1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Machines/Amiga/MemoryMap.hpp

197 lines
5.5 KiB
C++
Raw Normal View History

//
// MemoryMap.hpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#ifndef MemoryMap_hpp
#define MemoryMap_hpp
2021-12-22 20:17:11 +00:00
#include "../../Analyser/Static/Amiga/Target.hpp"
#include <array>
#include <cassert>
#include <vector>
namespace Amiga {
2021-11-29 21:55:45 +00:00
class MemoryMap {
private:
2023-05-10 22:13:01 +00:00
static constexpr auto PermitRead = CPU::MC68000::Microcycle::PermitRead;
static constexpr auto PermitWrite = CPU::MC68000::Microcycle::PermitWrite;
2021-11-29 21:55:45 +00:00
static constexpr auto PermitReadWrite = PermitRead | PermitWrite;
public:
std::array<uint8_t, 512*1024> kickstart{0xff};
std::vector<uint8_t> chip_ram{};
struct MemoryRegion {
uint8_t *contents = nullptr;
unsigned int read_write_mask = 0;
} regions[64]; // i.e. top six bits are used as an index.
2021-12-22 20:17:11 +00:00
using FastRAM = Analyser::Static::Amiga::Target::FastRAM;
using ChipRAM = Analyser::Static::Amiga::Target::ChipRAM;
MemoryMap(ChipRAM chip_ram_size, FastRAM fast_ram_size) {
// Address spaces that matter:
//
// 00'0000 08'0000: chip RAM. [or overlayed KickStart]
// 10'0000: extended chip ram for ECS.
2021-11-29 21:55:45 +00:00
// 20'0000: slow RAM and further chip RAM.
// a0'0000: auto-config space (/fast RAM).
// ...
// bf'd000 c0'0000: 8250s.
// c0'0000 d8'0000: pseudo-fast RAM.
// ...
// dc'0000 dd'0000: optional real-time clock.
// df'f000 - e0'0000: custom chip registers.
// ...
// f0'0000 — : 512kb Kickstart (or possibly just an extra 512kb reserved for hypothetical 1mb Kickstart?).
// f8'0000 — : 256kb Kickstart if 2.04 or higher.
// fc'0000 : 256kb Kickstart otherwise.
2021-11-29 21:55:45 +00:00
set_region(0xfc'0000, 0x1'00'0000, kickstart.data(), PermitRead);
2021-12-22 20:17:11 +00:00
switch(chip_ram_size) {
default:
case ChipRAM::FiveHundredAndTwelveKilobytes:
chip_ram.resize(512 * 1024);
break;
case ChipRAM::OneMegabyte:
chip_ram.resize(1 * 1024 * 1024);
break;
case ChipRAM::TwoMegabytes:
chip_ram.resize(2 * 1024 * 1024);
break;
}
2021-12-22 20:17:11 +00:00
switch(fast_ram_size) {
default:
fast_autoconf_visible_ = false;
break;
case FastRAM::OneMegabyte:
fast_ram_.resize(1 * 1024 * 1024);
fast_ram_size_ = 5;
break;
case FastRAM::TwoMegabytes:
fast_ram_.resize(2 * 1024 * 1024);
fast_ram_size_ = 6;
break;
case FastRAM::FourMegabytes:
fast_ram_.resize(4 * 1024 * 1024);
fast_ram_size_ = 7;
break;
case FastRAM::EightMegabytes:
fast_ram_.resize(8 * 1024 * 1024);
fast_ram_size_ = 0;
break;
}
reset();
}
void reset() {
set_overlay(true);
}
void set_overlay(bool enabled) {
if(overlay_ == enabled) {
return;
}
overlay_ = enabled;
2021-11-29 21:55:45 +00:00
set_region(0x00'0000, uint32_t(chip_ram.size()), chip_ram.data(), PermitReadWrite);
if(enabled) {
2021-11-29 21:55:45 +00:00
set_region(0x00'0000, 0x08'0000, kickstart.data(), PermitRead);
}
}
2021-12-22 20:17:11 +00:00
/// Performs the provided microcycle, which the caller guarantees to be a memory access,
/// and in the Zorro register range.
2023-05-10 22:13:01 +00:00
bool perform(const CPU::MC68000::Microcycle &cycle) {
2021-12-22 20:17:11 +00:00
if(!fast_autoconf_visible_) return false;
const uint32_t register_address = *cycle.address & 0xfe;
2023-05-10 22:13:01 +00:00
using Microcycle = CPU::MC68000::Microcycle;
2021-12-22 20:17:11 +00:00
if(cycle.operation & Microcycle::Read) {
// Re: Autoconf:
//
// "All read registers physically return only the top 4 bits of data, on D31-D28";
// (this is from Zorro III documentation; I'm assuming it to be D15D11 for the
// 68000's 16-bit bus);
//
// "Every AUTOCONFIG register is logically considered to be 8 bits wide; the
// 8 bits actually being nybbles from two paired addresses."
uint8_t value = 0xf;
switch(register_address) {
default: break;
case 0x00: // er_Type (high)
value =
0xc | // Zoro II-style PIC.
0x2; // Memory will be linked into the free pool
break;
case 0x02: // er_Type (low)
value = fast_ram_size_;
break;
// er_Manufacturer
//
// On the manufacturer number: this is supposed to be assigned
// by Commodore. TODO: find and crib a real fast RAM number, if it matters.
//
// (0xffff seems to be invalid, so _something_ needs to be supplied)
case 0x10: case 0x12:
value = 0xa; // Manufacturer's number, high byte.
break;
case 0x14: case 0x16:
value = 0xb; // Manufacturer's number, low byte.
break;
}
// Shove the value into the top of the data bus.
cycle.set_value16(uint16_t(0x0fff | (value << 12)));
} else {
fast_autoconf_visible_ &= !(register_address >= 0x4c && register_address < 0x50);
switch(register_address) {
default: break;
case 0x48: { // ec_BaseAddress (A23A16)
const auto address = uint32_t(cycle.value8_high()) << 16;
set_region(address, uint32_t(address + fast_ram_.size()), fast_ram_.data(), PermitRead | PermitWrite);
fast_autoconf_visible_ = false;
} break;
}
}
return true;
}
private:
2021-12-22 20:17:11 +00:00
std::vector<uint8_t> fast_ram_{};
uint8_t fast_ram_size_ = 0;
bool fast_autoconf_visible_ = true;
bool overlay_ = false;
2021-11-29 21:55:45 +00:00
void set_region(uint32_t start, uint32_t end, uint8_t *base, unsigned int read_write_mask) {
[[maybe_unused]] constexpr uint32_t precision_loss_mask = uint32_t(~0xfc'0000);
assert(!(start & precision_loss_mask));
assert(!((end - (1 << 18)) & precision_loss_mask));
assert(end > start);
2021-11-29 21:55:45 +00:00
if(base) base -= start;
for(decltype(start) c = start >> 18; c < end >> 18; c++) {
regions[c].contents = base;
regions[c].read_write_mask = read_write_mask;
}
}
};
}
#endif /* MemoryMap_hpp */