1
0
mirror of https://github.com/sehugg/8bitworkshop.git synced 2024-11-12 10:07:00 +00:00
8bitworkshop/presets/verilog/sprite_scanline_renderer.v

255 lines
7.1 KiB
Verilog

`include "hvsync_generator.v"
`include "ram.v"
/*
sprite_scanline_renderer - Module that renders multiple
sprites whose attributes are fetched from shared RAM,
and whose bitmaps are stored in ROM. Made to be paired
with the FEMTO-16 CPU.
*/
module example_bitmap_rom(addr, data);
input [15:0] addr;
output [15:0] data;
reg [15:0] bitarray[0:255];
assign data = bitarray[addr & 15];
initial begin/*{w:16,h:16,bpw:16,count:1}*/
bitarray['h00] = 16'b11110000000;
bitarray['h01] = 16'b100001000000;
bitarray['h02] = 16'b1111111100000;
bitarray['h03] = 16'b1111111100000;
bitarray['h04] = 16'b11110000000;
bitarray['h05] = 16'b11111111110000;
bitarray['h06] = 16'b111100001111000;
bitarray['h07] = 16'b1111101101111100;
bitarray['h08] = 16'b1101100001101111;
bitarray['h09] = 16'b1101111111100110;
bitarray['h0a] = 16'b1001111111100000;
bitarray['h0b] = 16'b1111111100000;
bitarray['h0c] = 16'b1110011100000;
bitarray['h0d] = 16'b1100001100000;
bitarray['h0e] = 16'b1100001100000;
bitarray['h0f] = 16'b11100001110000;
end
endmodule
module sprite_scanline_renderer(clk, reset, hpos, vpos, rgb,
ram_addr, ram_data, ram_busy,
rom_addr, rom_data);
parameter NB = 5; // 2^NB == number of sprites
parameter MB = 3; // 2^MB == slots per scanline
localparam N = 1<<NB; // number of sprites
localparam M = 1<<MB; // slots per scanline
input clk, reset; // clock and reset inputs
input [8:0] hpos; // horiz. sync pos
input [8:0] vpos; // vert. sync pos
output reg [3:0] rgb; // rgb output
output reg [NB:0] ram_addr; // RAM for sprite data
input [15:0] ram_data; // (2 words per sprite)
output reg ram_busy; // set when accessing RAM
output reg [15:0] rom_addr; // sprite ROM address
input [15:0] rom_data; // sprite ROM data
// copy of sprite data from RAM (N entries)
reg [7:0] sprite_xpos[0:N-1]; // X positions
reg [7:0] sprite_ypos[0:N-1]; // Y positions
reg [7:0] sprite_attr[0:N-1]; // attributes
// M sprite slots
reg [7:0] line_xpos[0:M-1]; // X pos for M slots
reg [7:0] line_yofs[0:M-1]; // Y pos for M slots
reg [7:0] line_attr[0:M-1]; // attr for M slots
reg line_active[0:M-1]; // slot active?
// temporary counters
reg [NB-1:0] i; // read index for main array (0..N-1)
reg [MB-1:0] j; // write index for slots (0..M-1)
reg [MB-1:0] k; // read index for slots (0..M-1)
reg [7:0] z; // relative y offset of sprite
reg [8:0] write_ofs; // write index of scanline buffer
reg [15:0] out_bitmap; // shift register while writing scanline
reg [7:0] out_attr; // attribute while writing scanline
reg romload; // 1 when ROM address bus is stable
// which sprite are we currently reading?
wire [NB-1:0] load_index = hpos[NB:1];
// RGB dual scanline buffer
reg [3:0] scanline[0:511];
// which offset in scanline buffer to read?
