1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-29 15:29:36 +00:00
CLK/Components/AY38910/AY38910.cpp

265 lines
7.4 KiB
C++
Raw Normal View History

//
// AY-3-8910.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/10/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "AY38910.hpp"
using namespace GI;
AY38910::AY38910() :
_selected_register(0),
_channel_output{0, 0, 0}, _channel_dividers{0, 0, 0}, _tone_generator_controls{0, 0, 0},
_noise_shift_register(0xffff), _noise_divider(0), _noise_output(0),
_envelope_divider(0), _envelope_period(0), _envelope_position(0),
_output_registers{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{
_output_registers[8] = _output_registers[9] = _output_registers[10] = 0;
// set up envelope lookup tables
for(int c = 0; c < 16; c++)
{
for(int p = 0; p < 32; p++)
{
switch(c)
{
case 0: case 1: case 2: case 3: case 9:
_envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0;
_envelope_overflow_masks[c] = 0x1f;
break;
case 4: case 5: case 6: case 7: case 15:
_envelope_shapes[c][p] = (p < 16) ? p : 0;
_envelope_overflow_masks[c] = 0x1f;
break;
case 8:
_envelope_shapes[c][p] = (p & 0xf) ^ 0xf;
_envelope_overflow_masks[c] = 0x00;
break;
case 12:
_envelope_shapes[c][p] = (p & 0xf);
_envelope_overflow_masks[c] = 0x00;
break;
case 10:
_envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0xf : 0x0);
_envelope_overflow_masks[c] = 0x00;
break;
case 14:
_envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0x0 : 0xf);
_envelope_overflow_masks[c] = 0x00;
break;
case 11:
_envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0xf;
_envelope_overflow_masks[c] = 0x1f;
break;
case 13:
_envelope_shapes[c][p] = (p < 16) ? p : 0xf;
_envelope_overflow_masks[c] = 0x1f;
break;
}
}
}
2016-10-20 03:07:51 +00:00
// set up volume lookup table
float max_volume = 8192;
float root_two = sqrtf(2.0f);
for(int v = 0; v < 16; v++)
{
_volumes[v] = (int)(max_volume / powf(root_two, (float)(v ^ 0xf)));
}
_volumes[0] = 0;
}
void AY38910::set_clock_rate(double clock_rate)
{
set_input_rate((float)clock_rate);
}
void AY38910::get_samples(unsigned int number_of_samples, int16_t *target)
{
for(int c = 0; c < number_of_samples; c++)
{
// a master divider divides the clock by 16;
// resulting_steps will be 1 if a tick occurred, 0 otherwise
int former_master_divider = _master_divider;
_master_divider++;
int resulting_steps = ((_master_divider ^ former_master_divider) >> 4) & 1;
// Bluffer's guide to the stuff below: I wanted to avoid branches. If I avoid branches then
// I avoid stalls.
//
// Repeating patterns are:
// (1) decrement, then shift a high-order bit right and mask to get 1 for did underflow, 0 otherwise;
// (2) did_underflow * a + (did_underflow ^ 1) * b to pick between reloading and not reloading
int did_underflow;
#define shift(x, r, steps) \
x -= steps; \
did_underflow = (x >> 16)&1; \
2016-10-20 01:43:18 +00:00
x = did_underflow * r + (did_underflow^1) * x;
#define step_channel(c) \
shift(_channel_dividers[c], _tone_generator_controls[c], resulting_steps); \
2016-10-20 01:43:18 +00:00
_channel_output[c] ^= did_underflow;
// update the tone channels
step_channel(0);
step_channel(1);
step_channel(2);
// ... the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
// it into the official 17 upon divider underflow.
shift(_noise_divider, _output_registers[6]&0x1f, resulting_steps);
_noise_output ^= did_underflow&_noise_shift_register&1;
_noise_shift_register |= ((_noise_shift_register ^ (_noise_shift_register >> 3))&1) << 17;
_noise_shift_register >>= did_underflow;
// ... and the envelope generator. Table based for pattern lookup, with a 'refill' step — a way of
// implementing non-repeating patterns by locking them to table position 0x1f.
