "incrementing 0xff by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.n, 0, "The n flag should be zero to represent a "+ "non-negative number."); strictEqual(cpu.p.z, 1, "The z flag should be one to represent zero."); }); test("Test INC accumulator for 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9feff1a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff after "+ "incrementing 0xfffe by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero to represent a "+ "non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one to represent a negative "+ "number."); cpu.reset(); cpu.load_binary("18fbc220a9ffff1a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after "+ "incrementing 0xffff by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 1, "The z flag should be one to represent zero."); strictEqual(cpu.p.n, 0, "The n flag should be zero to represent a "+ "non-negative number."); }); test("Test INC absolute for 8-bit memory/accumulator mode", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9fe8d0070ee0070af0070", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff, "The accumulator should be 0xff after loading "+ "from memory a value that was originally 0xfe "+ "and incremented by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero for a non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one for a negative number."); }); test("Test INC absolute for 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9feff8d0070ee0070af0070", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff after "+ "loading from memory a value that was originally 0xfffe "+ "and incremented by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero for a non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one for a negative number."); }); } function test_inx() { module("INX"); test("Test INX for 8-bit index register mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba2fee8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.x, 0xff, "The x register should be 0xff after "+ "incrementing 0xfe by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.x, 1, "The x flag should be one for 8-bit "+ "index register mode."); strictEqual(cpu.p.n, 1, "The n flag should be one to represent a negative "+ "number."); strictEqual(cpu.p.z, 0, "The z flag should be zero to represent a "+ "non-zero number."); cpu.reset(); cpu.load_binary("18fba2ffe8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.x, 0, "The x register should be zero after incrementing "+ "0xff by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.x, 1, "The x flag should be one for 8-bit "+ "index register mode."); strictEqual(cpu.p.z, 1, "The z flag should be one for zero."); strictEqual(cpu.p.n, 0, "The n flag should be zero to represent a "+ "non-negative number."); }); test("Test INX for 16-bit index register mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc210a2feffe8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.x, 0xffff, "The x register should be 0xffff after "+ "incrementing 0xfffe by one."); strictEqual(cpu.p.x, 0, "The x flag of the p status register should be "+ "zero for 16-bit index register mode."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero for a non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one for a negative number."); cpu.reset(); cpu.load_binary("18fbc210a2ffffe8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.x, 0, "The x register should be zero after incrementing "+ "0xffff by one."); strictEqual(cpu.p.x, 0, "The x flag of the p status register should be "+ "zero for 16-bit index register mode."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.n, 0, "The n flag should be zero for a non-negative "+ "number."); strictEqual(cpu.p.z, 1, "The z flag should be one for zero."); }); } function test_iny() { module("INY"); test("Test INY for 8-bit index register mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba0fec8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.y, 0xff, "The y register should be 0xff after "+ "incrementing 0xfe by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.x, 1, "The x flag should be one for 8-bit index "+ "register mode."); cpu.reset(); cpu.load_binary("18fba0ffc8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.y, 0, "The y register should be zero after incrementing "+ "0xff by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.x, 1, "The x flag should be one for 8-bit index "+ "register mode."); }); test("Test INY for 16-bit index register mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc210a0feffc8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.y, 0xffff, "The y register should be 0xffff after "+ "incrementing 0xfffe by one."); strictEqual(cpu.p.x, 0, "The x flag of the p status register should be "+ "zero for 16-bit index register mode."