1
0
mirror of https://github.com/sehugg/8bitworkshop.git synced 2024-06-01 05:41:31 +00:00
8bitworkshop/presets/verilog/cpu8.v
2018-02-05 18:05:49 -06:00

222 lines
5.2 KiB
Verilog

`define OP_LOAD_A 4'h0
`define OP_LOAD_B 4'h1
`define OP_ADD 4'h2
`define OP_SUB 4'h3
`define OP_INC 4'h4
`define OP_DEC 4'h5
`define OP_ASL 4'h6
`define OP_LSR 4'h7
`define OP_OR 4'h8
`define OP_AND 4'h9
`define OP_XOR 4'ha
`define OP_NOP 4'hf
module ALU(
input [7:0] A,
input [7:0] B,
output [8:0] Y,
input [3:0] aluop
);
always @(*)
case (aluop)
`OP_LOAD_A: Y = {1'b0, A};
`OP_LOAD_B: Y = {1'b0, B};
`OP_ADD: Y = A + B;
`OP_SUB: Y = A - B;
`OP_INC: Y = A + 1;
`OP_DEC: Y = A - 1;
`OP_ASL: Y = A + A;
`OP_LSR: Y = {A[0], A >> 1};
`OP_OR: Y = {1'b0, A | B};
`OP_AND: Y = {1'b0, A & B};
`OP_XOR: Y = {1'b0, A ^ B};
default: Y = 9'bx;
endcase
endmodule
`define DEST_A 2'b00
`define DEST_B 2'b01
`define DEST_IP 2'b10
`define DEST_NOP 2'b11
`define I_COMPUTE(dest,op) { 2'b00, 2'(dest), 4'(op) }
`define I_LOAD_IMM_A { 2'b01, `DEST_A, `OP_LOAD_A }
`define I_LOAD_IMM_B { 2'b01, `DEST_B, `OP_LOAD_B }
`define I_JUMP_IMM { 2'b01, `DEST_IP, `OP_NOP }
`define I_STORE_B(op) { 4'b01100, 4'(op) }
`define I_STORE_IMM(op) { 4'b01101, 4'(op) }
`define I_RESET { 8'hff }
module CPU(
input clk,
input reset,
output [7:0] address,
input [7:0] data_in,
output [7:0] data_out,
output write
);
reg [7:0] IP;
reg [7:0] A, B;
reg [8:0] Y;
reg [2:0] state;
reg carry;
reg zero;
wire [1:0] flags = { zero, carry };
reg [7:0] opcode;
wire [3:0] aluop = opcode[3:0];
wire [1:0] opdest = opcode[5:4];
localparam S_RESET = 0;
localparam S_SELECT = 1;
localparam S_DECODE = 2;
localparam S_LOAD_ADDR = 3;
localparam S_STORE_ADDR = 4;
localparam S_COMPUTE = 5;
ALU alu(.A(A), .B(B), .Y(Y), .aluop(aluop));
always @(posedge clk)
if (reset) begin
state <= 0;
write <= 0;
end else begin
case (state)
// state 0: reset
S_RESET: begin
IP <= 8'h80;
write <= 0;
state <= S_SELECT;
end
// state 1: select opcode address
S_SELECT: begin
address <= IP;
IP <= IP + 1;
write <= 0;
state <= S_DECODE;
end
// state 2: read/decode opcode
S_DECODE: begin
opcode <= data_in;
casez (data_in)
// ALU A + B -> dest
8'b00??????: begin
state <= S_COMPUTE;
end
// ALU A + immediate -> dest
8'b01??????: begin
address <= IP;
IP <= IP + 1;
state <= S_LOAD_ADDR;
end
// read[B] -> dest, ALU A + B -> dest
8'b10??????: begin
address <= B;
state <= S_LOAD_ADDR;
end
// ALU A + B -> write [B] -> dest
8'b1100????: begin
address <= B;
state <= S_STORE_ADDR;
end
// ALU A + B -> write [immediate] -> dest
8'b1101????: begin
address <= IP;
IP <= IP + 1;
state <= S_STORE_ADDR;
end
// fall-through RESET
default: begin
state <= S_RESET; // reset
end
endcase
end
// state 3: load address
S_LOAD_ADDR: begin
case (opdest)
`DEST_A: A <= data_in;
`DEST_B: B <= data_in;
`DEST_IP: IP <= data_in;
// use ALU-op for conditional branch
`DEST_NOP: if (
(aluop[0] && (aluop[1] ^ carry)) ||
(aluop[2] && (aluop[3] ^ zero)))
IP <= data_in;
endcase
// short-circuit ALU for branches
state <= opdest[1] ? S_SELECT : S_COMPUTE;
end
// state 4: store address
S_STORE_ADDR: begin
data_out <= Y[7:0];
write <= 1;
state <= S_SELECT;
end
// state 5: compute ALU op and flags
S_COMPUTE: begin
case (opdest)
`DEST_A: A <= Y[7:0];
`DEST_B: B <= Y[7:0];
`DEST_IP: IP <= Y[7:0];
`DEST_NOP: ;
endcase
carry <= Y[8];
zero <= ~|Y;
state <= S_SELECT;
end
endcase
end
endmodule
module test_CPU_top(
input clk,
input reset,
output [7:0] address_bus,
output reg [7:0] to_cpu,
output [7:0] from_cpu,
output write_enable,
output [7:0] IP,
output [7:0] A,
output [7:0] B
);
reg [7:0] ram[127:0];
reg [7:0] rom[127:0];
assign IP = cpu.IP;
assign A = cpu.A;
assign B = cpu.B;
CPU cpu(.clk(clk),
.reset(reset),
.address(address_bus),
.data_in(to_cpu),
.data_out(from_cpu),
.write(write_enable));
// does not work as (posedge clk)
always @(*)
if (write_enable)
ram[address_bus[6:0]] = from_cpu;
else if (address_bus[7] == 0)
to_cpu = ram[address_bus[6:0]];
else
to_cpu = rom[address_bus[6:0]];
initial begin
// address 0x80
rom['h00] = `I_LOAD_IMM_A;
rom['h01] = 42;
rom['h02] = `I_COMPUTE(`DEST_A, `OP_ASL);
rom['h03] = `I_COMPUTE(`DEST_B, `OP_INC);
rom['h04] = `I_STORE_B(`OP_LOAD_B);
rom['h05] = `I_RESET;
end
endmodule