// int envelope_divider = ((_master_divider ^ former_master_divider) >> 8) & 1;
shift(_envelope_divider, _envelope_period, resulting_steps);
_envelope_position += did_underflow;
int refill = _envelope_overflow_masks[_output_registers[13]] * (_envelope_position >> 5);
_envelope_position = (_envelope_position & 0x1f) | refill;
int envelope_volume = _envelope_shapes[_output_registers[13]][_envelope_position];
2016-10-20 01:43:18 +00:00
#undef step_channel
#undef shift
// The output level for a channel is:
// 1 if neither tone nor noise is enabled;
// 0 if either tone or noise is enabled and its value is low.
// (which is implemented here with reverse logic, assuming _channel_output and _noise_output are already inverted)
2016-10-20 01:43:18 +00:00
#define level(c, tb, nb) \
(((((_output_registers[7] >> tb)&1)^1) & _channel_output[c]) | ((((_output_registers[7] >> nb)&1)^1) & _noise_output)) ^ 1
int channel_levels[3] = {
2016-10-20 02:22:15 +00:00
level(0, 0, 3),
level(1, 1, 4),
level(2, 2, 5),
};
2016-10-20 01:43:18 +00:00
#undef level
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits
2016-10-20 01:43:18 +00:00
#define channel_volume(c) \
2016-10-20 02:14:05 +00:00
((_output_registers[c] >> 4)&1) * envelope_volume + (((_output_registers[c] >> 4)&1)^1) * (_output_registers[c]&0xf)
int volumes[3] = {
2016-10-20 01:43:18 +00:00
channel_volume(8),
channel_volume(9),
channel_volume(10)
};
2016-10-20 01:43:18 +00:00
#undef channel_volume
// Mix additively. TODO: non-linear volume.
2016-10-20 03:07:51 +00:00
target[c] = (int16_t)(
_volumes[volumes[0]] * channel_levels[0] +
_volumes[volumes[1]] * channel_levels[1] +
_volumes[volumes[2]] * channel_levels[2]
);
}
}
void AY38910::skip_samples(unsigned int number_of_samples)
{
// TODO
// printf("Skip %d\n", number_of_samples);
}
void AY38910::select_register(uint8_t r)
{
2016-10-15 01:44:15 +00:00
_selected_register = r & 0xf;
}
void AY38910::set_register_value(uint8_t value)
{
2016-10-15 01:44:15 +00:00
_registers[_selected_register] = value;
if(_selected_register < 14)
{
int selected_register = _selected_register;
enqueue([=] () {
uint8_t masked_value = value;
switch(selected_register)
{
case 0: case 2: case 4:
_tone_generator_controls[selected_register >> 1] =
(_tone_generator_controls[selected_register >> 1] & ~0xff) | value;
break;
case 1: case 3: case 5:
_tone_generator_controls[selected_register >> 1] =
(_tone_generator_controls[selected_register >> 1] & 0xff) | (uint16_t)((value&0xf) << 8);
break;
case 11:
_envelope_period = (_envelope_period & ~0xff) | value;
// printf("e: %d", _envelope_period);
break;
case 12:
_envelope_period = (_envelope_period & 0xff) | (int)(value << 8);
// printf("e: %d", _envelope_period);
break;
case 13:
masked_value &= 0xf;
_envelope_position = 0;
break;
}
_output_registers[selected_register] = masked_value;
});
}
}
uint8_t AY38910::get_register_value()
{
2016-10-15 01:44:15 +00:00
return _registers[_selected_register];
}
uint8_t AY38910::get_port_output(bool port_b)
{
return _registers[port_b ? 15 : 14];
}
void AY38910::set_data_input(uint8_t r)
{
_data_input = r;
}
uint8_t AY38910::get_data_output()
{
return _data_output;
}
void AY38910::set_control_lines(ControlLines control_lines)
{
ControlState new_state;
switch((int)control_lines)
{
2016-10-20 01:43:18 +00:00
default: new_state = Inactive; break;
case (int)(BCDIR | BC2 | BC1):
case BCDIR:
2016-10-20 01:43:18 +00:00
case BC1: new_state = LatchAddress; break;
case (int)(BC2 | BC1): new_state = Read; break;
case (int)(BCDIR | BC2): new_state = Write; break;
}
if(new_state != _control_state)
{
_control_state = new_state;
switch(new_state)
{
default: break;
2016-10-20 01:43:18 +00:00
case LatchAddress: select_register(_data_input); break;
case Write: set_register_value(_data_input); break;
case Read: _data_output = get_register_value(); break;
}
}
}