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); cpu.reset(); cpu.load_binary("18fbc210a0ffffc8", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.y, 0, "The y register should be zero after incrementing "+ "0xffff by one."); strictEqual(cpu.p.x, 0, "The x flag of the p status register should be "+ "zero for 16-bit index register mode."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); }); } function test_dec() { module("DEC"); test("Test DEC accumulator for 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9013a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after "+ "decrementing one by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 1, "The z flag should be one for zero."); strictEqual(cpu.p.n, 0, "The n flag should be zero for a non-negative "+ "number."); }); test("Test DEC accumulator decrementing zero by one behavior for 8-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9003a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff, "The accumulator should be 0xff after "+ "decrementing zero by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero for a non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one for a negative number."); }); test("Test DEC accumulator for 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a901003a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after "+ "decrementing one by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 1, "The z flag should be one for zero."); strictEqual(cpu.p.n, 0, "The n flag should be zero for a non-negative "+ "number."); }); test("Test DEC accumulator decrementing zero by one behavior for 16-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a900003a", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "The accumulator should be 0xffff after "+ "decrementing zero by one."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag sholud be zero for 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.z, 0, "The z flag should be zero for a non-zero number."); strictEqual(cpu.p.n, 1, "The n flag should be one for a negative number."); }); } function test_stz() { module("STZ"); test("Test STZ direct page for 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff85fa64faa5fa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from a direct page addresss that has had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); }); test("Test STZ direct page for 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff85fa64faa5fa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from a direct page address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); }); test("Test STZ absolute for 8-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff8d34129c3412ad3412", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from an absolute address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); }); test("Test STZ absolute for 16-bit memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff8d34129c3412ad3412", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from an absolute page address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); }); test("Test STZ direct page indexed by the x register for 8-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff85fb85faa20174faa5fb", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from a direct page addresss that has had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); }); test("Test STZ direct page indexed by the x register for 16-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff85faa20274f8a5fa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from a direct page address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); }); test("Test STZ absolute indexed by the x register for 8-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fba9ff8dbbaa8dbaaaa2019ebaaaadbbaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from an absolute address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 1, "The m flag should be one for 8-bit "+ "memory/accumulator mode."); }); test("Test STZ absolute indexed by the x register for 16-bit "+ "memory/accumulator mode.