1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-03 08:05:40 +00:00
CLK/Storage/Disk/DiskImage/Formats/MacintoshIMG.cpp

288 lines
9.2 KiB
C++
Raw Normal View History

//
// DiskCopy42.cpp
// Clock Signal
//
// Created by Thomas Harte on 02/06/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "MacintoshIMG.hpp"
#include <cstring>
#include "../../Track/PCMTrack.hpp"
#include "../../Track/TrackSerialiser.hpp"
#include "../../Encodings/AppleGCR/Encoder.hpp"
#include "../../Encodings/AppleGCR/SegmentParser.hpp"
/*
File format specifications as referenced below are largely
sourced from the documentation at
https://wiki.68kmla.org/DiskCopy_4.2_format_specification
*/
using namespace Storage::Disk;
MacintoshIMG::MacintoshIMG(const std::string &file_name) :
file_(file_name) {
2019-06-18 18:14:25 +00:00
// Test 1: is this a raw secctor dump? If so it'll start with
// the magic word 0x4C4B (big endian) and be exactly
2019-06-18 18:14:25 +00:00
// 819,200 bytes long if double sided, or 409,600 bytes if
// single sided.
//
// Luckily, 0x4c is an invalid string length for the proper
// DiskCopy 4.2 format, so there's no ambiguity here.
const auto name_length = file_.get8();
2019-06-18 18:14:25 +00:00
if(name_length == 0x4c) {
is_diskCopy_file_ = false;
2019-06-18 18:14:25 +00:00
if(file_.stats().st_size != 819200 && file_.stats().st_size != 409600)
throw Error::InvalidFormat;
uint32_t magic_word = file_.get8();
if(magic_word != 0x4b)
2019-06-18 18:14:25 +00:00
throw Error::InvalidFormat;
file_.seek(0, SEEK_SET);
if(file_.stats().st_size == 819200) {
encoding_ = Encoding::GCR800;
format_ = 0x22;
data_ = file_.read(819200);
} else {
encoding_ = Encoding::GCR400;
format_ = 0x02;
2019-06-18 18:14:25 +00:00
data_ = file_.read(409600);
}
} else {
// DiskCopy 4.2 it is then:
//
// File format starts with 64 bytes dedicated to the disk name;
// this is a Pascal-style string though there is apparently a
// bug in one version of Disk Copy that can cause the length to
// be one too high.
//
// Validate the length, then skip the rest of the string.
is_diskCopy_file_ = true;
2019-06-18 18:14:25 +00:00
if(name_length > 64)
throw Error::InvalidFormat;
// Get the length of the data and tag blocks.
file_.seek(64, SEEK_SET);
const auto data_block_length = file_.get32be();
const auto tag_block_length = file_.get32be();
const auto data_checksum = file_.get32be();
const auto tag_checksum = file_.get32be();
// Don't continue with no data.
if(!data_block_length)
throw Error::InvalidFormat;
// Check that this is a comprehensible disk encoding.
const auto encoding = file_.get8();
switch(encoding) {
default: throw Error::InvalidFormat;
case 0: encoding_ = Encoding::GCR400; break;
case 1: encoding_ = Encoding::GCR800; break;
case 2: encoding_ = Encoding::MFM720; break;
case 3: encoding_ = Encoding::MFM1440; break;
}
format_ = file_.get8();
// Check the magic number.
const auto magic_number = file_.get16be();
if(magic_number != 0x0100)
throw Error::InvalidFormat;
// Read the data and tags, and verify that enough data
// was present.
data_ = file_.read(data_block_length);
tags_ = file_.read(tag_block_length);
if(data_.size() != data_block_length || tags_.size() != tag_block_length)
throw Error::InvalidFormat;
// Verify the two checksums.
const auto computed_data_checksum = checksum(data_);
const auto computed_tag_checksum = checksum(tags_, 12);
if(computed_tag_checksum != tag_checksum || computed_data_checksum != data_checksum)
throw Error::InvalidFormat;
}
}
uint32_t MacintoshIMG::checksum(const std::vector<uint8_t> &data, size_t bytes_to_skip) {
uint32_t result = 0;
// Checksum algorith is: take each two bytes as a big-endian word; add that to a
// 32-bit accumulator and then rotate the accumulator right one position.
for(size_t c = bytes_to_skip; c < data.size(); c += 2) {
const uint16_t next_word = uint16_t((data[c] << 8) | data[c+1]);
result += next_word;
result = (result >> 1) | (result << 31);
}
return result;
}
HeadPosition MacintoshIMG::get_maximum_head_position() {
return HeadPosition(80);
}
int MacintoshIMG::get_head_count() {
// Bit 5 in the format field indicates whether this disk is double
// sided, regardless of whether it is GCR or MFM.
return 1 + ((format_ & 0x20) >> 5);
}
bool MacintoshIMG::get_is_read_only() {
return file_.get_is_known_read_only();
}
std::shared_ptr<::Storage::Disk::Track> MacintoshIMG::get_track_at_position(::Storage::Disk::Track::Address address) {
/*
The format_ byte has the following meanings:
GCR:
This byte appears on disk as the GCR format nibble in every sector tag.
The low five bits are an interleave factor, either:
'2' for 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15; or
'4' for 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15.
Bit 5 indicates double sided or not.
MFM:
The low five bits provide sector size as a multiple of 256 bytes.
