1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-05 06:05:27 +00:00
CLK/Machines/AtariST/Video.cpp

441 lines
14 KiB
C++
Raw Normal View History

//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
#include "../../Outputs/Log.hpp"
#include <algorithm>
using namespace Atari::ST;
namespace {
/*!
Defines the line counts at which mode-specific events will occur:
vertical enable being set and being reset, and the line on which
the frame will end.
*/
struct VerticalParams {
const int set_enable;
const int reset_enable;
const int height;
} vertical_params[3] = {
{63, 263, 313}, // 47 rather than 63 on early machines.
{34, 234, 263},
{1, 401, 500} // 72 Hz mode: who knows?
};
/// @returns The correct @c VerticalParams for output at @c frequency.
const VerticalParams &vertical_parameters(FieldFrequency frequency) {
return vertical_params[int(frequency)];
}
/*!
Defines the horizontal counts at which mode-specific events will occur:
horizontal enable being set and being reset, blank being set and reset, and the
intended length of this ine.
The caller should:
* latch line length at cycle 54 (TODO: also for 72Hz mode?);
* at (line length - 50), start sync and reset enable (usually for the second time);
* at (line length - 10), disable sync.
*/
struct HorizontalParams {
const int set_enable;
const int reset_enable;
const int set_blank;
const int reset_blank;
const int length;
} modes[3] = {
{56*2, 376*2, 450*2, 28*2, 512*2},
{52*2, 372*2, 450*2, 24*2, 508*2},
{4*2, 164*2, 184*2, 2*2, 224*2}
};
const HorizontalParams &horizontal_parameters(FieldFrequency frequency) {
return modes[int(frequency)];
}
}
Video::Video() :
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4) {
2019-11-08 01:02:45 +00:00
crt_.set_visible_area(crt_.get_rect_for_area(43, 240, 220, 784, 4.0f / 3.0f));
}
void Video::set_ram(uint16_t *ram, size_t size) {
ram_ = ram;
}
void Video::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
void Video::run_for(HalfCycles duration) {
const auto horizontal_timings = horizontal_parameters(field_frequency_);
const auto vertical_timings = vertical_parameters(field_frequency_);
int integer_duration = int(duration.as_integral());
while(integer_duration) {
// Seed next event to end of line.
int next_event = line_length_;
// Check the explicitly-placed events.
if(horizontal_timings.reset_blank > x) next_event = std::min(next_event, horizontal_timings.reset_blank);
if(horizontal_timings.set_blank > x) next_event = std::min(next_event, horizontal_timings.set_blank);
if(horizontal_timings.reset_enable > x) next_event = std::min(next_event, horizontal_timings.reset_enable);
if(horizontal_timings.set_enable > x) next_event = std::min(next_event, horizontal_timings.set_enable);
// Check for events that are relative to existing latched state.
if(line_length_ - 50*2 > x) next_event = std::min(next_event, line_length_ - 50*2);
if(line_length_ - 10*2 > x) next_event = std::min(next_event, line_length_ - 10*2);
// Determine current output mode and number of cycles to output for.
const int run_length = std::min(integer_duration, next_event - x);
enum class OutputMode {
Sync, Blank, Border, Pixels
} output_mode;
if(horizontal_.sync || vertical_.sync) {
// Output sync.
output_mode = OutputMode::Sync;
} else if(horizontal_.blank || vertical_.blank) {
// Output blank.
output_mode = OutputMode::Blank;
} else if(!vertical_.enable) {
// There can be no pixels this line, just draw border.
output_mode = OutputMode::Border;
} else {
output_mode = horizontal_.enable ? OutputMode::Pixels : OutputMode::Border;
}
// Flush any lingering pixels.
if(
(pixel_buffer_.output_bpp != output_bpp_) || // Buffer is now of wrong density.
(output_mode != OutputMode::Pixels && pixel_buffer_.pixels_output)) { // Buffering has stopped for now.
pixel_buffer_.flush(crt_);
}
switch(output_mode) {
case OutputMode::Sync: crt_.output_sync(run_length); break;
case OutputMode::Blank:
data_latch_position_ = 0;
crt_.output_blank(run_length);
break;
case OutputMode::Border: {
2019-11-08 00:44:22 +00:00
if(!output_shifter_) {
output_border(run_length);
} else {
if(run_length < 32) {
shift_out(run_length); // TODO: this might end up overrunning.
2019-11-08 00:44:22 +00:00
if(!output_shifter_) pixel_buffer_.flush(crt_);
} else {
shift_out(32);
2019-11-08 00:44:22 +00:00
output_shifter_ = 0;
pixel_buffer_.flush(crt_);
output_border(run_length - 32);
}
}
} break;
default:
// There will be pixels this line, subject to the shifter pipeline.