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220a9ffff8dbbaaa2029eb9aaadbbaa", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "The accumulator should be zero after loading "+ "from an absolute page address that had zero stored to it."); strictEqual(cpu.p.e, 0, "The hidden e flag should be zero for native "+ "mode."); strictEqual(cpu.p.m, 0, "The m flag should be zero for 16-bit "+ "memory/accumulator mode."); }); } function test_emulation_mode() { module("Emulation Mode"); test("Make sure pulling from the stack when the stack register is at 0x1ff"+ "causes the stack register to pull from 0x100.", function() { var cpu = new CPU_65816(); cpu.load_binary("a9fe8d0001a90068", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.s, 0, "The stack register should be 0 after the pull "+ "operation."); strictEqual(cpu.r.a, 0xfe, "The accumulator should be 0xfe after the pull "+ "operation."); }); } function test_mvn_and_mvp() { module("MVN and MVP"); test("Test a short example program for MVP", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbe230a9ab8dff0fa9cd8d0010c230a90100a20010a00020440000", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xffff, "After executing the example program the "+ "accumulator should've underflowed and resulted in 0xffff."); strictEqual(cpu.r.x, 0x0ffe, "After executing the example program the x "+ "register should be 0x0ffe."); strictEqual(cpu.r.y, 0x1ffe, "After executing the example program the y "+ "register should be 0x1ffe."); var byte_one = cpu.mmu.read_byte(0x1fff); var byte_two = cpu.mmu.read_byte(0x2000); strictEqual(byte_one, 0xab, "After executing the example program 0x001fff "+ "in memory should contain 0xab."); strictEqual(byte_two, 0xcd, "After executing the example program 0x002000 "+ "in memory should contain 0xcd."); }); } function test_subroutines() { module("Subroutines"); test("Short program to check that JSR and RTS work", function() { var cpu = new CPU_65816(); // It jumps to 0xffff so it doesn't execute the subroutine again and // effectively halts the program. cpu.load_binary("18fbc23018a9ffff200e804cffff3a60", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xfffe, "The subroutine should execute exactly once, "+ "decrementing 0xffff to 0xfffe."); }); } function test_cmp() { module("CMP"); test("Compare two 8-bit numbers, 0x01 and 0xff", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbe23018a901c9ff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x01, "CMP should not change the value of the "+ "accumulator"); strictEqual(cpu.p.z, 0, "When comparing 0x01 and 0xff the zero(z) bit "+ "should not be set (0x01 != 0xff)"); strictEqual(cpu.p.n, 0, "When comparing 0x01 and 0xff the negative(n) bit "+ "should not be set"); strictEqual(cpu.p.c, 0, "When comparing 0x01 and 0xff the carry(c) bit "+ "should not be set (0x01 < 0xff)"); }); test("Compare two 16-bit numbers, 0xff01 and 0xfeff", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc23018a901ffc9fffe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xff01, "CMP should not change the value of the "+ "accumulator"); strictEqual(cpu.p.n, 0, "When comparing 0xff01 and 0xfeff the negative(n) "+ "bit should not be set"); strictEqual(cpu.p.z, 0, "When comparing 0xff01 and 0xfeff the zero(z) bit "+ "should not be set (0xff01 != 0xfeff)"); strictEqual(cpu.p.c, 1, "When comparing 0xff01 and 0xfeff the carry(c) "+ "bit should be set (0xff01 >= 0xfeff)"); }); } function test_sbc() { module("SBC"); test("Test normal subtraction of two 8-bit numbers that don't cause a "+ "borrow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbe230a90138e901", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "0x01 - 0x01 should result in zero when using "+ "SBC"); strictEqual(cpu.p.z, 1, "0x01 - 0x01 should set the zero(z) bit when "+ "using SBC"); strictEqual(cpu.p.n, 0, "0x01 - 0x01 should not set the negative(n) bit "+ "when using SBC"); strictEqual(cpu.p.v, 0, "0x01 - 0x01 should not set the overflow(v) bit "+ "when using SBC"); strictEqual(cpu.p.c, 1, "0x01 - 0x01 should set the carry(c) bit when "+ "using SBC"); }); test("Test normal subtraction of two 16-bit numbers that don't cause a "+ "borrow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc230a9010038e90100", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0, "0x0001 - 0x0001 should result in zero when using "+ "SBC"); strictEqual(cpu.p.z, 1, "0x0001 - 0x0001 should set the zero(z) bit when "+ "using SBC"); strictEqual(cpu.p.n, 0, "0x0001 - 0x0001 should not set the negative(n) "+ "bit when using SBC"); strictEqual(cpu.p.v, 0, "0x0001 - 0x0001 should not set the overflow(v) "+ "bit when using SBC"); strictEqual(cpu.p.c, 1, "0x0001 - 0x0001 should set the carry(c) bit when "+ "using SBC"); }); test("Test subtraction that triggers a borrow with 8-bit numbers", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbe230a9d038e9ef", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xe1, "0xd0 - 0xef should