1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-26 11:29:09 +00:00
CLK/Machines/Sinclair/ZXSpectrum/Video.hpp

385 lines
12 KiB
C++
Raw Normal View History

2021-03-18 16:47:48 +00:00
//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 18/03/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#ifndef Video_hpp
#define Video_hpp
2021-03-19 01:54:42 +00:00
#include "../../../Outputs/CRT/CRT.hpp"
2021-03-19 01:29:52 +00:00
#include "../../../ClockReceiver/ClockReceiver.hpp"
2021-03-19 02:29:24 +00:00
#include <algorithm>
2021-03-18 16:47:48 +00:00
namespace Sinclair {
namespace ZXSpectrum {
enum class VideoTiming {
Plus3
};
2021-03-19 01:29:52 +00:00
/*
Timing notes:
As of the +2a/+3:
311 lines, 228 cycles/line
Delays begin at 14361, follow the pattern 1, 0, 7, 6, 5, 4, 3, 2; run for 129 cycles/line.
Possibly delays only affect actual reads and writes; documentation is unclear.
Unknowns, to me, presently:
How long the interrupt line held for.
So...
Probably two bytes of video and attribute are fetched in each 8-cycle block,
with 16 such blocks therefore providing the whole visible display, an island
within 28.5 blocks horizontally.
14364 is 228*63, so I I guess almost 63 lines run from the start of vertical
blank through to the top of the display, implying 56 lines on to vertical blank.
*/
2021-03-18 16:47:48 +00:00
template <VideoTiming timing> class Video {
2021-03-19 01:29:52 +00:00
private:
struct Timings {
// Number of cycles per line. Will be 224 or 228.
2021-03-19 01:29:52 +00:00
int cycles_per_line;
// Number of lines comprising a whole frame. Will be 311 or 312.
2021-03-19 01:29:52 +00:00
int lines_per_frame;
// Number of cycles after first pixel fetch at which interrupt is first signalled.
int interrupt_time;
// Number of cycles before first pixel fetch that contention starts to be applied.
int contention_leadin;
// Period in a line for which contention is applied.
int contention_duration;
// Contention to apply, in half-cycles, as a function of number of half cycles since
// contention began.
2021-03-19 01:29:52 +00:00
int delays[16];
};
static constexpr Timings get_timings() {
// Amstrad gate array timings, classic statement:
//
// Contention begins 14361 cycles "after interrupt" and follows the pattern [1, 0, 7, 6 5 4, 3, 2].
// The first four bytes of video are fetched at 1436514368 cycles, in the order [pixels, attribute, pixels, attribute].
//
// For my purposes:
//
// Video fetching always begins at 0. Since there are 311*228 = 70908 cycles per frame, and the interrupt
// should "occur" (I assume: begin) 14365 before that, it should actually begin at 70908 - 14365 = 56543.
//
// Contention begins four cycles before the first video fetch, so it begins at 70904. I don't currently
// know whether the four cycles is true across all models, so it's given here as convention_leadin.
2021-03-23 03:20:49 +00:00
//
// ... except that empirically that all seems to be two cycles off. So maybe I misunderstand what the
// contention patterns are supposed to indicate relative to MREQ? It's frustrating that all documentation
// I can find is vaguely in terms of contention patterns, and what they mean isn't well-defined in terms
// of regular Z80 signalling.
2021-03-19 01:29:52 +00:00
constexpr Timings result = {
.cycles_per_line = 228 * 2,
.lines_per_frame = 311,
2021-03-23 03:20:49 +00:00
.interrupt_time = 56545 * 2,
2021-03-23 03:20:49 +00:00
.contention_leadin = 2 * 2, // TODO: is this 2? Or 4? Or... ?
.contention_duration = 129 * 2,
2021-03-19 01:29:52 +00:00
.delays = {
2, 1,
0, 0,
14, 13,
12, 11,
10, 9,
8, 7,
6, 5,
4, 3,
}
};
return result;
}
// TODO: how long is the interrupt line held for?
static constexpr int interrupt_duration = 48;
2021-03-19 01:29:52 +00:00
public:
void run_for(HalfCycles duration) {
constexpr auto timings = get_timings();
constexpr int sync_line = (timings.interrupt_time / timings.cycles_per_line) + 1;
constexpr int sync_position = 166 * 2;
constexpr int sync_length = 17 * 2;
constexpr int burst_position = sync_position + 40;
constexpr int burst_length = 17;
2021-03-19 02:29:24 +00:00
int cycles_remaining = duration.as<int>();
while(cycles_remaining) {
int line = time_into_frame_ / timings.cycles_per_line;
int offset = time_into_frame_ % timings.cycles_per_line;
2021-03-19 02:29:24 +00:00
const int cycles_this_line = std::min(cycles_remaining, timings.cycles_per_line - offset);
const int end_offset = offset + cycles_this_line;
if(!offset) {
is_alternate_line_ ^= true;
if(!line) {
flash_counter_ = (flash_counter_ + 1) & 31;
flash_mask_ = uint8_t(flash_counter_ >> 4);
}
}
if(line >= sync_line && line < sync_line + 3) {
2021-03-19 02:29:24 +00:00
// Output sync line.