// Divide into 8-[half-]cycle windows; at the start of each window fetch a word,
// and during the rest of the window, shift out.
int start_column = x >> 3;
const int end_column = (x + run_length) >> 3;
// Rules obeyed below:
//
// Video fetches occur as the first act of business in a column. Each
// fetch is then followed by 8 shift clocks. Whether or not the shifter
// was reloaded by the fetch depends on the FIFO.
if(start_column == end_column) {
shift_out(run_length);
} else {
// Continue the current column if partway across.
if(x&7) {
// If at least one column boundary is crossed, complete this column.
// Otherwise the run_length is clearly less than 8 and within this column,
// so go for the entirety of it.
shift_out(8 - (x & 7));
++start_column;
latch_word();
}
// Run for all columns that have their starts in this time period.
int complete_columns = end_column - start_column;
while(complete_columns--) {
shift_out(8);
latch_word();
}
// Output the start of the next column, if necessary.
if(start_column != end_column && (x + run_length) & 7) {
shift_out((x + run_length) & 7);
}
}
break;
}
// Check for whether line length should have been latched during this run.
if(x <= 54*2 && (x + run_length) > 54*2) line_length_ = horizontal_timings.length;
// Apply the next event.
x += run_length;
integer_duration -= run_length;
if(horizontal_timings.reset_blank == x) horizontal_.blank = false;
else if(horizontal_timings.set_blank == x) horizontal_.blank = true;
else if(horizontal_timings.reset_enable == x) horizontal_.enable = false;
else if(horizontal_timings.set_enable == x) horizontal_.enable = true;
else if(line_length_ - 50*2 == x) horizontal_.sync = true;
else if(line_length_ - 10*2 == x) horizontal_.sync = false;
// Check whether the terminating event was end-of-line; if so then advance
// the vertical bits of state.
if(x == line_length_) {
x = 0;
++y;
// Use vertical_parameters to get parameters for the current output frequency.
if(y == vertical_timings.set_enable) {
vertical_.enable = true;
} else if(y == vertical_timings.reset_enable) {
vertical_.enable = false;
} else if(y == vertical_timings.height) {
y = 0;
vertical_.sync = true;
current_address_ = base_address_ >> 1;
} else if(y == 3) {
vertical_.sync = false;
}
}
}
}
void Video::latch_word() {
data_latch_[data_latch_position_] = ram_[current_address_ & 262143];
++current_address_;
++data_latch_position_;
if(data_latch_position_ == 4) {
data_latch_position_ = 0;
2019-11-08 00:44:22 +00:00
output_shifter_ =
(uint64_t(data_latch_[0]) << 48) |
(uint64_t(data_latch_[1]) << 32) |
(uint64_t(data_latch_[2]) << 16) |
uint64_t(data_latch_[3]);
}
}
void Video::shift_out(int length) {
if(!pixel_buffer_.pixel_pointer) pixel_buffer_.allocate(crt_);
pixel_buffer_.cycles_output += length;
switch(output_bpp_) {
case OutputBpp::One: {
int pixels = length << 1;
pixel_buffer_.pixels_output += pixels;
if(pixel_buffer_.pixel_pointer) {
while(pixels--) {
2019-11-08 00:44:22 +00:00
*pixel_buffer_.pixel_pointer = ((output_shifter_ >> 63) & 1) * 0xffff;
output_shifter_ <<= 1;
++pixel_buffer_.pixel_pointer;
}
} else {
2019-11-08 00:44:22 +00:00
output_shifter_ <<= pixels;
}
} break;
case OutputBpp::Two:
pixel_buffer_.pixels_output += length;
if(pixel_buffer_.pixel_pointer) {
while(length--) {
*pixel_buffer_.pixel_pointer = palette_[
2019-11-08 00:44:22 +00:00
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2)
];
2019-11-07 04:25:36 +00:00
// This ensures that the top two words shift one to the left;
// their least significant bits are fed from the most significant bits
// of the bottom two words, respectively.
2019-11-08 00:44:22 +00:00
shifter_halves_[1] = (shifter_halves_[1] << 1) & 0xfffefffe;
shifter_halves_[1] |= (shifter_halves_[0] & 0x80008000) >> 15;
shifter_halves_[0] = (shifter_halves_[0] << 1) & 0xfffefffe;
2019-11-07 04:25:36 +00:00
++pixel_buffer_.pixel_pointer;
}
} else {
while(length--) {
2019-11-08 00:44:22 +00:00
shifter_halves_[1] = (shifter_halves_[1] << 1) & 0xfffefffe;
shifter_halves_[1] |= (shifter_halves_[0] & 0x80008000) >> 15;
shifter_halves_[0] = (shifter_halves_[0] << 1) & 0xfffefffe;
}
}
break;
default:
case OutputBpp::Four:
pixel_buffer_.pixels_output += length >> 1;
if(pixel_buffer_.pixel_pointer) {
while(length) {
*pixel_buffer_.pixel_pointer = palette_[
2019-11-08 00:44:22 +00:00
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2) |
((output_shifter_ >> 29) & 4) |
((output_shifter_ >> 12) & 8)
];
2019-11-08 00:44:22 +00:00
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
++pixel_buffer_.pixel_pointer;
length -= 2;
}
} else {
while(length) {
2019-11-08 00:44:22 +00:00
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
length -= 2;
}
}
break;
}
// Check for buffer being full. Buffers are allocated as 328 pixels, and this method is
// never called for more than 8 pixels, so there's no chance of overrun.