set the accumulator to "+ "0xe1 when using SBC"); strictEqual(cpu.p.n, 1, "0xd0 - 0xef should set the negative(n) bit when "+ "using SBC"); strictEqual(cpu.p.v, 0, "0xd0 - 0xef should not set the overflow(v) bit "+ "when using SBC"); strictEqual(cpu.p.z, 0, "0xd0 - 0xef should not set the zero(z) bit when "+ "using SBC"); strictEqual(cpu.p.c, 0, "0xd0 - 0xef should not set the carry(c) bit when "+ "using SBC"); }); test("Test subtraction that triggers a borrow with 16-bit numbers", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc230a900d038e900ef", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0xe100, "0xd000 - 0xef00 should set the accumulator "+ "to 0xe0ff when using SBC"); strictEqual(cpu.p.n, 1, "0xd000 - 0xef00 should set the negative(n) bit "+ "when using SBC"); strictEqual(cpu.p.v, 0, "0xd000 - 0xef00 should not set the overflow(v) "+ "bit when using SBC"); strictEqual(cpu.p.z, 0, "0xd000 - 0xef00 should not set the zero(z) bit "+ "when using SBC"); strictEqual(cpu.p.c, 0, "0xd000 - 0xef00 should not set the carry(c) bit "+ "when using SBC"); }); test("Test subtraction with decimal mode on with two single digit 8-bit "+ "numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbf8a90938e905", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 4, "The accumulator should be 4 after subtracting "+ "0x5 0x9 with decimal mode on with 8-bit memory/accumulator "+ "mode."); strictEqual(cpu.p.c, 1, "The carry bit should be set after no borrow is "+ "triggered."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be "+ "one for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); test("Test subtraction with decimal mode on with two double digit 8-bit "+ "numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbf8a99038e949", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x41, "The accumulator should be 0x41 after "+ "subtracting 0x49 from 0x90 with decimal mode on with 8-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.c, 1, "The carry bit should be set after no borrow is "+ "triggered."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be "+ "one for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); test("Test subtraction with decimal mode on with 8-bit numbers that causes "+ "a borrow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbf8a91038e920", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x90, "The accumulator should be 0x90 after "+ "subtracting 0x20 from 0x10 with decimal and 8-bit "+ "memory/accumulator modes."); strictEqual(cpu.p.c, 0, "The carry bit should be clear after a borrow is "+ "triggered."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be "+ "one for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); test("Test subtraction of two single digit 16-bit numbers with decimal "+ "mode set.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220f8a9050038e90200", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x03, "The accumulator should be 0x03 after "+ "subtracting 0x02 from 0x05 with decimal and 16-bit "+ "memory/accumulator modes."); strictEqual(cpu.p.c, 1, "The carry bit should be set after no borrow is "+ "triggered."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be "+ "zero for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); test("Test subtraction of two four digit 16-bit numbers with decimal "+ "mode set.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220f8a9999938e91111", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8888, "The accumulator should be 0x8888 after "+ "subtracting 0x1111 from 0x9999 with decimal "+ "and 16-bit memory/accumulator modes."); strictEqual(cpu.p.c, 1, "The carry bit should be set after no borrow is "+ "triggered."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be "+ "zero for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); test("Test subtraction of two four digit 16-bit numbers with decimal "+ "mode set that causes a borrow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc220f8a9111138e99999", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x1112, "The accumulator should be 0x1112 after "+ "subtracting 0x9999 from 0x1111 with decimal and 16-bit "+ "memory/accumulator modes."); strictEqual(cpu.p.c, 0, "The carry bit should be clear after a borrow is "+ "triggered."