crt_.output_sync(cycles_this_line);
} else {
if(line >= 192) {
2021-03-22 00:34:58 +00:00
// Output plain border line.
if(offset < sync_position) {
const int border_duration = std::min(sync_position, end_offset) - offset;
output_border(border_duration);
offset += border_duration;
}
} else {
// Output pixel line.
if(offset < 256) {
const int pixel_duration = std::min(256, end_offset) - offset;
2021-03-19 02:57:10 +00:00
2021-03-22 00:34:58 +00:00
if(!offset) {
pixel_target_ = crt_.begin_data(256);
attribute_address_ = ((line >> 3) << 5) + 6144;
pixel_address_ = ((line & 0x07) << 8) | ((line & 0x38) << 2) | ((line & 0xc0) << 5);
2021-03-22 00:34:58 +00:00
}
if(pixel_target_) {
const int start_column = offset >> 4;
const int end_column = (offset + pixel_duration) >> 4;
2021-03-22 00:34:58 +00:00
for(int column = start_column; column < end_column; column++) {
last_fetches_[0] = memory_[pixel_address_];
last_fetches_[1] = memory_[attribute_address_];
last_fetches_[2] = memory_[pixel_address_+1];
last_fetches_[3] = memory_[attribute_address_+1];
pixel_address_ += 2;
attribute_address_ += 2;
2021-03-22 00:34:58 +00:00
constexpr uint8_t masks[] = {0, 0xff};
#define Output(n) \
{ \
const uint8_t pixels = \
uint8_t(last_fetches_[n] ^ masks[flash_mask_ & (last_fetches_[n+1] >> 7)]); \
\
const uint8_t colours[2] = { \
palette[(last_fetches_[n+1] & 0x78) >> 3], \
palette[((last_fetches_[n+1] & 0x40) >> 3) | (last_fetches_[n+1] & 0x07)], \
}; \
\
pixel_target_[0] = colours[(pixels >> 7) & 1]; \
pixel_target_[1] = colours[(pixels >> 6) & 1]; \
pixel_target_[2] = colours[(pixels >> 5) & 1]; \
pixel_target_[3] = colours[(pixels >> 4) & 1]; \
pixel_target_[4] = colours[(pixels >> 3) & 1]; \
pixel_target_[5] = colours[(pixels >> 2) & 1]; \
pixel_target_[6] = colours[(pixels >> 1) & 1]; \
pixel_target_[7] = colours[(pixels >> 0) & 1]; \
pixel_target_ += 8; \
}
Output(0);
Output(2);
#undef Output
2021-03-22 00:34:58 +00:00
}
}
2021-03-19 02:57:10 +00:00
2021-03-22 00:34:58 +00:00
offset += pixel_duration;
if(offset == 256) {
crt_.output_data(256);
pixel_target_ = nullptr;
2021-03-19 02:57:10 +00:00
}
}
2021-03-22 00:34:58 +00:00
if(offset >= 256 && offset < sync_position && end_offset > offset) {
const int border_duration = std::min(sync_position, end_offset) - offset;
output_border(border_duration);
offset += border_duration;
2021-03-19 02:57:10 +00:00
}
}
2021-03-22 00:34:58 +00:00
// Output the common tail to border and pixel lines: sync, blank, colour burst, border.
2021-03-22 00:34:58 +00:00
if(offset >= sync_position && offset < sync_position + sync_length && end_offset > offset) {
const int sync_duration = std::min(sync_position + sync_length, end_offset) - offset;
crt_.output_sync(sync_duration);
offset += sync_duration;
}
if(offset >= sync_position + sync_length && offset < burst_position && end_offset > offset) {
const int blank_duration = std::min(burst_position, end_offset) - offset;
crt_.output_blank(blank_duration);
offset += blank_duration;
}
if(offset >= burst_position && offset < burst_position+burst_length && end_offset > offset) {
const int burst_duration = std::min(burst_position + burst_length, end_offset) - offset;
crt_.output_colour_burst(burst_duration, 116, is_alternate_line_);
offset += burst_duration;
// The colour burst phase above is an empirical guess. I need to research further.
}
2021-03-22 00:34:58 +00:00
if(offset >= burst_position+burst_length && end_offset > offset) {
const int border_duration = end_offset - offset;
output_border(border_duration);
}
}
2021-03-19 02:29:24 +00:00
cycles_remaining -= cycles_this_line;
time_into_frame_ = (time_into_frame_ + cycles_this_line) % (timings.cycles_per_line * timings.lines_per_frame);
2021-03-19 02:29:24 +00:00
}
2021-03-19 01:29:52 +00:00
}
private:
2021-03-19 02:29:24 +00:00
void output_border(int duration) {
uint8_t *const colour_pointer = crt_.begin_data(1);
if(colour_pointer) *colour_pointer = border_colour_;
crt_.output_level(duration);
}
2021-03-19 01:29:52 +00:00
public:
2021-03-19 01:54:42 +00:00
Video() :
2021-03-19 02:57:10 +00:00
crt_(227 * 2, 2, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red2Green2Blue2)
2021-03-19 01:54:42 +00:00
{
// Show only the centre 80% of the TV frame.
crt_.set_display_type(Outputs::Display::DisplayType::RGB);
crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.1f, 0.8f, 0.8f));
}
2021-03-19 01:29:52 +00:00
void set_video_source(const uint8_t *source) {
memory_ = source;
}
/*!
