1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-08-09 05:25:01 +00:00

Commuted all of 'Storage' other than 'Tape' to postfix underscores.

This commit is contained in:
Thomas Harte
2016-12-03 11:59:28 -05:00
parent 5be22e2f8d
commit 0dc2aa6454
13 changed files with 156 additions and 157 deletions

View File

@@ -51,10 +51,10 @@ class Cartridge {
std::vector<uint8_t> data; std::vector<uint8_t> data;
}; };
const std::list<Segment> &get_segments() { return _segments; } const std::list<Segment> &get_segments() { return segments_; }
protected: protected:
std::list<Segment> _segments; std::list<Segment> segments_;
}; };
} }

View File

@@ -28,7 +28,7 @@ BinaryDump::BinaryDump(const char *file_name)
fclose(file); fclose(file);
// enshrine // enshrine
_segments.emplace_back( segments_.emplace_back(
::Storage::Cartridge::Cartridge::Segment::UnknownAddress, ::Storage::Cartridge::Cartridge::Segment::UnknownAddress,
::Storage::Cartridge::Cartridge::Segment::UnknownAddress, ::Storage::Cartridge::Cartridge::Segment::UnknownAddress,
std::move(contents)); std::move(contents));

View File

@@ -46,5 +46,5 @@ PRG::PRG(const char *file_name)
if(!Storage::Cartridge::Encodings::CommodoreROM::isROM(contents)) if(!Storage::Cartridge::Encodings::CommodoreROM::isROM(contents))
throw ErrorNotROM; throw ErrorNotROM;
_segments.emplace_back(0xa000, 0xa000 + data_length, std::move(contents)); segments_.emplace_back(0xa000, 0xa000 + data_length, std::move(contents));
} }

View File

@@ -13,58 +13,58 @@
using namespace Storage; using namespace Storage;
DigitalPhaseLockedLoop::DigitalPhaseLockedLoop(int clocks_per_bit, int tolerance, size_t length_of_history) : DigitalPhaseLockedLoop::DigitalPhaseLockedLoop(int clocks_per_bit, int tolerance, size_t length_of_history) :
_clocks_per_bit(clocks_per_bit), clocks_per_bit_(clocks_per_bit),
_tolerance(tolerance), tolerance_(tolerance),
_phase(0), phase_(0),
_window_length(clocks_per_bit), window_length_(clocks_per_bit),
_phase_error_pointer(0) phase_error_pointer_(0)
{ {
_phase_error_history.reset(new std::vector<int>(length_of_history, 0)); phase_error_history_.reset(new std::vector<int>(length_of_history, 0));
} }
void DigitalPhaseLockedLoop::run_for_cycles(int number_of_cycles) void DigitalPhaseLockedLoop::run_for_cycles(int number_of_cycles)
{ {
_phase += number_of_cycles; phase_ += number_of_cycles;
if(_phase >= _window_length) if(phase_ >= window_length_)
{ {
int windows_crossed = _phase / _window_length; int windows_crossed = phase_ / window_length_;
// check whether this triggers any 0s, if anybody cares // check whether this triggers any 0s, if anybody cares
if(_delegate) if(delegate_)
{ {
if(_window_was_filled) windows_crossed--; if(window_was_filled_) windows_crossed--;
for(int c = 0; c < windows_crossed; c++) for(int c = 0; c < windows_crossed; c++)
_delegate->digital_phase_locked_loop_output_bit(0); delegate_->digital_phase_locked_loop_output_bit(0);
} }
_window_was_filled = false; window_was_filled_ = false;
_phase %= _window_length; phase_ %= window_length_;
} }
} }
void DigitalPhaseLockedLoop::add_pulse() void DigitalPhaseLockedLoop::add_pulse()
{ {
if(!_window_was_filled) if(!window_was_filled_)
{ {
if(_delegate) _delegate->digital_phase_locked_loop_output_bit(1); if(delegate_) delegate_->digital_phase_locked_loop_output_bit(1);
_window_was_filled = true; window_was_filled_ = true;
post_phase_error(_phase - (_window_length >> 1)); post_phase_error(phase_ - (window_length_ >> 1));
} }
} }
void DigitalPhaseLockedLoop::post_phase_error(int error) void DigitalPhaseLockedLoop::post_phase_error(int error)
{ {
// use a simple spring mechanism as a lowpass filter for phase // use a simple spring mechanism as a lowpass filter for phase
_phase -= (error + 1) >> 1; phase_ -= (error + 1) >> 1;
// use the average of the last few errors to affect frequency // use the average of the last few errors to affect frequency
std::vector<int> *phase_error_history = _phase_error_history.get(); std::vector<int> *phase_error_history = phase_error_history_.get();
size_t phase_error_history_size = phase_error_history->size(); size_t phase_error_history_size = phase_error_history->size();
(*phase_error_history)[_phase_error_pointer] = error; (*phase_error_history)[phase_error_pointer_] = error;
_phase_error_pointer = (_phase_error_pointer + 1)%phase_error_history_size; phase_error_pointer_ = (phase_error_pointer_ + 1)%phase_error_history_size;
int total_error = 0; int total_error = 0;
for(size_t c = 0; c < phase_error_history_size; c++) for(size_t c = 0; c < phase_error_history_size; c++)
@@ -72,6 +72,6 @@ void DigitalPhaseLockedLoop::post_phase_error(int error)
total_error += (*phase_error_history)[c]; total_error += (*phase_error_history)[c];
} }
int denominator = (int)(phase_error_history_size * 4); int denominator = (int)(phase_error_history_size * 4);
_window_length += (total_error + (denominator >> 1)) / denominator; window_length_ += (total_error + (denominator >> 1)) / denominator;
_window_length = std::max(std::min(_window_length, _clocks_per_bit + _tolerance), _clocks_per_bit - _tolerance); window_length_ = std::max(std::min(window_length_, clocks_per_bit_ + tolerance_), clocks_per_bit_ - tolerance_);
} }