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be "+ "zero for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be zero for native mode."); }); } function test_adc() { module("ADC"); test("Test normal addition of two 16-bit numbers that don't cause an "+ "overflow (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a90100690100", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 2, "0x0001 + 0x0001 should result in 0x0002 when "+ "using ADC"); strictEqual(cpu.p.n, 0, "0x0001 + 0x0001 does not result in a negative "+ "two's complement number when adding with ADC."); strictEqual(cpu.p.c, 0, "0x0001 + 0x0001 should not set the carry(c) "+ "bit when adding with ADC"); strictEqual(cpu.p.z, 0, "0x0001 + 0x0001 should not set the zero(z) bit "+ "when adding with ADC"); strictEqual(cpu.p.v, 0, "0x0001 + 0x0001 should not set the overflow(v) "+ "bit when adding with ADC"); }); test("Test normal addition of two 8-bit numbers that don't cause an "+ "overflow (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a9016901", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 2, "0x01 + 0x01 should result in 0x02 when using "+ "ADC"); strictEqual(cpu.p.n, 0, "0x01 + 0x01 does not result in a negative "+ "two's complement number when adding with ADC."); strictEqual(cpu.p.c, 0, "0x01 + 0x01 should not set the carry(c) bit "+ "when adding with ADC"); strictEqual(cpu.p.z, 0, "0x01 + 0x01 should not set the zero(z) bit when "+ "adding with ADC"); strictEqual(cpu.p.v, 0, "0x01 + 0x01 should not set the overflow(v) bit "+ "when adding with ADC"); }); test("Test that overflow sets the carry flag and works in general with two"+ "16-bit numbers (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a9ffff690100", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.c, 1, "0xffff + 0x0001 should set the carry bit when "+ "using ADC"); strictEqual(cpu.r.a, 0, "0xffff + 0x0001 should result in the accumulator "+ "being 0 when using ADC"); strictEqual(cpu.p.n, 0, "0xffff + 0x0001 should not set the negative(n) "+ "bit when using ADC"); strictEqual(cpu.p.z, 1, "0xffff + 0x0001 should set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.v, 0, "0xffff + 0x0001 should not set the overflow(v) "+ "bit when using ADC"); }); test("Test that overflow sets the carry flag and works in general with two"+ "8-bit numbers (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a9ff6901", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.c, 1, "0xff + 0x01 should set the carry bit when using "+ "ADC"); strictEqual(cpu.r.a, 0, "0xff + 0x01 should result in the accumulator "+ "being 0 when using ADC"); strictEqual(cpu.p.n, 0, "0xff + 0x01 should not set the negative(n) bit "+ "when using ADC"); strictEqual(cpu.p.z, 1, "0xff + 0x01 should set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.v, 0, "0xff + 0x01 should not set the overflow(v) bit "+ "when using ADC"); }); test("Test signed overflow with two 8-bit numbers (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a97f6901", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x80, "0x7f + 0x01 should result in 0x80 when "+ "using ADC"); strictEqual(cpu.p.v, 1, "0x7f + 0x01 should set the overflow(v) bit when "+ "using ADC"); strictEqual(cpu.p.c, 0, "0x7f + 0x01 should not set the carry(c) bit when "+ "using ADC"); strictEqual(cpu.p.z, 0, "0x7f + 0x01 should not set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.n, 1, "0x7f + 0x01 should set the negative(n) bit when "+ "using ADC"); }); test("Test signed overflow with two 16-bit numbers (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a9ff7f690100", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8000, "0x7fff + 0x0001 should result in 0x8000 "+ "when using ADC"); strictEqual(cpu.p.v, 1, "0x7fff + 0x0001 should set the overflow(v) bit "+ "when using ADC"); strictEqual(cpu.p.c, 0, "0x7fff + 0x0001 should not set the carry(c) bit "+ "when using ADC"); strictEqual(cpu.p.z, 0, "0x7fff + 0x0001 should not set the zero(z) bit "+ "when using ADC"); strictEqual(cpu.p.n, 1, "0x7fff + 0x0001 should set the negative(n) bit "+ "when using ADC"); }); test("Test ADC direct page with 8-bit numbers (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a90185ffa97f65ff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x80, "0x7f + 0x01 should result in 0x80 when "+ "using ADC"); strictEqual(cpu.p.v, 1, "0x7f + 0x01 should set the overflow(v) bit when "+ "using ADC"); strictEqual(cpu.p.c, 0, "0x7f + 0x01 should not set the carry(c) bit when "+ "using ADC"); strictEqual(cpu.p.z, 0, "0x7f + 0x01 should not set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.n, 1, "0x7f + 0x01 should set the negative(n) bit when "+ "using ADC"); }); test("Test ADC direct page with 16-bit numbers (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a9010085fea9ff7f65fe", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8000, "0x7fff + 0x0001 should result in 0x8000 "+ "when using ADC"); strictEqual(cpu.p.v, 