1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-03 08:05:40 +00:00
CLK/Machines/Electron/Electron.cpp

440 lines
12 KiB
C++
Raw Normal View History

//
// Electron.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/01/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Electron.hpp"
#include <algorithm>
using namespace Electron;
static const int cycles_per_line = 128;
static const int cycles_per_frame = 312*cycles_per_line;
static const int crt_cycles_multiplier = 8;
static const int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line;
Machine::Machine() :
_interruptControl(0),
_frameCycles(0),
_outputPosition(0),
_currentOutputLine(0)
{
2016-01-12 00:48:31 +00:00
memset(_keyStates, 0, sizeof(_keyStates));
memset(_palette, 0xf, sizeof(_palette));
_crt = new Outputs::CRT(crt_cycles_per_line, 312, 1, 1);
_interruptStatus = 0x02;
setup6502();
}
Machine::~Machine()
{
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
{
unsigned int cycles = 1;
if(address < 0x8000)
{
if(isReadOperation(operation))
{
*value = _ram[address];
}
else
{
_ram[address] = *value;
// TODO: range check on address; a lot of the time the machine will be running code outside of
// the screen area, meaning that no update is required.
// if (address
update_display();
}
// TODO: RAM timing for Modes 03
cycles += (_frameCycles&1)^1;
}
else
{
if(address >= 0xc000)
{
if((address & 0xff00) == 0xfe00)
{
// printf("%c: %02x: ", isReadOperation(operation) ? 'r' : 'w', *value);
switch(address&0xf)
{
case 0x0:
if(isReadOperation(operation))
{
*value = _interruptStatus;
_interruptStatus &= ~0x02;
}
else
{
_interruptControl = *value;
evaluate_interrupts();
}
break;
case 0x1:
break;
case 0x2:
2016-01-10 03:52:08 +00:00
_startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
break;
case 0x3:
2016-01-10 03:52:08 +00:00
_startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
break;
case 0x4:
printf("Cassette\n");
break;
case 0x5:
if(!isReadOperation(operation))
{
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable )
{
if( interruptDisable&0x10 ) _interruptStatus &= ~InterruptDisplayEnd;
if( interruptDisable&0x20 ) _interruptStatus &= ~InterruptRealTimeClock;
if( interruptDisable&0x40 ) _interruptStatus &= ~InterruptHighToneDetect;
evaluate_interrupts();
// TODO: NMI (?)
}
// else
{
uint8_t nextROM = (*value)&0xf;
// if(nextROM&0x08)
// {
// _activeRom = (Electron::ROMSlot)(nextROM&0x0e);
// printf("%d -> Paged %d\n", nextROM, _activeRom);
// }
if(((_activeRom&12) != 8) || (nextROM&8))
{
_activeRom = (Electron::ROMSlot)nextROM;
}
// else
// {
// printf("Ignored!");
// }
// printf("%d -> Paged %d\n", nextROM, _activeRom);
}
}
break;
case 0x6:
printf("Counter\n");
break;
case 0x7:
if(!isReadOperation(operation))
{
_screenMode = ((*value) >> 3)&7;
if(_screenMode == 7) _screenMode = 4;
switch(_screenMode)
{
case 0: case 1: case 2: _screenModeBaseAddress = 0x3000; break;
case 3: _screenModeBaseAddress = 0x4000; break;
case 4: case 5: _screenModeBaseAddress = 0x5800; break;
case 6: _screenModeBaseAddress = 0x6000; break;
}
printf("Misc. control\n");
}
break;
default:
{
if(!isReadOperation(operation))
{
update_display();
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~(*value);
if(address&1)
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&3) | ((colour >> 1)&4);
