1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-18 17:06:15 +00:00
CLK/Machines/Apple/Macintosh/Macintosh.cpp

622 lines
18 KiB
C++
Raw Normal View History

//
// Macintosh.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Macintosh.hpp"
#include <array>
#include "DeferredAudio.hpp"
#include "DriveSpeedAccumulator.hpp"
2019-05-08 16:34:26 +00:00
#include "Keyboard.hpp"
2019-05-08 04:12:19 +00:00
#include "RealTimeClock.hpp"
2019-05-08 16:34:26 +00:00
#include "Video.hpp"
#include "../../CRTMachine.hpp"
#include "../../KeyboardMachine.hpp"
#include "../../MediaTarget.hpp"
#include "../../MouseMachine.hpp"
#include "../../../Inputs/QuadratureMouse/QuadratureMouse.hpp"
2019-07-11 02:39:56 +00:00
//#define LOG_TRACE
2019-05-28 19:17:03 +00:00
#include "../../../Components/6522/6522.hpp"
#include "../../../Components/8530/z8530.hpp"
#include "../../../Components/DiskII/IWM.hpp"
#include "../../../Components/DiskII/MacintoshDoubleDensityDrive.hpp"
#include "../../../Processors/68000/68000.hpp"
#include "../../../Analyser/Static/Macintosh/Target.hpp"
#include "../../Utility/MemoryPacker.hpp"
#include "../../Utility/MemoryFuzzer.hpp"
2019-05-08 04:12:19 +00:00
namespace {
const int CLOCK_RATE = 7833600;
}
namespace Apple {
namespace Macintosh {
template <Analyser::Static::Macintosh::Target::Model model> class ConcreteMachine:
public Machine,
public CRTMachine::Machine,
public MediaTarget::Machine,
public MouseMachine::Machine,
public CPU::MC68000::BusHandler,
public KeyboardMachine::MappedMachine {
public:
using Target = Analyser::Static::Macintosh::Target;
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
mc68000_(*this),
iwm_(CLOCK_RATE),
video_(ram_, audio_, drive_speed_accumulator_),
via_(via_port_handler_),
via_port_handler_(*this, clock_, keyboard_, video_, audio_, iwm_, mouse_),
drives_{
{CLOCK_RATE, model >= Analyser::Static::Macintosh::Target::Model::Mac512ke},
{CLOCK_RATE, model >= Analyser::Static::Macintosh::Target::Model::Mac512ke}
},
mouse_(1) {
// Select a ROM name and determine the proper ROM and RAM sizes
// based on the machine model.
using Model = Analyser::Static::Macintosh::Target::Model;
std::string rom_name;
uint32_t ram_size, rom_size;
switch(model) {
default:
case Model::Mac128k:
ram_size = 128*1024;
rom_size = 64*1024;
rom_name = "mac128k.rom";
break;
case Model::Mac512k:
ram_size = 512*1024;
rom_size = 64*1024;
rom_name = "mac512k.rom";
break;
case Model::Mac512ke:
case Model::MacPlus:
ram_size = 512*1024;
rom_size = 128*1024;
rom_name = "macplus.rom";
break;
}
ram_mask_ = (ram_size >> 1) - 1;
rom_mask_ = (rom_size >> 1) - 1;
video_.set_ram_mask(ram_mask_);
// Grab a copy of the ROM and convert it into big-endian data.
const auto roms = rom_fetcher("Macintosh", { rom_name });
if(!roms[0]) {
throw ROMMachine::Error::MissingROMs;
}
roms[0]->resize(rom_size);
Memory::PackBigEndian16(*roms[0], rom_);
// Randomise memory contents.
Memory::Fuzz(ram_, sizeof(ram_) / sizeof(*ram_));
// Attach the drives to the IWM.
iwm_.iwm.set_drive(0, &drives_[0]);
iwm_.iwm.set_drive(1, &drives_[1]);
// The Mac runs at 7.8336mHz.