1, "0x7fff + 0x0001 should set the overflow(v) bit "+ "when using ADC"); strictEqual(cpu.p.c, 0, "0x7fff + 0x0001 should not set the carry(c) bit "+ "when using ADC"); strictEqual(cpu.p.z, 0, "0x7fff + 0x0001 should not set the zero(z) bit "+ "when using ADC"); strictEqual(cpu.p.n, 1, "0x7fff + 0x0001 should set the negative(n) bit "+ "when using ADC"); }); test("Test ADC absolute with 8-bit numbers (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a9018dffffa97f6dffff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x80, "0x7f + 0x01 should result in 0x80 when "+ "using ADC"); strictEqual(cpu.p.v, 1, "0x7f + 0x01 should set the overflow(v) bit when "+ "using ADC"); strictEqual(cpu.p.c, 0, "0x7f + 0x01 should not set the carry(c) bit when "+ "using ADC"); strictEqual(cpu.p.z, 0, "0x7f + 0x01 should not set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.n, 1, "0x7f + 0x01 should set the negative(n) bit when "+ "using ADC"); }); test("Test ADC absolute with 16-bit numbers (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a901008dffffa9ff7f6dffff", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8000, "0x7fff + 0x0001 should result in 0x8000 "+ "when using ADC"); strictEqual(cpu.p.v, 1, "0x7fff + 0x0001 should set the overflow(v) bit "+ "when using ADC"); strictEqual(cpu.p.c, 0, "0x7fff + 0x0001 should not set the carry(c) bit "+ "when using ADC"); strictEqual(cpu.p.z, 0, "0x7fff + 0x0001 should not set the zero(z) bit "+ "when using ADC"); strictEqual(cpu.p.n, 1, "0x7fff + 0x0001 should set the negative(n) bit "+ " when using ADC"); }); test("Test ADC direct page indirect with 8-bit numbers (m bit is 1)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18e230a90185ffa9ff85fd64fea97f72fd", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x80, "0x7f + 0x01 should result in 0x80 when "+ "using ADC"); strictEqual(cpu.p.v, 1, "0x7f + 0x01 should set the overflow(v) bit when "+ "using ADC"); strictEqual(cpu.p.c, 0, "0x7f + 0x01 should not set the carry(c) bit when "+ "using ADC"); strictEqual(cpu.p.z, 0, "0x7f + 0x01 should not set the zero(z) bit when "+ "using ADC"); strictEqual(cpu.p.n, 1, "0x7f + 0x01 should set the negative(n) bit when "+ "using ADC"); }); test("Test ADC direct page indirect with 16-bit numbers (m bit is 0)", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18c230a901008500a9000085bba9ff7f72bb", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8000, "0x7fff + 0x0001 should result in 0x8000 "+ "when using ADC"); strictEqual(cpu.p.v, 1, "0x7fff + 0x0001 should set the overflow(v) bit "+ "when using ADC"); strictEqual(cpu.p.c, 0, "0x7fff + 0x0001 should not set the carry(c) bit "+ "when using ADC"); strictEqual(cpu.p.z, 0, "0x7fff + 0x0001 should not set the zero(z) bit "+ "when using ADC"); strictEqual(cpu.p.n, 1, "0x7fff + 0x0001 should set the negative(n) bit "+ "when using ADC"); }); test("Test that ADC handles decimal mode with legal BCD numbers in 8-bit "+ "memory/accumulator mode with single digit numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8a9056905", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x10, "0x05 + 0x05 should result in 0x10 with "+ "decimal mode on and with 8-bit memory/accumulator mode."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 8-bit "+ "memory/accumulator mode with double digit numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8a9156926", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x41, "0x15 + 0x26 should result in 0x41 with "+ "decimal mode on and with 8-bit memory/accumulator mode."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 8-bit "+ "memory/accumulator mode with double digit numbers with the carry "+ "bit set", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb38f8a9156926", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x42, "0x15 + 0x26 should result in 0x42 with "+ "decimal mode on and with 8-bit memory/accumulator mode and "+ "the carry bit set."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 8-bit "+ "memory/accumulator mode when adding two numbers that cause an "+ "overflow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8a9556960", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x16, "0x55 + 0x60 should result in 0x16 with "+ "decimal mode on and with 8-bit memory/accumulator mode."); strictEqual(cpu.p.c, 1, "The carry flag of the p status register should "+ "be set after the decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 1, "The m flag of the p status register should be 1 "+ "for 8-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 16-bit "+ "memory/accumulator mode when adding two single digit numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8c220a90100690900", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x10, "0x0001 + 0x0009 should result in 0x0010 with "+ "decimal mode on and with 16-bit memory/accumulator mode."