View File

@@ -46,22 +46,22 @@ class DigitalPhaseLockedLoop {
}; };
void set_delegate(Delegate *delegate) void set_delegate(Delegate *delegate)
{ {
_delegate = delegate; delegate_ = delegate;
} }
private: private:
Delegate *_delegate; Delegate *delegate_;
void post_phase_error(int error); void post_phase_error(int error);
std::unique_ptr<std::vector<int>> _phase_error_history; std::unique_ptr<std::vector<int>> phase_error_history_;
size_t _phase_error_pointer; size_t phase_error_pointer_;
int _phase; int phase_;
int _window_length; int window_length_;
bool _window_was_filled; bool window_was_filled_;
int _clocks_per_bit; int clocks_per_bit_;
int _tolerance; int tolerance_;
}; };
} }

View File

@@ -11,14 +11,14 @@
using namespace Storage::Disk; using namespace Storage::Disk;
Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multiplier, unsigned int revolutions_per_minute) : Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multiplier, unsigned int revolutions_per_minute) :
_clock_rate(clock_rate * clock_rate_multiplier), clock_rate_(clock_rate * clock_rate_multiplier),
_clock_rate_multiplier(clock_rate_multiplier), clock_rate_multiplier_(clock_rate_multiplier),
TimedEventLoop(clock_rate * clock_rate_multiplier) TimedEventLoop(clock_rate * clock_rate_multiplier)
{ {
_rotational_multiplier.length = 60; rotational_multiplier_.length = 60;
_rotational_multiplier.clock_rate = revolutions_per_minute; rotational_multiplier_.clock_rate = revolutions_per_minute;
_rotational_multiplier.simplify(); rotational_multiplier_.simplify();
// seed this class with a PLL, any PLL, so that it's safe to assume non-nullptr later // seed this class with a PLL, any PLL, so that it's safe to assume non-nullptr later
Time one; Time one;
@@ -27,38 +27,38 @@ Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multipli
void Controller::setup_track() void Controller::setup_track()
{ {
_track = _drive->get_track(); track_ = drive_->get_track();
Time offset; Time offset;
if(_track && _time_into_track.length > 0) if(track_ && time_into_track_.length > 0)
{ {
Time time_found = _track->seek_to(_time_into_track).simplify(); Time time_found = track_->seek_to(time_into_track_).simplify();
offset = (_time_into_track - time_found).simplify(); offset = (time_into_track_ - time_found).simplify();
_time_into_track = time_found; time_into_track_ = time_found;
} }
else else
{ {
offset = _time_into_track; offset = time_into_track_;
_time_into_track.set_zero(); time_into_track_.set_zero();
} }
reset_timer_to_offset(offset * _rotational_multiplier); reset_timer_to_offset(offset * rotational_multiplier_);
get_next_event(); get_next_event();
} }
void Controller::run_for_cycles(int number_of_cycles) void Controller::run_for_cycles(int number_of_cycles)
{ {
if(_drive && _drive->has_disk() && _motor_is_on) if(drive_ && drive_->has_disk() && motor_is_on_)
{ {
if(!_track) setup_track(); if(!track_) setup_track();
number_of_cycles *= _clock_rate_multiplier; number_of_cycles *= clock_rate_multiplier_;
while(number_of_cycles) while(number_of_cycles)
{ {
int cycles_until_next_event = (int)get_cycles_until_next_event(); int cycles_until_next_event = (int)get_cycles_until_next_event();
int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles); int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
_cycles_since_index_hole += (unsigned int)cycles_to_run_for; cycles_since_index_hole_ += (unsigned int)cycles_to_run_for;
number_of_cycles -= cycles_to_run_for; number_of_cycles -= cycles_to_run_for;
_pll->run_for_cycles(cycles_to_run_for); pll_->run_for_cycles(cycles_to_run_for);
TimedEventLoop::run_for_cycles(cycles_to_run_for); TimedEventLoop::run_for_cycles(cycles_to_run_for);
} }
} }
@@ -68,31 +68,31 @@ void Controller::run_for_cycles(int number_of_cycles)
void Controller::get_next_event() void Controller::get_next_event()