Bit 5 indicates double sided or not.
*/
std::lock_guard<decltype(buffer_mutex_)> buffer_lock(buffer_mutex_);
if(encoding_ == Encoding::GCR400 || encoding_ == Encoding::GCR800) {
// Perform a GCR encoding.
const auto included_sectors = Storage::Encodings::AppleGCR::Macintosh::sectors_in_track(address.position.as_int());
const size_t start_sector = size_t(included_sectors.start * get_head_count() + included_sectors.length * address.head);
if(start_sector*512 >= data_.size()) return nullptr;
uint8_t *sector = &data_[512 * start_sector];
2019-06-18 18:14:25 +00:00
uint8_t *tags = tags_.size() ? &tags_[12 * start_sector] : nullptr;
Storage::Disk::PCMSegment segment;
segment += Encodings::AppleGCR::six_and_two_sync(24);
for(int c = 0; c < included_sectors.length; ++c) {
// const int interleave_scale = ((format_ & 0x1f) == 4) ? 8 : 4;
uint8_t sector_id = uint8_t(c);//uint8_t((c == included_sectors.length - 1) ? c : (c * interleave_scale)%included_sectors.length);
uint8_t sector_plus_tags[524];
// Copy in the tags, if provided; otherwise generate them.
if(tags) {
2019-06-17 02:00:12 +00:00
memcpy(sector_plus_tags, tags, 12);
tags += 12;
} else {
2019-06-17 02:00:12 +00:00
// TODO: fill in tags properly.
memset(sector_plus_tags, 0, 12);
}
2019-06-17 02:00:12 +00:00
// Copy in the sector body.
memcpy(&sector_plus_tags[12], sector, 512);
sector += 512;
// NB: sync lengths below are identical to those for
// the Apple II, as I have no idea whatsoever what they
// should be.
2019-06-18 18:04:28 +00:00
segment += Encodings::AppleGCR::Macintosh::header(
format_,
uint8_t(address.position.as_int()),
sector_id,
!!address.head
);
segment += Encodings::AppleGCR::six_and_two_sync(7);
segment += Encodings::AppleGCR::Macintosh::data(sector_id, sector_plus_tags);
segment += Encodings::AppleGCR::six_and_two_sync(20);
}
// TODO: is there inter-track skew?
return std::make_shared<PCMTrack>(segment);
}
return nullptr;
}
void MacintoshIMG::set_tracks(const std::map<Track::Address, std::shared_ptr<Track>> &tracks) {
std::map<Track::Address, std::vector<uint8_t>> tracks_by_address;
for(const auto &pair: tracks) {
// Determine a data rate for the track.
const auto included_sectors = Storage::Encodings::AppleGCR::Macintosh::sectors_in_track(pair.first.position.as_int());
// Rule of thumb here: there are about 6250 bits per sector.
const int data_rate = included_sectors.length * 6250;
// Decode the track.
auto sector_map = Storage::Encodings::AppleGCR::sectors_from_segment(
Storage::Disk::track_serialisation(*pair.second, Storage::Time(1, data_rate)));
// Rearrange sectors into ascending order.
std::vector<uint8_t> track_contents(static_cast<size_t>(524 * included_sectors.length));
for(const auto &sector_pair: sector_map) {
const size_t target_address = sector_pair.second.address.sector * 524;
if(target_address >= track_contents.size() || sector_pair.second.data.size() != 524) continue;
memcpy(&track_contents[target_address], sector_pair.second.data.data(), 524);
}
// Store for later.
tracks_by_address[pair.first] = std::move(track_contents);
}
// Grab the buffer mutex and update the in-memory buffer.
{
std::lock_guard<decltype(buffer_mutex_)> buffer_lock(buffer_mutex_);
for(const auto &pair: tracks_by_address) {
const auto included_sectors = Storage::Encodings::AppleGCR::Macintosh::sectors_in_track(pair.first.position.as_int());
size_t start_sector = size_t(included_sectors.start * get_head_count() + included_sectors.length * pair.first.head);
for(int c = 0; c < included_sectors.length; ++c) {
2019-07-15 21:15:06 +00:00
const auto sector_plus_tags = &pair.second[size_t(c)*524];
2019-07-15 21:15:06 +00:00
// Copy the 512 bytes that constitute the sector body.
memcpy(&data_[start_sector * 512], &sector_plus_tags[12], 512);
// Copy the tags if this file can store them.
// TODO: add tags to a DiskCopy-format image that doesn't have them, if they contain novel content?
if(tags_.size()) {
2019-07-15 21:15:06 +00:00
memcpy(&tags_[start_sector * 12], sector_plus_tags, 12);
}
++start_sector;
}
}
}
// Grab the file lock and write out the new tracks.
{
std::lock_guard<std::mutex> lock_guard(file_.get_file_access_mutex());
if(!is_diskCopy_file_) {
// Just dump out the new sectors. Grossly lazy, possibly worth improving.
file_.seek(0, SEEK_SET);
file_.write(data_);
} else {
// Write out the sectors, and possibly the tags, and update checksums.
file_.seek(0x54, SEEK_SET);
file_.write(data_);
file_.write(tags_);
const auto data_checksum = checksum(data_);
const auto tag_checksum = checksum(tags_, 12);
file_.seek(0x48, SEEK_SET);
file_.put_be(data_checksum);
file_.put_be(tag_checksum);
}
}
}