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 16-bit "+ "memory/accumulator mode when adding two four digit numbers.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8c220a90110699939", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x5000, "0x1001 + 0x3999 should result in 0x5000 "+ "with decimal mode on and with 16-bit "+ "memory/accumulator mode."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 16-bit "+ "memory/accumulator mode when adding two numbers that cause an "+ "overflow.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb18f8c220a99756699999", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x5697, "0x5697 + 0x9999 should result in 0x5697 "+ "with decimal mode on and with 16-bit memory/accumulator "+ "mode."); strictEqual(cpu.p.c, 1, "The carry flag of the p status register should "+ "be set after decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); test("Test that ADC handles decimal mode with legal BCD numbers in 16-bit "+ "memory/accumulator mode when adding two four digit numbers with the "+ "carry bit set.", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb38f8c220a90110699939", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x5001, "0x1001 + 0x3999 should result in 0x5001 "+ "with decimal mode on, with 16-bit "+ "memory/accumulator mode and the carry flag set."); strictEqual(cpu.p.c, 0, "The carry flag of the p status register should "+ "be clear after no decimal overflow."); strictEqual(cpu.p.d, 1, "Decimal mode should be set to 1 in the p status "+ "register."); strictEqual(cpu.p.m, 0, "The m flag of the p status register should be 0 "+ "for 16-bit memory/accumulator mode."); strictEqual(cpu.p.e, 0, "The hidden e flag of the p status register "+ "should be 0 for native mode."); }); } function test_branching() { module("Branching"); test("Test that BRA with 0x00 as its argument doesn't increment or "+ "decrement the program counter", function() { var cpu = new CPU_65816(); cpu.load_binary("8000", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.pc, 0x8003, "Make sure that the program counter isn't "+ "incremented or decremented if BRA is given "+ "0x00 as its argument."); }); test("Check that the branching operations properly treat the argument as "+ "a two's complement number", function() { var cpu = new CPU_65816(); // negative two's complement number 0xf0 = -16 cpu.load_binary("80f0", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.pc, (0x8003-16), "A branching operation when given a "+ "negative two's complement number should decrement the "+ "program counter by the proper amount."); cpu.reset(); cpu.load_binary("8020", 0x8000); // positive two's complement number. cpu.execute(0x8000); strictEqual(cpu.r.pc, (0x8003+0x20), "A branching operation when given a "+ "positive two's complement number should increment the "+ "program counter by the proper amount."); }); test("Check that BPL works as expected", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc230a9fe7f1a10fd", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x8000, "Check that branching only occurs while the "+ "number is a two's complement positive number."); }); test("Check that BMI works as expected", function() { var cpu = new CPU_65816(); cpu.load_binary("18fbc230a901803a30fd", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, 0x7fff, "Check that branching only occurs while the "+ "number is a two's complement negative number."); }); } function test_sep() { module("SEP"); test("Test 'SEP #$30' not in emulation mode", function() { var cpu = new CPU_65816(); cpu.p.e = 0; cpu.load_binary("e230", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.m, 1, "'SEP #$30' should set the m status bit of the p "+ "register to 1"); strictEqual(cpu.p.x, 1, "'SEP #$30' should set the x status bit of the p "+ "register to 1"); strictEqual(cpu.p.n, 0, "'SEP #$30' should not set the n status bit of "+ "the p register to 1."); strictEqual(cpu.p.c, 0, "'SEP #$30' should not set the c status bit of "+ "the p register to 1."); strictEqual(cpu.p.z, 0, "'SEP #$30' should not set the z status bit of "+ "the p register to 1."); strictEqual(cpu.p.d, 0, "'SEP #$30' should not set the d status bit of "+ "the p register to 1."); strictEqual(cpu.p.v, 0, "'SEP #$30' should not set the v status bit of "+ "the p register to 1."); strictEqual(cpu.p.i, 0, "'SEP #$30' should not