{ {
if(_track) if(track_)
_current_event = _track->get_next_event(); current_event_ = track_->get_next_event();
else else
{ {
_current_event.length.length = 1; current_event_.length.length = 1;
_current_event.length.clock_rate = 1; current_event_.length.clock_rate = 1;
_current_event.type = Track::Event::IndexHole; current_event_.type = Track::Event::IndexHole;
} }
// divide interval, which is in terms of a rotation of the disk, by rotation speed, and // divide interval, which is in terms of a rotation of the disk, by rotation speed, and
// convert it into revolutions per second // convert it into revolutions per second
set_next_event_time_interval(_current_event.length * _rotational_multiplier); set_next_event_time_interval(current_event_.length * rotational_multiplier_);
} }
void Controller::process_next_event() void Controller::process_next_event()
{ {
switch(_current_event.type) switch(current_event_.type)
{ {
case Track::Event::FluxTransition: case Track::Event::FluxTransition:
_pll->add_pulse(); pll_->add_pulse();
_time_into_track += _current_event.length; time_into_track_ += current_event_.length;
break; break;
case Track::Event::IndexHole: case Track::Event::IndexHole:
_cycles_since_index_hole = 0; cycles_since_index_hole_ = 0;
_time_into_track.set_zero(); time_into_track_.set_zero();
process_index_hole(); process_index_hole();
break; break;
} }
@@ -103,57 +103,57 @@ void Controller::process_next_event()
void Controller::set_expected_bit_length(Time bit_length) void Controller::set_expected_bit_length(Time bit_length)
{ {
_bit_length = bit_length; bit_length_ = bit_length;
// this conversion doesn't need to be exact because there's a lot of variation to be taken // this conversion doesn't need to be exact because there's a lot of variation to be taken
// account of in rotation speed, air turbulence, etc, so a direct conversion will do // account of in rotation speed, air turbulence, etc, so a direct conversion will do
int clocks_per_bit = (int)((bit_length.length * _clock_rate) / bit_length.clock_rate); int clocks_per_bit = (int)((bit_length.length * clock_rate_) / bit_length.clock_rate);
_pll.reset(new DigitalPhaseLockedLoop(clocks_per_bit, clocks_per_bit / 5, 3)); pll_.reset(new DigitalPhaseLockedLoop(clocks_per_bit, clocks_per_bit / 5, 3));
_pll->set_delegate(this); pll_->set_delegate(this);
} }
void Controller::digital_phase_locked_loop_output_bit(int value) void Controller::digital_phase_locked_loop_output_bit(int value)
{ {
process_input_bit(value, _cycles_since_index_hole); process_input_bit(value, cycles_since_index_hole_);
} }
#pragma mark - Drive actions #pragma mark - Drive actions
bool Controller::get_is_track_zero() bool Controller::get_is_track_zero()
{ {
if(!_drive) return false; if(!drive_) return false;
return _drive->get_is_track_zero(); return drive_->get_is_track_zero();
} }
bool Controller::get_drive_is_ready() bool Controller::get_drive_is_ready()
{ {
if(!_drive) return false; if(!drive_) return false;
return _drive->has_disk(); return drive_->has_disk();
} }
void Controller::step(int direction) void Controller::step(int direction)
{ {
if(_drive) _drive->step(direction); if(drive_) drive_->step(direction);
invalidate_track(); invalidate_track();
} }
void Controller::set_motor_on(bool motor_on) void Controller::set_motor_on(bool motor_on)
{ {
_motor_is_on = motor_on; motor_is_on_ = motor_on;
} }
bool Controller::get_motor_on() bool Controller::get_motor_on()
{ {
return _motor_is_on; return motor_is_on_;
} }
void Controller::set_drive(std::shared_ptr<Drive> drive) void Controller::set_drive(std::shared_ptr<Drive> drive)
{ {
_drive = drive; drive_ = drive;
invalidate_track(); invalidate_track();
} }
void Controller::invalidate_track() void Controller::invalidate_track()
{ {
_track = nullptr; track_ = nullptr;
} }