2019-05-08 04:12:19 +00:00
set_clock_rate(double(CLOCK_RATE));
audio_.speaker.set_input_rate(float(CLOCK_RATE) / 2.0f);
// Insert any supplied media.
insert_media(target.media);
}
2019-06-01 21:29:57 +00:00
~ConcreteMachine() {
audio_.queue.flush();
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
video_.set_scan_target(scan_target);
}
Outputs::Speaker::Speaker *get_speaker() override {
return &audio_.speaker;
}
void run_for(const Cycles cycles) override {
mc68000_.run_for(cycles);
}
using Microcycle = CPU::MC68000::Microcycle;
HalfCycles perform_bus_operation(const Microcycle &cycle, int is_supervisor) {
// TODO: pick a delay if this is a video-clashing memory fetch.
HalfCycles delay(0);
time_since_video_update_ += cycle.length;
iwm_.time_since_update += cycle.length;
// The VIA runs at one-tenth of the 68000's clock speed, in sync with the E clock.
// See: Guide to the Macintosh Hardware Family p149 (PDF p188). Some extra division
// may occur here in order to provide VSYNC at a proper moment.
// Possibly route vsync.
2019-07-10 03:27:27 +00:00
if(time_since_video_update_ < time_until_video_event_) {
via_clock_ += cycle.length;
via_.run_for(via_clock_.divide(HalfCycles(10)));
} else {
2019-07-10 03:27:27 +00:00
auto via_time_base = time_since_video_update_ - cycle.length;
auto via_cycles_outstanding = cycle.length;
while(time_until_video_event_ < time_since_video_update_) {
const auto via_cycles = time_until_video_event_ - via_time_base;
via_time_base = HalfCycles(0);
via_cycles_outstanding -= via_cycles;
via_clock_ += via_cycles;
via_.run_for(via_clock_.divide(HalfCycles(10)));
video_.run_for(time_until_video_event_);
time_since_video_update_ -= time_until_video_event_;
time_until_video_event_ = video_.get_next_sequence_point();
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::One, !video_.vsync());
}
2019-07-10 03:27:27 +00:00
via_clock_ += via_cycles_outstanding;
via_.run_for(via_clock_.divide(HalfCycles(10)));
}
// The keyboard also has a clock, albeit a very slow one — 100,000 cycles/second.
// Its clock and data lines are connected to the VIA.
keyboard_clock_ += cycle.length;
const auto keyboard_ticks = keyboard_clock_.divide(HalfCycles(CLOCK_RATE / 100000));
if(keyboard_ticks > HalfCycles(0)) {
keyboard_.run_for(keyboard_ticks);
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::Two, keyboard_.get_data());
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::One, keyboard_.get_clock());
}
// Feed mouse inputs within at most 1250 cycles of each other.
2019-07-10 03:27:27 +00:00
if(mouse_.has_steps()) {
time_since_mouse_update_ += cycle.length;
const auto mouse_ticks = time_since_mouse_update_.divide(HalfCycles(2500));
if(mouse_ticks > HalfCycles(0)) {
mouse_.prepare_step();
scc_.set_dcd(0, mouse_.get_channel(1) & 1);
scc_.set_dcd(1, mouse_.get_channel(0) & 1);
}
}
// TODO: SCC should be clocked at a divide-by-two, if and when it actually has
// anything connected.
2019-05-08 04:12:19 +00:00
// Consider updating the real-time clock.
real_time_clock_ += cycle.length;
auto ticks = real_time_clock_.divide_cycles(Cycles(CLOCK_RATE)).as_int();
while(ticks--) {
clock_.update();
// TODO: leave a delay between toggling the input rather than using this coupled hack.
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::Two, true);
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::Two, false);
}
// Update interrupt input. TODO: move this into a VIA/etc delegate callback?
// Double TODO: does this really cascade like this?
if(scc_.get_interrupt_line()) {
mc68000_.set_interrupt_level(2);
} else if(via_.get_interrupt_line()) {
mc68000_.set_interrupt_level(1);
} else {
mc68000_.set_interrupt_level(0);
}
2019-05-08 04:12:19 +00:00
// A null cycle leaves nothing else to do.
if(!(cycle.operation & (Microcycle::NewAddress | Microcycle::SameAddress))) return delay;
auto word_address = cycle.active_operation_word_address();
// Everything above E0 0000 is signalled as being on the peripheral bus.