set the i status bit of "+ "the p register to 1."); }); test("Test 'SEP #$cf' not in emulation mode", function() { var cpu = new CPU_65816(); cpu.p.e = 0; cpu.load_binary("e2cf", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.m, 0, "'SEP #$cf' should not set the m status bit of "+ "the p register to 1"); strictEqual(cpu.p.x, 0, "'SEP #$cf' should not set the x status bit of "+ "the p register to 1"); strictEqual(cpu.p.n, 1, "'SEP #$cf' should set the n status bit of the p "+ "register to 1."); strictEqual(cpu.p.c, 1, "'SEP #$cf' should set the c status bit of the p "+ "register to 1."); strictEqual(cpu.p.z, 1, "'SEP #$cf' should set the z status bit of the p "+ "register to 1."); strictEqual(cpu.p.d, 1, "'SEP #$cf' should set the d status bit of the p "+ "register to 1."); strictEqual(cpu.p.v, 1, "'SEP #$cf' should set the v status bit of the p "+ "register to 1."); strictEqual(cpu.p.i, 1, "'SEP #$cf' should set the i status bit of the p "+ "register to 1."); }); } function test_rep() { module("REP"); test("Test 'REP #$30' not in emulation mode", function() { var cpu = new CPU_65816(); cpu.p.e = 0; // Make sure stuff is cleared by setting all of the bits to 1 initially. cpu.p.n = 1; cpu.p.c = 1; cpu.p.v = 1; cpu.p.i = 1; cpu.p.d = 1; cpu.p.x = 1; cpu.p.m = 1; cpu.p.z = 1; cpu.load_binary("c230", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.m, 0, "'REP #$30' should clear the m bit of the p "+ "status register"); strictEqual(cpu.p.x, 0, "'REP #$30' should clear the x bit of the p "+ "status register"); strictEqual(cpu.p.d, 1, "'REP #$30' should not clear the d bit of the p "+ "status register"); strictEqual(cpu.p.i, 1, "'REP #$30' should not clear the i bit of the p "+ "status register"); strictEqual(cpu.p.c, 1, "'REP #$30' should not clear the c bit of the p "+ "status register"); strictEqual(cpu.p.z, 1, "'REP #$30' should not clear the z bit of the p "+ "status register"); strictEqual(cpu.p.v, 1, "'REP #$30' should not clear the v bit of the p "+ "status register"); strictEqual(cpu.p.n, 1, "'REP #$30' should not clear the n bit of the p "+ "status register"); }); test("Test 'REP #$cf' not in emulation mode", function() { var cpu = new CPU_65816(); cpu.p.e = 0; // Make sure stuff is cleared by setting all of the bits to 1 initially. cpu.p.n = 1; cpu.p.c = 1; cpu.p.v = 1; cpu.p.i = 1; cpu.p.d = 1; cpu.p.x = 1; cpu.p.m = 1; cpu.p.z = 1; cpu.load_binary("c2cf", 0x8000); cpu.execute(0x8000); strictEqual(cpu.p.m, 1, "'REP #$cf' should not clear the m bit of the p "+ "status register"); strictEqual(cpu.p.x, 1, "'REP #$cf' should not clear the x bit of the p "+ "status register"); strictEqual(cpu.p.z, 0, "'REP #$cf' should clear the z bit of the p "+ "status register"); strictEqual(cpu.p.n, 0, "'REP #$cf' should clear the n bit of the p "+ "status register"); strictEqual(cpu.p.d, 0, "'REP #$cf' should clear the d bit of the p "+ "status register"); strictEqual(cpu.p.v, 0, "'REP #$cf' should clear the v bit of the p "+ "status register"); strictEqual(cpu.p.i, 0, "'REP #$cf' should clear the i bit of the p "+ "status register"); strictEqual(cpu.p.c, 0, "'REP #$cf' should clear the c bit of the p "+ "status register"); }); } function test_cpu_load_binary() { module("cpu.load_binary"); test("Make sure that load binary can work with hex strings", function() { var cpu = new CPU_65816(); cpu.load_binary("18fb", 0x8000); strictEqual(cpu.mmu.read_byte_long(0x8000, cpu.r.k), 0x18); strictEqual(cpu.mmu.read_byte_long(0x8001, cpu.r.k), 0xfb); }); test("Make sure that load_binary can work with arrays", function() { var cpu = new CPU_65816(); cpu.load_binary([0x18, 0xfb], 0x8000); strictEqual(cpu.mmu.read_byte_long(0x8000, cpu.r.k), 0x18); strictEqual(cpu.mmu.read_byte_long(0x8001, cpu.r.k), 0xfb); }); } function test_cpu_memory_mapped_io_devices() { module("memory mapped io devices"); test("Make sure that memory mapped io devices properly receive input", function() { var cpu = new CPU_65816(), written_value, write_callback = function(cpu, b) { written_value = b; }; cpu.mmu.add_memory_mapped_io_device(write_callback, null, 0, 1); cpu.load_binary("a9ff8501", 0x8000); cpu.execute(0x8000); strictEqual(written_value, 0xff); }); test("Make sure that memory mapped io devices can be read from properly", function() { var cpu = new CPU_65816(), read_value = 0xee, read_callback = function(cpu) { return read_value; }; cpu.mmu.add_memory_mapped_io_device(null, read_callback, 0, 1); cpu.load_binary("a501", 0x8000); cpu.execute(0x8000); strictEqual(cpu.r.a, read_value, "The accumulator should equal the value "+ "read from the memory mapped io device, 0xee"); }); }