View File

@@ -81,20 +81,20 @@ class Controller: public DigitalPhaseLockedLoop::Delegate, public TimedEventLoop
virtual bool get_drive_is_ready(); virtual bool get_drive_is_ready();
private: private:
Time _bit_length; Time bit_length_;
unsigned int _clock_rate; unsigned int clock_rate_;
unsigned int _clock_rate_multiplier; unsigned int clock_rate_multiplier_;
Time _rotational_multiplier; Time rotational_multiplier_;
std::shared_ptr<DigitalPhaseLockedLoop> _pll; std::shared_ptr<DigitalPhaseLockedLoop> pll_;
std::shared_ptr<Drive> _drive; std::shared_ptr<Drive> drive_;
std::shared_ptr<Track> _track; std::shared_ptr<Track> track_;
unsigned int _cycles_since_index_hole; unsigned int cycles_since_index_hole_;
inline void get_next_event(); inline void get_next_event();
Track::Event _current_event; Track::Event current_event_;
Time _time_into_track; Time time_into_track_;
bool _motor_is_on; bool motor_is_on_;
void setup_track(); void setup_track();
}; };

View File

@@ -12,35 +12,35 @@
using namespace Storage::Disk; using namespace Storage::Disk;
Drive::Drive() Drive::Drive()
: _head_position(0), _head(0) {} : head_position_(0), head_(0) {}
void Drive::set_disk(std::shared_ptr<Disk> disk) void Drive::set_disk(std::shared_ptr<Disk> disk)
{ {
_disk = disk; disk_ = disk;
} }
bool Drive::has_disk() bool Drive::has_disk()
{ {
return (bool)_disk; return (bool)disk_;
} }
bool Drive::get_is_track_zero() bool Drive::get_is_track_zero()
{ {
return _head_position == 0; return head_position_ == 0;
} }
void Drive::step(int direction) void Drive::step(int direction)
{ {
_head_position = std::max(_head_position + direction, 0); head_position_ = std::max(head_position_ + direction, 0);
} }
void Drive::set_head(unsigned int head) void Drive::set_head(unsigned int head)
{ {
_head = head; head_ = head;
} }
std::shared_ptr<Track> Drive::get_track() std::shared_ptr<Track> Drive::get_track()
{ {
if(_disk) return _disk->get_track_at_position(_head, (unsigned int)_head_position); if(disk_) return disk_->get_track_at_position(head_, (unsigned int)head_position_);
return nullptr; return nullptr;
} }

View File

@@ -47,9 +47,9 @@ class Drive {
std::shared_ptr<Track> get_track(); std::shared_ptr<Track> get_track();
private: private:
std::shared_ptr<Disk> _disk; std::shared_ptr<Disk> disk_;
int _head_position; int head_position_;
unsigned int _head; unsigned int head_;
}; };

