1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 05:31:30 +00:00
CLK/SignalProcessing/FIRFilter.cpp

143 lines
4.3 KiB
C++
Raw Normal View History

//
// LinearFilter.c
// Clock Signal
//
// Created by Thomas Harte on 01/10/2011.
// Copyright 2011 Thomas Harte. All rights reserved.
//
#include "FIRFilter.hpp"
#include <math.h>
using namespace SignalProcessing;
/*
A Kaiser-Bessel filter is a real time window filter. It looks at the last n samples
of an incoming data source and computes a filtered value, which is the value you'd
get after applying the specified filter, at the centre of the sampling window.
Hence, if you request a 37 tap filter then filtering introduces a latency of 18
samples. Suppose you're receiving input at 44,100Hz and using 4097 taps, then you'll
introduce a latency of 2048 samples, which is about 46ms.
There's a correlation between the number of taps and the quality of the filtering.
More samples = better filtering, at the cost of greater latency. Internally, applying
the filter involves calculating a weighted sum of previous values, so increasing the
number of taps is quite cheap in processing terms.
Original source for this filter:
"DIGITAL SIGNAL PROCESSING, II", IEEE Press, pages 123126.
*/
// our little fixed point scheme
#define kCSKaiserBesselFilterFixedMultiplier 32767.0f
#define kCSKaiserBesselFilterFixedShift 15
2017-03-26 14:34:47 -04:00
/*! Evaluates the 0th order Bessel function at @c a. */
float FIRFilter::ino(float a) {
float d = 0.0f;
float ds = 1.0f;
float s = 1.0f;
2017-03-26 14:34:47 -04:00
do {
d += 2.0f;
ds *= (a * a) / (d * d);
s += ds;
2017-03-26 14:34:47 -04:00
} while(ds > s*1e-6f);
return s;
}
2017-03-26 14:34:47 -04:00
void FIRFilter::coefficients_for_idealised_filter_response(short *filterCoefficients, float *A, float attenuation, unsigned int numberOfTaps) {
/* calculate alpha, which is the Kaiser-Bessel window shape factor */
float a; // to take the place of alpha in the normal derivation
2017-03-26 14:34:47 -04:00
if(attenuation < 21.0f) {
a = 0.0f;
2017-03-26 14:34:47 -04:00
} else {
if(attenuation > 50.0f)
a = 0.1102f * (attenuation - 8.7f);
else
a = 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f);
}
float *filterCoefficientsFloat = new float[numberOfTaps];
/* work out the right hand side of the filter coefficients */
unsigned int Np = (numberOfTaps - 1) / 2;
float I0 = ino(a);
float NpSquared = (float)(Np * Np);
2017-03-26 14:34:47 -04:00
for(unsigned int i = 0; i <= Np; i++) {
filterCoefficientsFloat[Np + i] =
A[i] *
ino(a * sqrtf(1.0f - ((float)(i * i) / NpSquared) )) /
I0;
}
/* coefficients are symmetrical, so copy from right hand side to left side */
2017-03-26 14:34:47 -04:00
for(unsigned int i = 0; i < Np; i++) {
filterCoefficientsFloat[i] = filterCoefficientsFloat[numberOfTaps - 1 - i];
}
/* scale back up so that we retain 100% of input volume */
float coefficientTotal = 0.0f;
2017-03-26 14:34:47 -04:00
for(unsigned int i = 0; i < numberOfTaps; i++) {
coefficientTotal += filterCoefficientsFloat[i];
}
/* we'll also need integer versions, potentially */
float coefficientMultiplier = 1.0f / coefficientTotal;
2017-03-26 14:34:47 -04:00
for(unsigned int i = 0; i < numberOfTaps; i++) {
filterCoefficients[i] = (short)(filterCoefficientsFloat[i] * kCSKaiserBesselFilterFixedMultiplier * coefficientMultiplier);
}
delete[] filterCoefficientsFloat;
}
2017-03-26 14:34:47 -04:00
void FIRFilter::get_coefficients(float *coefficients) {
for(unsigned int i = 0; i < number_of_taps_; i++) {
coefficients[i] = (float)filter_coefficients_[i] / kCSKaiserBesselFilterFixedMultiplier;
}
}
2017-03-26 14:34:47 -04:00
FIRFilter::FIRFilter(unsigned int number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation) {
// we must be asked to filter based on an odd number of
// taps, and at least three
if(number_of_taps < 3) number_of_taps = 3;
if(attenuation < 21.0f) attenuation = 21.0f;
// ensure we have an odd number of taps
number_of_taps |= 1;
// store instance variables
number_of_taps_ = number_of_taps;
filter_coefficients_ = new short[number_of_taps_];
/* calculate idealised filter response */
unsigned int Np = (number_of_taps - 1) / 2;
float twoOverSampleRate = 2.0f / input_sample_rate;
float *A = new float[Np+1];
A[0] = 2.0f * (high_frequency - low_frequency) / input_sample_rate;
2017-03-26 14:34:47 -04:00
for(unsigned int i = 1; i <= Np; i++) {
float iPi = (float)i * (float)M_PI;
A[i] =
(
sinf(twoOverSampleRate * iPi * high_frequency) -
sinf(twoOverSampleRate * iPi * low_frequency)
) / iPi;
}
FIRFilter::coefficients_for_idealised_filter_response(filter_coefficients_, A, attenuation, number_of_taps_);
/* clean up */
delete[] A;
}
2017-03-26 14:34:47 -04:00
FIRFilter::~FIRFilter() {
delete[] filter_coefficients_;
}