if(pixel_buffer_.pixels_output >= 320) pixel_buffer_.flush(crt_);
}
void Video::output_border(int duration) {
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = palette_[0];
crt_.output_level(duration);
}
2019-10-09 02:29:58 +00:00
bool Video::hblank() {
return horizontal_.blank;
2019-10-09 02:29:58 +00:00
}
bool Video::vsync() {
return vertical_.sync;
2019-10-09 02:29:58 +00:00
}
bool Video::display_enabled() {
return horizontal_.enable && vertical_.enable;
2019-10-09 02:29:58 +00:00
}
HalfCycles Video::get_next_sequence_point() {
// The next sequence point will be whenever display_enabled, vsync or hsync next changes.
// Sequence of events within a line:
//
// 1) blank disabled;
// 2) de enabled;
// 3) de disabled;
// 4) blank enabled;
// 5) end-of-line, potential vertical event.
const auto horizontal_timings = horizontal_parameters(field_frequency_);
// Test for end of blank.
if(x < horizontal_timings.reset_blank) return HalfCycles(horizontal_timings.reset_blank - x);
// If this is a vertically-enabled line, check for the display enable boundaries.
if(vertical_.enable) {
if(x < horizontal_timings.set_enable) return HalfCycles(horizontal_timings.set_enable - x);
if(x < horizontal_timings.reset_enable) return HalfCycles(horizontal_timings.reset_enable - x);
2019-10-09 02:29:58 +00:00
}
// Test for beginning of blank.
if(x < horizontal_timings.set_blank) return HalfCycles(horizontal_timings.set_blank - x);
2019-10-09 02:29:58 +00:00
// Okay, then, it depends on the next line. If the next line is the start or end of vertical sync,
// it's that.
const auto vertical_timings = horizontal_parameters(field_frequency_);
if(y+1 == vertical_timings.length || y+1 == 3) return HalfCycles(line_length_ - x);
2019-10-09 02:29:58 +00:00
// It wasn't any of those, so it's blank disabled on the next line.
return HalfCycles(line_length_ + horizontal_timings.reset_blank - x);
2019-10-09 02:29:58 +00:00
}
// MARK: - IO dispatch
uint16_t Video::read(int address) {
2019-11-08 04:11:06 +00:00
// LOG("[Video] read " << PADHEX(2) << (address & 0x3f));
address &= 0x3f;
switch(address) {
2019-10-28 02:39:00 +00:00
default:
break;
case 0x00: return uint16_t(0xff00 | (base_address_ >> 16));
case 0x01: return uint16_t(0xff00 | (base_address_ >> 8));
case 0x02: return uint16_t(0xff00 | (current_address_ >> 16));
case 0x03: return uint16_t(0xff00 | (current_address_ >> 8));
case 0x04: return uint16_t(0xff00 | (current_address_));
2019-11-08 04:11:06 +00:00
case 0x05: return sync_mode_ | 0xfcff;
case 0x30: return video_mode_ | 0xfcff;
2019-11-08 04:11:06 +00:00
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: return raw_palette_[address - 0x20];
}
return 0xff;
}
void Video::write(int address, uint16_t value) {
2019-11-08 04:11:06 +00:00
// LOG("[Video] write " << PADHEX(2) << int(value) << " to " << PADHEX(2) << (address & 0x3f));
address &= 0x3f;
switch(address) {
default: break;
// Start address.
case 0x00: base_address_ = (base_address_ & 0x00ffff) | ((value & 0xff) << 16); break;
case 0x01: base_address_ = (base_address_ & 0xff00ff) | ((value & 0xff) << 8); break;
// Sync mode and pixel mode.
case 0x05:
sync_mode_ = value;
update_output_mode();
break;
case 0x30:
video_mode_ = value;
update_output_mode();
break;
2019-10-28 02:39:00 +00:00
// Palette.
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: {
2019-11-08 04:11:06 +00:00
raw_palette_[address - 0x20] = value;
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[address - 0x20]);
entry[0] = uint8_t((value & 0x700) >> 7);
entry[1] = uint8_t((value & 0x77) << 1);
} break;
}
}
void Video::update_output_mode() {
// If this is black and white mode, that's that.
switch((video_mode_ >> 8) & 3) {
default:
case 0: output_bpp_ = OutputBpp::Four; break;
case 1: output_bpp_ = OutputBpp::Two; break;
// 1bpp mode ignores the otherwise-programmed frequency.
case 2:
output_bpp_ = OutputBpp::One;
field_frequency_ = FieldFrequency::SeventyTwo;
return;
}
field_frequency_ = (sync_mode_ & 0x200) ? FieldFrequency::Fifty : FieldFrequency::Sixty;
}