mc68000_.set_is_peripheral_address(word_address >= 0x700000);
// All code below deals only with reads and writes — cycles in which a
// data select is active. So quit now if this is not the active part of
// a read or write.
if(!cycle.data_select_active()) return delay;
// Check whether this access maps into the IO area; if so then
// apply more complicated decoding logic.
if(word_address >= 0x400000) {
const int register_address = word_address >> 8;
switch(word_address & 0x78f000) {
case 0x70f000:
// VIA accesses are via address 0xefe1fe + register*512,
// which at word precision is 0x77f0ff + register*256.
if(cycle.operation & Microcycle::Read) {
cycle.value->halves.low = via_.get_register(register_address);
} else {
via_.set_register(register_address, cycle.value->halves.low);
}
break;
case 0x68f000:
// The IWM; this is a purely polled device, so can be run on demand.
iwm_.flush();
if(cycle.operation & Microcycle::Read) {
cycle.value->halves.low = iwm_.iwm.read(register_address);
} else {
iwm_.iwm.write(register_address, cycle.value->halves.low);
}
break;
case 0x780000:
// Phase read.
if(cycle.operation & Microcycle::Read) {
cycle.value->halves.low = phase_ & 7;
}
break;
case 0x480000: case 0x48f000:
case 0x580000: case 0x58f000:
// Any word access here adjusts phase.
if(cycle.operation & Microcycle::SelectWord) {
++phase_;
} else {
if(word_address < 0x500000) {
// A0 = 1 => reset; A0 = 0 => read.
if(*cycle.address & 1) {
scc_.reset();
} else {
const auto read = scc_.read(int(word_address));
if(cycle.operation & Microcycle::Read) {
cycle.value->halves.low = read;
}
}
} else {
if(*cycle.address & 1) {
if(cycle.operation & Microcycle::Read) {
scc_.write(int(word_address), 0xff);
} else {
scc_.write(int(word_address), cycle.value->halves.low);
}
}
}
}
break;
default:
if(cycle.operation & Microcycle::Read) {
printf("Unrecognised read %06x\n", *cycle.address & 0xffffff);
cycle.value->halves.low = 0x00;
} else {
printf("Unrecognised write %06x\n", *cycle.address & 0xffffff);
}
break;
}
if(cycle.operation & Microcycle::SelectWord) cycle.value->halves.high = 0xff;
return delay;
}
// Having reached here, this is a RAM or ROM access.
// When ROM overlay is enabled, the ROM begins at both $000000 and $400000,
// and RAM is available at $600000.
//
// Otherwise RAM is mapped at $000000 and ROM from $400000.
uint16_t *memory_base;
if(
(!ROM_is_overlay_ && word_address < 0x200000) ||
(ROM_is_overlay_ && word_address >= 0x300000)
) {
memory_base = ram_;
word_address &= ram_mask_;
update_video();
} else {
memory_base = rom_;
word_address &= rom_mask_;
// Writes to ROM have no effect, and it doesn't mirror above 0x60000.
if(!(cycle.operation & Microcycle::Read)) return delay;
if(word_address >= 0x300000) {
if(cycle.operation & Microcycle::SelectWord) {
cycle.value->full = 0xffff;
} else {
cycle.value->halves.low = 0xff;
}
return delay;
}
}
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read | Microcycle::InterruptAcknowledge)) {
default:
break;
// Catches the deliberation set of operation to 0 above.
case 0: break;
case Microcycle::InterruptAcknowledge | Microcycle::SelectByte:
// The Macintosh uses autovectored interrupts.
mc68000_.set_is_peripheral_address(true);
break;
case Microcycle::SelectWord | Microcycle::Read:
cycle.value->full = memory_base[word_address];
break;
case Microcycle::SelectByte | Microcycle::Read:
cycle.value->halves.low = uint8_t(memory_base[word_address] >> cycle.byte_shift());
break;
case Microcycle::SelectWord:
memory_base[word_address] = cycle.value->full;
break;
case Microcycle::SelectByte:
memory_base[word_address] = uint16_t(
(cycle.value->halves.low << cycle.byte_shift()) |
(memory_base[word_address] & cycle.untouched_byte_mask())
);
break;
}
2019-05-04 03:55:28 +00:00
/*
Normal memory map:
000000: RAM
400000: ROM
9FFFF8+: SCC read operations
BFFFF8+: SCC write operations
DFE1FF+: IWM
EFE1FE+: VIA
*/
return delay;
}
void flush() {
// Flush the video before the audio queue; in a Mac the
// video is responsible for providing part of the
// audio signal, so the two aren't as distinct as in
// most machines.
update_video();
// As above: flush audio after video.
