1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 00:30:31 +00:00
CLK/ClockReceiver/ClockReceiver.hpp

216 lines
6.4 KiB
C++
Raw Normal View History

//
// ClockReceiver.hpp
// Clock Signal
//
// Created by Thomas Harte on 22/07/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#ifndef ClockReceiver_hpp
#define ClockReceiver_hpp
/*
Informal pattern for all classes that run from a clock cycle:
Each will implement either or both of run_for(Cycles) and run_for(HalfCycles), as
is appropriate.
Callers that are accumulating HalfCycles but want to talk to receivers that implement
only run_for(Cycles) can use HalfCycle.flush_cycles if they have appropriate storage, or
can wrap the receiver in HalfClockReceiver in order automatically to bind half-cycle
storage to it.
Alignment rule:
run_for(Cycles) may be called only after an even number of half cycles. E.g. the following
sequence will have undefined results:
run_for(HalfCycles(1))
run_for(Cycles(1))
An easy way to ensure this as a caller is to pick only one of run_for(Cycles) and
run_for(HalfCycles) to use.
Reasoning:
Users of this template may with to implement run_for(Cycles) and run_for(HalfCycles)
where there is a need to implement at half-cycle precision but a faster execution
path can be offered for full-cycle precision. Those users are permitted to assume
phase in run_for(Cycles) and should do so to be compatible with callers that use
only run_for(Cycles).
Corollary:
Starting from nothing, the first run_for(HalfCycles(1)) will do the **first** half
of a full cycle. The second will do the second half. Etc.
*/
/*!
Provides a class that wraps a plain int, providing most of the basic arithmetic and
Boolean operators, but forcing callers and receivers to be explicit as to usage.
*/
template <class T> class WrappedInt {
public:
constexpr WrappedInt(int l) : length_(l) {}
constexpr WrappedInt() : length_(0) {}
2018-05-28 17:48:55 -04:00
T &operator =(const T &rhs) {
length_ = rhs.length_;
return *this;
}
2018-05-28 17:48:55 -04:00
T &operator +=(const T &rhs) {
length_ += rhs.length_;
return *static_cast<T *>(this);
}
2018-05-28 17:48:55 -04:00
T &operator -=(const T &rhs) {
length_ -= rhs.length_;
return *static_cast<T *>(this);
}
T &operator ++() {
++ length_;
return *static_cast<T *>(this);
}
T &operator ++(int) {
length_ ++;
return *static_cast<T *>(this);
}
T &operator --() {
-- length_;
return *static_cast<T *>(this);
}
T &operator --(int) {
length_ --;
return *static_cast<T *>(this);
}
T &operator %=(const T &rhs) {
length_ %= rhs.length_;
return *static_cast<T *>(this);
}
T &operator &=(const T &rhs) {
length_ &= rhs.length_;
return *static_cast<T *>(this);
}
constexpr T operator +(const T &rhs) const { return T(length_ + rhs.length_); }
constexpr T operator -(const T &rhs) const { return T(length_ - rhs.length_); }
constexpr T operator %(const T &rhs) const { return T(length_ % rhs.length_); }
constexpr T operator &(const T &rhs) const { return T(length_ & rhs.length_); }
constexpr T operator -() const { return T(- length_); }
constexpr bool operator <(const T &rhs) const { return length_ < rhs.length_; }
constexpr bool operator >(const T &rhs) const { return length_ > rhs.length_; }
constexpr bool operator <=(const T &rhs) const { return length_ <= rhs.length_; }
constexpr bool operator >=(const T &rhs) const { return length_ >= rhs.length_; }
constexpr bool operator ==(const T &rhs) const { return length_ == rhs.length_; }
constexpr bool operator !=(const T &rhs) const { return length_ != rhs.length_; }
constexpr bool operator !() const { return !length_; }
// bool operator () is not supported because it offers an implicit cast to int, which is prone silently to permit misuse
constexpr int as_int() const { return length_; }
/*!
Severs from @c this the effect of dividing by @c divisor; @c this will end up with
the value of @c this modulo @c divisor and @c divided by @c divisor is returned.
*/
T divide(const T &divisor) {
T result(length_ / divisor.length_);
length_ %= divisor.length_;
return result;
}
/*!
Flushes the value in @c this. The current value is returned, and the internal value
is reset to zero.
*/
T flush() {
T result(length_);
length_ = 0;
return result;
}
// operator int() is deliberately not provided, to avoid accidental subtitution of
// classes that use this template.
protected:
int length_;
};
/// Describes an integer number of whole cycles: pairs of clock signal transitions.
class Cycles: public WrappedInt<Cycles> {
public:
constexpr Cycles(int l) : WrappedInt<Cycles>(l) {}
constexpr Cycles() : WrappedInt<Cycles>() {}
constexpr Cycles(const Cycles &cycles) : WrappedInt<Cycles>(cycles.length_) {}
};
/// Describes an integer number of half cycles: single clock signal transitions.
class HalfCycles: public WrappedInt<HalfCycles> {
public:
constexpr HalfCycles(int l) : WrappedInt<HalfCycles>(l) {}
constexpr HalfCycles() : WrappedInt<HalfCycles>() {}
constexpr HalfCycles(const Cycles cycles) : WrappedInt<HalfCycles>(cycles.as_int() * 2) {}
constexpr HalfCycles(const HalfCycles &half_cycles) : WrappedInt<HalfCycles>(half_cycles.length_) {}
/// @returns The number of whole cycles completely covered by this span of half cycles.
constexpr Cycles cycles() const {
return Cycles(length_ >> 1);
}
2017-12-02 16:30:43 -05:00
/// Flushes the whole cycles in @c this, subtracting that many from the total stored here.
Cycles flush_cycles() {
Cycles result(length_ >> 1);
length_ &= 1;
return result;
}
2017-08-02 07:21:21 -04:00
2017-12-02 16:30:43 -05:00
/// Flushes the half cycles in @c this, returning the number stored and setting this total to zero.
HalfCycles flush() {
2017-12-02 16:30:43 -05:00
HalfCycles result(length_);
length_ = 0;
return result;
}
2017-08-02 07:21:21 -04:00
/*!
Severs from @c this the effect of dividing by @c divisor; @c this will end up with
2017-08-02 07:21:21 -04:00
the value of @c this modulo @c divisor and @c divided by @c divisor is returned.
*/
Cycles divide_cycles(const Cycles &divisor) {
2017-08-02 07:21:21 -04:00
HalfCycles half_divisor = HalfCycles(divisor);
Cycles result(length_ / half_divisor.length_);
length_ %= half_divisor.length_;
return result;
}
};
/*!
If a component implements only run_for(Cycles), an owner can wrap it in HalfClockReceiver
automatically to gain run_for(HalfCycles).
*/
template <class T> class HalfClockReceiver: public T {
public:
using T::T;
inline void run_for(const HalfCycles half_cycles) {
half_cycles_ += half_cycles;
T::run_for(half_cycles_.flush_cycles());
}
private:
HalfCycles half_cycles_;
};
#endif /* ClockReceiver_hpp */