@returns The amount of time until the next change in the interrupt line, that being the only internally-observeable output.
*/
2021-03-19 01:29:52 +00:00
HalfCycles get_next_sequence_point() {
constexpr auto timings = get_timings();
// Is the frame still ahead of this interrupt?
if(time_into_frame_ < timings.interrupt_time) {
return HalfCycles(timings.interrupt_time - time_into_frame_);
2021-03-19 01:29:52 +00:00
}
// If not, is it within this interrupt?
if(time_into_frame_ < timings.interrupt_time + interrupt_duration) {
return HalfCycles(timings.interrupt_time + interrupt_duration - time_into_frame_);
}
// If not, it'll be in the next batch.
return timings.interrupt_time + timings.cycles_per_line * timings.lines_per_frame - time_into_frame_;
2021-03-19 01:29:52 +00:00
}
/*!
@returns The current state of the interrupt output.
*/
2021-03-19 01:29:52 +00:00
bool get_interrupt_line() const {
constexpr auto timings = get_timings();
return time_into_frame_ >= timings.interrupt_time && time_into_frame_ < timings.interrupt_time + interrupt_duration;
2021-03-19 01:29:52 +00:00
}
/*!
@returns How many cycles the [ULA/gate array] would delay the CPU for if it were to recognise that contention
needs to be applied in @c offset half-cycles from now.
*/
2021-03-19 12:49:56 +00:00
int access_delay(HalfCycles offset) const {
2021-03-19 01:29:52 +00:00
constexpr auto timings = get_timings();
const int delay_time = (time_into_frame_ + offset.as<int>() + timings.contention_leadin) % (timings.cycles_per_line * timings.lines_per_frame);
2021-03-19 01:29:52 +00:00
// Check for a time within the no-contention window.
if(delay_time >= (191*timings.cycles_per_line + timings.contention_duration)) {
return 0;
}
2021-03-19 01:29:52 +00:00
const int time_into_line = delay_time % timings.cycles_per_line;
if(time_into_line >= timings.contention_duration) return 0;
2021-03-19 01:29:52 +00:00
return timings.delays[time_into_line & 15];
2021-03-19 01:29:52 +00:00
}
2021-03-18 16:47:48 +00:00
/*!
@returns Whatever the ULA or gate array has fetched this cycle, or 0xff if it has fetched nothing.
*/
uint8_t get_current_fetch() const {
constexpr auto timings = get_timings();
const int line = time_into_frame_ / timings.cycles_per_line;
if(line >= 192) return 0xff;
const int time_into_line = time_into_frame_ % timings.cycles_per_line;
2021-03-23 21:09:42 +00:00
if(time_into_line >= 256 || (time_into_line&8)) {
return 0xff;
}
2021-03-23 21:09:42 +00:00
return last_fetches_[(time_into_line >> 1) & 3];
}
/*!
Sets the current border colour.
*/
2021-03-19 02:29:24 +00:00
void set_border_colour(uint8_t colour) {
border_colour_ = palette[colour];
}
2021-03-19 01:54:42 +00:00
/// Sets the scan target.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
/// Gets the current scan status.
Outputs::Display::ScanStatus get_scaled_scan_status() const {
return crt_.get_scaled_scan_status();
}
/*! Sets the type of display the CRT will request. */
void set_display_type(Outputs::Display::DisplayType type) {
crt_.set_display_type(type);
}
2021-03-19 01:29:52 +00:00
private:
int time_into_frame_ = 0;
2021-03-19 01:54:42 +00:00
Outputs::CRT::CRT crt_;
const uint8_t *memory_ = nullptr;
2021-03-19 02:29:24 +00:00
uint8_t border_colour_ = 0;
2021-03-19 02:57:10 +00:00
uint8_t *pixel_target_ = nullptr;
int attribute_address_ = 0;
int pixel_address_ = 0;
uint8_t flash_mask_ = 0;
int flash_counter_ = 0;
bool is_alternate_line_ = false;
uint8_t last_fetches_[4] = {0xff, 0xff, 0xff, 0xff};
2021-03-19 02:29:24 +00:00
#define RGB(r, g, b) (r << 4) | (g << 2) | b
static constexpr uint8_t palette[] = {
RGB(0, 0, 0), RGB(0, 0, 2), RGB(2, 0, 0), RGB(2, 0, 2),
RGB(0, 2, 0), RGB(0, 2, 2), RGB(2, 2, 0), RGB(2, 2, 2),
RGB(0, 0, 0), RGB(0, 0, 3), RGB(3, 0, 0), RGB(3, 0, 3),
RGB(0, 3, 0), RGB(0, 3, 3), RGB(3, 3, 0), RGB(3, 3, 3),
};
#undef RGB
2021-03-18 16:47:48 +00:00
};
}
}
#endif /* Video_hpp */