_palette[registers[index][1]] = (_palette[registers[index][1]]&3) | ((colour >> 0)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&3) | ((colour << 1)&4);
_palette[registers[index][3]] = (_palette[registers[index][3]]&3) | ((colour << 2)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&5) | ((colour >> 4)&2);
_palette[registers[index][3]] = (_palette[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&6) | ((colour >> 7)&1);
_palette[registers[index][1]] = (_palette[registers[index][1]]&6) | ((colour >> 6)&1);
_palette[registers[index][2]] = (_palette[registers[index][2]]&6) | ((colour >> 5)&1);
_palette[registers[index][3]] = (_palette[registers[index][3]]&6) | ((colour >> 4)&1);
_palette[registers[index][0]] = (_palette[registers[index][0]]&5) | ((colour >> 2)&2);
_palette[registers[index][1]] = (_palette[registers[index][1]]&5) | ((colour >> 1)&2);
}
}
}
break;
}
}
else
{
if(isReadOperation(operation))
*value = _os[address & 16383];
}
}
else
{
if(isReadOperation(operation))
{
switch(_activeRom)
{
case ROMSlotBASIC:
case ROMSlotBASIC+1:
*value = _basic[address & 16383];
break;
case ROMSlotKeyboard:
case ROMSlotKeyboard+1:
*value = 0xf0;
2016-01-12 00:48:31 +00:00
for(int address_line = 0; address_line < 14; address_line++)
{
if(!(address&(1 << address_line))) *value |= _keyStates[address_line];
}
break;
default:
*value = 0xff;
break;
}
}
}
}
// if(operation == CPU6502::BusOperation::ReadOpcode)
// {
// printf("%04x: %02x (%d)\n", address, *value, _frameCycles);
// }
_frameCycles += cycles;
if(_frameCycles == cycles_per_frame)
{
update_display();
_frameCycles = 0;
2016-01-11 04:32:57 +00:00
_outputPosition = 0;
_currentOutputLine = 0;
}
if(_frameCycles == 128*128) signal_interrupt(InterruptRealTimeClock);
if(_frameCycles == 284*128) signal_interrupt(InterruptDisplayEnd);
return cycles;
}
void Machine::set_rom(ROMSlot slot, size_t length, const uint8_t *data)
{
uint8_t *target = nullptr;
switch(slot)
{
case ROMSlotBASIC: target = _basic; break;
case ROMSlotOS: target = _os; break;
default: return;
}
memcpy(target, data, std::min((size_t)16384, length));
}
inline void Machine::signal_interrupt(Electron::Interrupt interrupt)
{
_interruptStatus |= interrupt;
evaluate_interrupts();
}
inline void Machine::evaluate_interrupts()
{
if(_interruptStatus & _interruptControl)
{
_interruptStatus |= 1;
}
else
{
_interruptStatus &= ~1;
}
set_irq_line(_interruptStatus & 1);
}
inline void Machine::update_display()
{
const int lines_of_hsync = 3;
const int end_of_hsync = lines_of_hsync * cycles_per_line;
const int first_graphics_line = 28;
if(_frameCycles >= end_of_hsync)
{
// assert sync for the first three lines of the display, with a break at the end for horizontal alignment
if(_outputPosition < end_of_hsync)
{
for(int c = 0; c < lines_of_hsync; c++)
{
2016-01-10 02:54:31 +00:00
_crt->output_sync(119 * crt_cycles_multiplier);
_crt->output_blank(9 * crt_cycles_multiplier);
}
_outputPosition = end_of_hsync;
}
while(_outputPosition >= end_of_hsync && _outputPosition < _frameCycles)
{
const int current_line = _outputPosition >> 7;
const int line_position = _outputPosition & 127;
// all lines then start with 9 cycles of sync
if(!line_position)
{
_crt->output_sync(9 * crt_cycles_multiplier);
_outputPosition += 9;
}
else
{
bool isBlankLine =
((_screenMode == 3) || (_screenMode == 6)) ?
