1
0
mirror of https://github.com/sehugg/8bitworkshop.git synced 2024-11-15 14:07:16 +00:00
8bitworkshop/presets/verilog/cpu8.v

304 lines
7.2 KiB
Verilog

`ifndef ALU_H
`define ALU_H
// ALU operations
`define OP_ZERO 4'h0
`define OP_LOAD_A 4'h1
`define OP_INC 4'h2
`define OP_DEC 4'h3
`define OP_ASL 4'h4
`define OP_LSR 4'h5
`define OP_ROL 4'h6
`define OP_ROR 4'h7
`define OP_OR 4'h8
`define OP_AND 4'h9
`define OP_XOR 4'ha
`define OP_LOAD_B 4'hb
`define OP_ADD 4'hc
`define OP_SUB 4'hd
`define OP_ADC 4'he
`define OP_SBB 4'hf
// ALU module
module ALU(A, B, carry, aluop, Y);
parameter N = 8; // default width = 8 bits
input [N-1:0] A; // A input
input [N-1:0] B; // B input
input carry; // carry input
input [3:0] aluop; // alu operation
output reg [N:0] Y; // Y output + carry
always @(*)
case (aluop)
// unary operations
`OP_ZERO: Y = 0;
`OP_LOAD_A: Y = {1'b0, A};
`OP_INC: Y = A + 1;
`OP_DEC: Y = A - 1;
// unary operations that generate and/or use carry
`OP_ASL: Y = {A, 1'b0};
`OP_LSR: Y = {A[0], 1'b0, A[N-1:1]};
`OP_ROL: Y = {A, carry};
`OP_ROR: Y = {A[0], carry, A[N-1:1]};
// binary operations
`OP_OR: Y = {1'b0, A | B};
`OP_AND: Y = {1'b0, A & B};
`OP_XOR: Y = {1'b0, A ^ B};
`OP_LOAD_B: Y = {1'b0, B};
// binary operations that generate and/or use carry
`OP_ADD: Y = A + B;
`OP_SUB: Y = A - B;
`OP_ADC: Y = A + B + (carry?1:0);
`OP_SBB: Y = A - B - (carry?1:0);
endcase
endmodule
/*
Bits Description
00ddaaaa A @ B -> dest
01ddaaaa A @ immediate -> dest
11ddaaaa A @ read [B] -> dest
10000001 swap A <-> B
1001nnnn A -> write [nnnn]
1010tttt conditional branch
dd = destination (00=A, 01=B, 10=IP, 11=none)
aaaa = ALU operation (@ operator)
nnnn = 4-bit constant
tttt = flags test for conditional branch
*/
// destinations for COMPUTE instructions
`define DEST_A 2'b00
`define DEST_B 2'b01
`define DEST_IP 2'b10
`define DEST_NOP 2'b11
// instruction macros
`define I_COMPUTE(dest,op) { 2'b00, (dest), (op) }
`define I_COMPUTE_IMM(dest,op) { 2'b01, (dest), (op) }
`define I_COMPUTE_READB(dest,op) { 2'b11, (dest), (op) }
`define I_CONST_IMM_A { 2'b01, `DEST_A, `OP_LOAD_B }
`define I_CONST_IMM_B { 2'b01, `DEST_B, `OP_LOAD_B }
`define I_JUMP_IMM { 2'b01, `DEST_IP, `OP_LOAD_B }
`define I_STORE_A(addr) { 4'b1001, (addr) }
`define I_BRANCH_IF(zv,zu,cv,cu) { 4'b1010, (zv), (zu), (cv), (cu) }
`define I_CLEAR_CARRY { 8'b10001000 }
`define I_SWAP_AB { 8'b10000001 }
`define I_RESET { 8'b10111111 }
// convenience macros
`define I_ZERO_A `I_COMPUTE(`DEST_A, `OP_ZERO)
`define I_ZERO_B `I_COMPUTE(`DEST_B, `OP_ZERO)
`define I_BRANCH_IF_CARRY(carry) `I_BRANCH_IF(1'b0, 1'b0, carry, 1'b1)
`define I_BRANCH_IF_ZERO(zero) `I_BRANCH_IF(zero, 1'b1, 1'b0, 1'b0)
`define I_CLEAR_ZERO `I_COMPUTE(`DEST_NOP, `OP_ZERO)
module CPU(clk, reset, address, data_in, data_out, write);
input clk;
input reset;
output reg [7:0] address;
input [7:0] data_in;
output reg [7:0] data_out;
output reg write;
reg [7:0] IP;
reg [7:0] A, B;
reg [8:0] Y;
reg [2:0] state;
reg carry;
reg zero;
wire [1:0] flags = { zero, carry };