View File

@@ -13,7 +13,7 @@ using namespace Storage::Disk;
PCMTrack::PCMTrack(std::vector<PCMSegment> segments) PCMTrack::PCMTrack(std::vector<PCMSegment> segments)
{ {
_segments = std::move(segments); segments_ = std::move(segments);
fix_length(); fix_length();
} }
@@ -21,7 +21,7 @@ PCMTrack::PCMTrack(PCMSegment segment)
{ {
segment.length_of_a_bit.length = 1; segment.length_of_a_bit.length = 1;
segment.length_of_a_bit.clock_rate = 1; segment.length_of_a_bit.clock_rate = 1;
_segments.push_back(std::move(segment)); segments_.push_back(std::move(segment));
fix_length(); fix_length();
} }
@@ -29,54 +29,54 @@ PCMTrack::Event PCMTrack::get_next_event()
{ {
// find the next 1 in the input stream, keeping count of length as we go, and assuming it's going // find the next 1 in the input stream, keeping count of length as we go, and assuming it's going
// to be a flux transition // to be a flux transition
_next_event.type = Track::Event::FluxTransition; next_event_.type = Track::Event::FluxTransition;
_next_event.length.length = 0; next_event_.length.length = 0;
while(_segment_pointer < _segments.size()) while(segment_pointer_ < segments_.size())
{ {
unsigned int clock_multiplier = _track_clock_rate / _segments[_segment_pointer].length_of_a_bit.clock_rate; unsigned int clock_multiplier = track_clock_rate_ / segments_[segment_pointer_].length_of_a_bit.clock_rate;
unsigned int bit_length = clock_multiplier * _segments[_segment_pointer].length_of_a_bit.length; unsigned int bit_length = clock_multiplier * segments_[segment_pointer_].length_of_a_bit.length;
const uint8_t *segment_data = &_segments[_segment_pointer].data[0]; const uint8_t *segment_data = &segments_[segment_pointer_].data[0];
while(_bit_pointer < _segments[_segment_pointer].number_of_bits) while(bit_pointer_ < segments_[segment_pointer_].number_of_bits)
{ {
// for timing simplicity, bits are modelled as happening at the end of their window // for timing simplicity, bits are modelled as happening at the end of their window
// TODO: should I account for the converse bit ordering? Or can I assume MSB first? // TODO: should I account for the converse bit ordering? Or can I assume MSB first?
int bit = segment_data[_bit_pointer >> 3] & (0x80 >> (_bit_pointer&7)); int bit = segment_data[bit_pointer_ >> 3] & (0x80 >> (bit_pointer_&7));
_bit_pointer++; bit_pointer_++;
_next_event.length.length += bit_length; next_event_.length.length += bit_length;
if(bit) return _next_event; if(bit) return next_event_;
} }
_bit_pointer = 0; bit_pointer_ = 0;
_segment_pointer++; segment_pointer_++;
} }
// check whether we actually reached the index hole // check whether we actually reached the index hole
if(_segment_pointer == _segments.size()) if(segment_pointer_ == segments_.size())
{ {
_segment_pointer = 0; segment_pointer_ = 0;
_next_event.type = Track::Event::IndexHole; next_event_.type = Track::Event::IndexHole;
} }
return _next_event; return next_event_;
} }
Storage::Time PCMTrack::seek_to(Time time_since_index_hole) Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
{ {
_segment_pointer = 0; segment_pointer_ = 0;
// pick a common clock rate for counting time on this track and multiply up the time being sought appropriately // pick a common clock rate for counting time on this track and multiply up the time being sought appropriately
Time time_so_far; Time time_so_far;
time_so_far.clock_rate = NumberTheory::least_common_multiple(_next_event.length.clock_rate, time_since_index_hole.clock_rate); time_so_far.clock_rate = NumberTheory::least_common_multiple(next_event_.length.clock_rate, time_since_index_hole.clock_rate);
time_since_index_hole.length *= time_so_far.clock_rate / time_since_index_hole.clock_rate; time_since_index_hole.length *= time_so_far.clock_rate / time_since_index_hole.clock_rate;