((current_line < first_graphics_line || current_line >= first_graphics_line+248) || (((current_line - first_graphics_line)%10) > 7)) :
((current_line < first_graphics_line || current_line >= first_graphics_line+256));
if(isBlankLine)
{
if(line_position == 9)
{
_crt->output_blank(119 * crt_cycles_multiplier);
2016-01-11 04:32:57 +00:00
_outputPosition += 119;
}
}
else
{
// there are then 15 cycles of blank, 80 cycles of pixels, and 24 further cycles of blank
if(line_position == 9)
{
_crt->output_blank(15 * crt_cycles_multiplier);
_outputPosition += 15;
_crt->allocate_write_area(80 * crt_cycles_multiplier);
_currentLine = (uint8_t *)_crt->get_write_target_for_buffer(0);
if(current_line == first_graphics_line)
_startLineAddress = _startScreenAddress;
_currentScreenAddress = _startLineAddress;
}
if(line_position >= 24 && line_position < 104)
{
if(_currentLine && ((_screenMode < 4) || !(line_position&1)))
{
if(_currentScreenAddress&32768)
{
_currentScreenAddress = _screenModeBaseAddress + (_currentScreenAddress&32767);
}
uint8_t pixels = _ram[_currentScreenAddress];
_currentScreenAddress = _currentScreenAddress+8;
int output_ptr = (line_position - 24) << 3;
switch(_screenMode)
{
case 0:
case 3:
for(int c = 0; c < 8; c++)
{
uint8_t colour = (pixels&0x80) >> 4;
_currentLine[output_ptr + c] = _palette[colour];
pixels <<= 1;
}
break;
case 1:
for(int c = 0; c < 8; c += 2)
{
uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x08) >> 2);
_currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] = _palette[colour];
pixels <<= 1;
}
break;
case 2:
for(int c = 0; c < 8; c += 4)
{
uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x20) >> 3) | ((pixels&0x08) >> 2) | ((pixels&0x02) >> 1);
_currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] =
_currentLine[output_ptr + c + 2] = _currentLine[output_ptr + c + 3] = _palette[colour];
pixels <<= 1;
}
break;
case 5:
for(int c = 0; c < 16; c += 4)
{
uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x08) >> 2);
_currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] =
_currentLine[output_ptr + c + 2] = _currentLine[output_ptr + c + 3] = _palette[colour];
pixels <<= 1;
}
break;
default:
case 4:
case 6:
for(int c = 0; c < 16; c += 2)
{
uint8_t colour = (pixels&0x80) >> 4;
_currentLine[output_ptr + c] = _currentLine[output_ptr + c + 1] = _palette[colour];
pixels <<= 1;
}
break;
}
}
_outputPosition++;
}
if(line_position == 104)
{
_currentOutputLine++;
if(!(_currentOutputLine&7))
{
_startLineAddress += ((_screenMode < 4) ? 80 : 40)*8 - 7;
}
else
_startLineAddress++;
_currentLine = nullptr;
_crt->output_data(80 * crt_cycles_multiplier);
_crt->output_blank(24 * crt_cycles_multiplier);
_outputPosition += 24;
}
}
}
}
}
}
const char *Machine::get_signal_decoder()
{
return
"vec4 sample(vec2 coordinate)\n"
"{\n"
2016-01-11 04:32:57 +00:00
"float texValue = texture(texID, srcCoordinatesVarying).r;\n"
"return vec4( step(4.0/256.0, mod(texValue, 8.0/256.0)), step(2.0/256.0, mod(texValue, 4.0/256.0)), step(1.0/256.0, mod(texValue, 2.0/256.0)), 1.0);\n"
"}";
}
2016-01-12 00:48:31 +00:00
void Machine::set_key_state(Key key, bool isPressed)
{
if(key == KeyBreak)
{
set_reset_line(isPressed);
}
else
{
if(isPressed)
_keyStates[key >> 4] |= key&0xf;
else
_keyStates[key >> 4] &= ~(key&0xf);
}
}