reg [7:0] opcode;
wire [3:0] aluop = opcode[3:0];
wire [1:0] opdest = opcode[5:4];
wire B_or_data = opcode[6];
localparam S_RESET = 0;
localparam S_SELECT = 1;
localparam S_DECODE = 2;
localparam S_COMPUTE = 3;
localparam S_READ_IP = 4;
ALU alu(
.A(A),
.B(B_or_data ? data_in : B),
.Y(Y),
.aluop(aluop),
.carry(carry));
always @(posedge clk)
if (reset) begin
state <= 0;
write <= 0;
end else begin
case (state)
// state 0: reset
S_RESET: begin
IP <= 8'h80;
write <= 0;
state <= S_SELECT;
end
// state 1: select opcode address
S_SELECT: begin
address <= IP;
IP <= IP + 1;
write <= 0;
state <= S_DECODE;
end
// state 2: read/decode opcode
S_DECODE: begin
opcode <= data_in; // (only use opcode next cycle)
casez (data_in)
// ALU A + B -> dest
8'b00??????: begin
state <= S_COMPUTE;
end
// ALU A + immediate -> dest
8'b01??????: begin
address <= IP;
IP <= IP + 1;
state <= S_COMPUTE;
end
// ALU A + read [B] -> dest
8'b11??????: begin
address <= B;
state <= S_COMPUTE;
end
// A -> write [nnnn]
8'b1001????: begin
address <= {4'b0, data_in[3:0]};
data_out <= A;
write <= 1;
state <= S_SELECT;
end
// swap A,B
8'b10000001: begin
A <= B;
B <= A;
state <= S_SELECT;
end
// conditional branch
8'b1010????: begin
if (
(data_in[0] && (data_in[1] == carry)) ||
(data_in[2] && (data_in[3] == zero)))
begin
address <= IP;
state <= S_READ_IP;
end else begin
state <= S_SELECT;
end
IP <= IP + 1; // skip immediate
end
// fall-through RESET
default: begin
state <= S_RESET; // reset
end
endcase
end
// state 3: compute ALU op and flags
S_COMPUTE: begin
// transfer ALU output to destination
case (opdest)
`DEST_A: A <= Y[7:0];
`DEST_B: B <= Y[7:0];
`DEST_IP: IP <= Y[7:0];
`DEST_NOP: ;
endcase
// set carry for certain operations (4-7,12-15)
if (aluop[2]) carry <= Y[8];
// set zero flag
zero <= ~|Y[7:0];
// repeat CPU loop
state <= S_SELECT;
end
// state 4: read new IP from memory (immediate mode)
S_READ_IP: begin
IP <= data_in;
state <= S_SELECT;
end
endcase
end
endmodule
`ifdef TOPMOD__test_CPU_top
module test_CPU_top(
input clk,
input reset,
output [7:0] address_bus,
output reg [7:0] to_cpu,
output [7:0] from_cpu,
output write_enable,
output [7:0] IP,
output [7:0] A,
output [7:0] B,
output zero,
output carry
);
reg [7:0] ram[0:127];
reg [7:0] rom[0:127];
assign IP = cpu.IP;
assign A = cpu.A;
assign B = cpu.B;
assign zero = cpu.zero;
assign carry = cpu.carry;
CPU cpu(.clk(clk),
.reset(reset),
.address(address_bus),
.data_in(to_cpu),
.data_out(from_cpu),
.write(write_enable));
always @(posedge clk)
if (write_enable) begin
ram[address_bus[6:0]] <= from_cpu;
end
always @(*)
if (address_bus[7] == 0)
to_cpu = ram[address_bus[6:0]];
else
to_cpu = rom[address_bus[6:0]];
initial begin
`ifdef EXT_INLINE_ASM
// example code: Fibonacci sequence
rom = '{
__asm
.arch femto8
.org 128
.len 128
Start:
zero A ; A <= 0
ldb #1 ; B <= 1
Loop:
add A,B ; A <= A + B
swapab ; swap A,B
bcc Loop ; repeat until carry set
reset ; end of loop; reset CPU
__endasm
};
`endif
end
endmodule
`endif
`endif