2019-06-01 21:29:57 +00:00
via_.flush();
audio_.queue.perform();
// Experimental?
iwm_.flush();
}
void set_rom_is_overlay(bool rom_is_overlay) {
ROM_is_overlay_ = rom_is_overlay;
}
bool video_is_outputting() {
return video_.is_outputting(time_since_video_update_);
}
void set_use_alternate_buffers(bool use_alternate_screen_buffer, bool use_alternate_audio_buffer) {
video_.set_use_alternate_buffers(use_alternate_screen_buffer, use_alternate_audio_buffer);
}
bool insert_media(const Analyser::Static::Media &media) override {
if(media.disks.empty())
return false;
// TODO: shouldn't allow disks to be replaced like this, as the Mac
// uses software eject. Will need to expand messaging ability of
// insert_media.
if(drives_[0].has_disk())
drives_[1].set_disk(media.disks[0]);
else
drives_[0].set_disk(media.disks[0]);
return true;
}
// MARK: Keyboard input.
KeyboardMapper *get_keyboard_mapper() override {
return &keyboard_mapper_;
}
void set_key_state(uint16_t key, bool is_pressed) override {
keyboard_.enqueue_key_state(key, is_pressed);
}
// TODO: clear all keys.
private:
void update_video() {
video_.run_for(time_since_video_update_.flush());
time_until_video_event_ = video_.get_next_sequence_point();
}
Inputs::Mouse &get_mouse() override {
return mouse_;
}
struct IWM {
IWM(int clock_rate) : iwm(clock_rate) {}
HalfCycles time_since_update;
2019-07-10 03:27:27 +00:00
Apple::IWM iwm;
void flush() {
iwm.run_for(time_since_update.flush_cycles());
}
};
class VIAPortHandler: public MOS::MOS6522::PortHandler {
public:
VIAPortHandler(ConcreteMachine &machine, RealTimeClock &clock, Keyboard &keyboard, Video &video, DeferredAudio &audio, IWM &iwm, Inputs::QuadratureMouse &mouse) :
machine_(machine), clock_(clock), keyboard_(keyboard), video_(video), audio_(audio), iwm_(iwm), mouse_(mouse) {}
using Port = MOS::MOS6522::Port;
using Line = MOS::MOS6522::Line;
void set_port_output(Port port, uint8_t value, uint8_t direction_mask) {
/*
Peripheral lines: keyboard data, interrupt configuration.
(See p176 [/215])
*/
switch(port) {
case Port::A:
/*
Port A:
b7: [input] SCC wait/request (/W/REQA and /W/REQB wired together for a logical OR)
b6: 0 = alternate screen buffer, 1 = main screen buffer
b5: floppy disk SEL state control (upper/lower head "among other things")
b4: 1 = use ROM overlay memory map, 0 = use ordinary memory map
b3: 0 = use alternate sound buffer, 1 = use ordinary sound buffer
b2b0: audio output volume
*/
iwm_.flush();
iwm_.iwm.set_select(!!(value & 0x20));
machine_.set_use_alternate_buffers(!(value & 0x40), !(value&0x08));
2019-05-08 16:34:26 +00:00
machine_.set_rom_is_overlay(!!(value & 0x10));
audio_.flush();
audio_.audio.set_volume(value & 7);
break;
case Port::B:
/*
Port B:
b7: 0 = sound enabled, 1 = sound disabled
b6: [input] 0 = video beam in visible portion of line, 1 = outside
b5: [input] mouse y2
b4: [input] mouse x2
b3: [input] 0 = mouse button down, 1 = up
b2: 0 = real-time clock enabled, 1 = disabled
b1: clock's data-clock line
b0: clock's serial data line
*/
2019-05-08 04:12:19 +00:00
if(value & 0x4) clock_.abort();
else clock_.set_input(!!(value & 0x2), !!(value & 0x1));
audio_.flush();
audio_.audio.set_enabled(!(value & 0x80));
break;
}
}
uint8_t get_port_input(Port port) {
switch(port) {
case Port::A:
// printf("6522 r A\n");
return 0x00; // TODO: b7 = SCC wait/request
case Port::B:
return uint8_t(
((mouse_.get_button_mask() & 1) ? 0x00 : 0x08) |
((mouse_.get_channel(0) & 2) << 3) |
((mouse_.get_channel(1) & 2) << 4) |
(clock_.get_data() ? 0x02 : 0x00) |
(machine_.video_is_outputting() ? 0x00 : 0x40)
);
}
// Should be unreachable.