time_since_index_hole.clock_rate = time_so_far.clock_rate; time_since_index_hole.clock_rate = time_so_far.clock_rate;
while(_segment_pointer < _segments.size()) while(segment_pointer_ < segments_.size())
{ {
// determine how long this segment is in terms of the master clock // determine how long this segment is in terms of the master clock
unsigned int clock_multiplier = time_so_far.clock_rate / _next_event.length.clock_rate; unsigned int clock_multiplier = time_so_far.clock_rate / next_event_.length.clock_rate;
unsigned int bit_length = ((clock_multiplier / _track_clock_rate) / _segments[_segment_pointer].length_of_a_bit.clock_rate) * _segments[_segment_pointer].length_of_a_bit.length; unsigned int bit_length = ((clock_multiplier / track_clock_rate_) / segments_[segment_pointer_].length_of_a_bit.clock_rate) * segments_[segment_pointer_].length_of_a_bit.length;
unsigned int time_in_this_segment = bit_length * _segments[_segment_pointer].number_of_bits; unsigned int time_in_this_segment = bit_length * segments_[segment_pointer_].number_of_bits;
// if this segment goes on longer than the time being sought, end here // if this segment goes on longer than the time being sought, end here
unsigned int time_remaining = time_since_index_hole.length - time_so_far.length; unsigned int time_remaining = time_since_index_hole.length - time_so_far.length;
@@ -86,7 +86,7 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
unsigned int time_found = time_remaining - (time_remaining % bit_length); unsigned int time_found = time_remaining - (time_remaining % bit_length);
// resolve that into the stateful bit count // resolve that into the stateful bit count
_bit_pointer = 1 + (time_remaining / bit_length); bit_pointer_ = 1 + (time_remaining / bit_length);
// update and return the time sought to // update and return the time sought to
time_so_far.length += time_found; time_so_far.length += time_found;
@@ -95,7 +95,7 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
// otherwise, accumulate time and keep moving // otherwise, accumulate time and keep moving
time_so_far.length += time_in_this_segment; time_so_far.length += time_in_this_segment;
_segment_pointer++; segment_pointer_++;
} }
return time_since_index_hole; return time_since_index_hole;
} }
@@ -103,19 +103,19 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
void PCMTrack::fix_length() void PCMTrack::fix_length()
{ {
// find the least common multiple of all segment clock rates // find the least common multiple of all segment clock rates
_track_clock_rate = _segments[0].length_of_a_bit.clock_rate; track_clock_rate_ = segments_[0].length_of_a_bit.clock_rate;
for(size_t c = 1; c < _segments.size(); c++) for(size_t c = 1; c < segments_.size(); c++)
{ {
_track_clock_rate = NumberTheory::least_common_multiple(_track_clock_rate, _segments[c].length_of_a_bit.clock_rate); track_clock_rate_ = NumberTheory::least_common_multiple(track_clock_rate_, segments_[c].length_of_a_bit.clock_rate);
} }
// thereby determine the total length, storing it to next_event as the track-total divisor // thereby determine the total length, storing it to next_event as the track-total divisor
_next_event.length.clock_rate = 0; next_event_.length.clock_rate = 0;
for(size_t c = 0; c < _segments.size(); c++) for(size_t c = 0; c < segments_.size(); c++)
{ {
unsigned int multiplier = _track_clock_rate / _segments[c].length_of_a_bit.clock_rate; unsigned int multiplier = track_clock_rate_ / segments_[c].length_of_a_bit.clock_rate;
_next_event.length.clock_rate += _segments[c].length_of_a_bit.length * _segments[c].number_of_bits * multiplier; next_event_.length.clock_rate += segments_[c].length_of_a_bit.length * segments_[c].number_of_bits * multiplier;
} }
_segment_pointer = _bit_pointer = 0; segment_pointer_ = bit_pointer_ = 0;
} }