wire [8:0] read_bufidx = {vpos[0], hpos[7:0]};
// always block (every clock cycle)
always @(posedge clk) begin
ram_busy <= 0;
// reset every frame, don't draw vpos >= 256
if (reset || vpos[8]) begin
// load sprites from RAM on line 260
// 8 cycles per sprite
// do first sprite twice b/c CPU might still be busy
if (vpos == 260 && hpos < N*2+8) begin
ram_busy <= 1;
case (hpos[0])
0: begin
ram_addr <= {load_index, 1'b0};
// load X and Y position (2 cycles ago)
sprite_xpos[load_index] <= ram_data[7:0];
sprite_ypos[load_index] <= ram_data[15:8];
end
1: begin
ram_addr <= {load_index, 1'b1};
// load attribute (2 cycles ago)
sprite_attr[load_index] <= ram_data[7:0];
end
endcase
end
end else if (hpos < N*2) begin
// setup vars for next phase
k <= 0;
romload <= 0;
// select the sprites that will appear in this scanline
case (hpos[0])
// compute Y offset of sprite relative to scanline
0: z <= 8'(vpos - sprite_ypos[i]);
1: begin
// sprite is active if Y offset is 0..15
if (z < 16) begin
line_xpos[j] <= sprite_xpos[i]; // save X pos
line_yofs[j] <= z; // save Y offset
line_attr[j] <= sprite_attr[i]; // save attr
line_active[j] <= 1; // mark sprite active
j <= j + 1; // inc counter
end
i <= i + 1; // inc main array counter
end
endcase
end else if (hpos < N*2+M*18) begin
// setup vars for next phase
j <= 0;
// if sprite shift register is empty, load new sprite
if (out_bitmap == 0) begin
case (romload)
0: begin
// set ROM address and fetch bitmap
rom_addr <= {4'b0, line_attr[k][7:4], line_yofs[k]};
end
1: begin
// load scanline buffer offset to write
write_ofs <= {~vpos[0], line_xpos[k]};
// fetch 0 if sprite is inactive
out_bitmap <= line_active[k] ? rom_data : 0;
// load attribute for sprite
out_attr <= line_attr[k];
// disable sprite for next scanline
line_active[k] <= 0;
// go to next sprite in 2ndary buffer
k <= k + 1;
end
endcase
romload <= !romload;
end else begin
// write color to scanline buffer if low bit == 1
if (out_bitmap[0])
scanline[write_ofs] <= out_attr[3:0];
// shift bits right
out_bitmap <= out_bitmap >> 1;
// increment to next scanline pixel
write_ofs <= write_ofs + 1;
end
end else begin
// clear counters
i <= 0;
end
// read and clear buffer
rgb <= scanline[read_bufidx];
scanline[read_bufidx] <= 0;
end
endmodule
module test_scanline_render_top(clk, reset, hsync, vsync, rgb);
input clk, reset;
output hsync, vsync;
output [3:0] rgb;
wire display_on;
wire [8:0] hpos;
wire [8:0] vpos;
hvsync_generator hvsync_gen(
.clk(clk),
.reset(reset),
.hsync(hsync),
.vsync(vsync),
.display_on(display_on),
.hpos(hpos),
.vpos(vpos)
);
wire [15:0] rom_addr;
wire [15:0] rom_data;
example_bitmap_rom bitmap_rom(
.addr(rom_addr),
.data(rom_data)
);
reg [5:0] ram_addr;
wire [15:0] ram_read;
reg [15:0] ram_write;
reg ram_we;
reg ram_busy;
// 64-word RAM
RAM_sync #(6,16) ram(
.clk(clk),
.addr(ram_addr),
.dout(ram_read),
.din(ram_write),
.we(ram_we)
);
sprite_scanline_renderer ssr(
.clk(clk),
.reset(reset),
.hpos(hpos),
.vpos(vpos),
.rgb(rgb),
.ram_addr(ram_addr),
.ram_data(ram_read),
.ram_busy(ram_busy),
.rom_addr(rom_addr),
.rom_data(rom_data)
);
always @(posedge clk) begin
// wiggle sprites randomly once per frame
if (vpos == 256) begin
ram_addr <= hpos[7:2];
// 4 clocks per read/write cycle
if (!hpos[1]) begin
ram_we <= 0;
end else begin
ram_we <= 1;
ram_write <= ram_read + 16'(($random&3)-1);
end
end else
ram_we <= 0;
end
endmodule