return 0xff;
}
void set_control_line_output(Port port, Line line, bool value) {
2019-05-08 04:12:19 +00:00
/*
Keyboard wiring (I believe):
2019-05-08 19:07:03 +00:00
CB2 = data (input/output)
2019-05-08 16:34:26 +00:00
CB1 = clock (input)
2019-05-08 04:12:19 +00:00
CA2 is used for receiving RTC interrupts.
CA1 is used for receiving vsync.
2019-05-08 04:12:19 +00:00
*/
if(port == Port::B && line == Line::Two) {
keyboard_.set_input(value);
}
else printf("Unhandled control line output: %c %d\n", port ? 'B' : 'A', int(line));
}
void run_for(HalfCycles duration) {
// The 6522 enjoys a divide-by-ten, so multiply back up here to make the
// divided-by-two clock the audio works on.
audio_.time_since_update += HalfCycles(duration.as_int() * 5);
}
2019-06-01 21:29:57 +00:00
void flush() {
audio_.flush();
}
private:
ConcreteMachine &machine_;
2019-05-08 04:12:19 +00:00
RealTimeClock &clock_;
2019-05-08 16:34:26 +00:00
Keyboard &keyboard_;
Video &video_;
DeferredAudio &audio_;
IWM &iwm_;
Inputs::QuadratureMouse &mouse_;
};
CPU::MC68000::Processor<ConcreteMachine, true> mc68000_;
DriveSpeedAccumulator drive_speed_accumulator_;
IWM iwm_;
DeferredAudio audio_;
Video video_;
2019-05-08 04:12:19 +00:00
RealTimeClock clock_;
2019-05-08 16:34:26 +00:00
Keyboard keyboard_;
2019-05-08 04:12:19 +00:00
MOS::MOS6522::MOS6522<VIAPortHandler> via_;
VIAPortHandler via_port_handler_;
Zilog::SCC::z8530 scc_;
HalfCycles via_clock_;
HalfCycles real_time_clock_;
HalfCycles keyboard_clock_;
HalfCycles time_since_video_update_;
HalfCycles time_until_video_event_;
HalfCycles time_since_iwm_update_;
HalfCycles time_since_mouse_update_;
bool ROM_is_overlay_ = true;
int phase_ = 1;
DoubleDensityDrive drives_[2];
Inputs::QuadratureMouse mouse_;
Apple::Macintosh::KeyboardMapper keyboard_mapper_;
uint32_t ram_mask_ = 0;
uint32_t rom_mask_ = 0;
uint16_t rom_[64*1024];
uint16_t ram_[256*1024];
};
}
}
using namespace Apple::Macintosh;
Machine *Machine::Macintosh(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
auto *const mac_target = dynamic_cast<const Analyser::Static::Macintosh::Target *>(target);
using Model = Analyser::Static::Macintosh::Target::Model;
switch(mac_target->model) {
default:
case Model::Mac128k: return new ConcreteMachine<Model::Mac128k>(*mac_target, rom_fetcher);
case Model::Mac512k: return new ConcreteMachine<Model::Mac512k>(*mac_target, rom_fetcher);
case Model::Mac512ke: return new ConcreteMachine<Model::Mac512ke>(*mac_target, rom_fetcher);
case Model::MacPlus: return new ConcreteMachine<Model::MacPlus>(*mac_target, rom_fetcher);
}
}
Machine::~Machine() {}