View File

@@ -52,21 +52,21 @@ class PCMTrack: public Track {
private: private:
// storage for the segments that describe this track // storage for the segments that describe this track
std::vector<PCMSegment> _segments; std::vector<PCMSegment> segments_;
// a helper to determine the overall track clock rate and it's length // a helper to determine the overall track clock rate and it's length
void fix_length(); void fix_length();
// the event perpetually returned; impliedly contains the length of the entire track // the event perpetually returned; impliedly contains the length of the entire track
// as its clock rate, per the need for everything on a Track to sum to a length of 1 // as its clock rate, per the need for everything on a Track to sum to a length of 1
PCMTrack::Event _next_event; PCMTrack::Event next_event_;
// contains the master clock rate // contains the master clock rate
unsigned int _track_clock_rate; unsigned int track_clock_rate_;
// a pointer to the first bit to consider as the next event // a pointer to the first bit to consider as the next event
size_t _segment_pointer; size_t segment_pointer_;
size_t _bit_pointer; size_t bit_pointer_;
}; };
} }

View File

@@ -13,12 +13,12 @@
using namespace Storage; using namespace Storage;
TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) : TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) :
_input_clock_rate(input_clock_rate) {} input_clock_rate_(input_clock_rate) {}
void TimedEventLoop::run_for_cycles(int number_of_cycles) void TimedEventLoop::run_for_cycles(int number_of_cycles)
{ {
_cycles_until_event -= number_of_cycles; cycles_until_event_ -= number_of_cycles;
while(_cycles_until_event <= 0) while(cycles_until_event_ <= 0)
{ {
process_next_event(); process_next_event();
} }
@@ -26,13 +26,13 @@ void TimedEventLoop::run_for_cycles(int number_of_cycles)
unsigned int TimedEventLoop::get_cycles_until_next_event() unsigned int TimedEventLoop::get_cycles_until_next_event()
{ {
return (unsigned int)std::max(_cycles_until_event, 0); return (unsigned int)std::max(cycles_until_event_, 0);
} }
void TimedEventLoop::reset_timer() void TimedEventLoop::reset_timer()
{ {
_subcycles_until_event.set_zero(); subcycles_until_event_.set_zero();
_cycles_until_event = 0; cycles_until_event_ = 0;
} }
void TimedEventLoop::reset_timer_to_offset(Time offset) void TimedEventLoop::reset_timer_to_offset(Time offset)
@@ -49,10 +49,10 @@ void TimedEventLoop::jump_to_next_event()
void TimedEventLoop::set_next_event_time_interval(Time interval) void TimedEventLoop::set_next_event_time_interval(Time interval)
{ {
// Calculate [interval]*[input clock rate] + [subcycles until this event]. // Calculate [interval]*[input clock rate] + [subcycles until this event].
int64_t denominator = (int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.clock_rate; int64_t denominator = (int64_t)interval.clock_rate * (int64_t)subcycles_until_event_.clock_rate;
int64_t numerator = int64_t numerator =
(int64_t)_subcycles_until_event.clock_rate * (int64_t)_input_clock_rate * (int64_t)interval.length + (int64_t)subcycles_until_event_.clock_rate * (int64_t)input_clock_rate_ * (int64_t)interval.length +
(int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.length; (int64_t)interval.clock_rate * (int64_t)subcycles_until_event_.length;
// Simplify now, to prepare for stuffing into possibly 32-bit quantities // Simplify now, to prepare for stuffing into possibly 32-bit quantities
int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator); int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator);
@@ -61,9 +61,9 @@ void TimedEventLoop::set_next_event_time_interval(Time interval)
// So this event will fire in the integral number of cycles from now, putting us at the remainder // So this event will fire in the integral number of cycles from now, putting us at the remainder
// number of subcycles // number of subcycles
_cycles_until_event = (int)(numerator / denominator); cycles_until_event_ = (int)(numerator / denominator);
_subcycles_until_event.length = (unsigned int)(numerator % denominator); subcycles_until_event_.length = (unsigned int)(numerator % denominator);
_subcycles_until_event.clock_rate = (unsigned int)denominator; subcycles_until_event_.clock_rate = (unsigned int)denominator;
} }
Time TimedEventLoop::get_time_into_next_event() Time TimedEventLoop::get_time_into_next_event()

View File

@@ -90,10 +90,9 @@ namespace Storage {
Time get_time_into_next_event(); Time get_time_into_next_event();
private: private:
unsigned int _input_clock_rate; unsigned int input_clock_rate_;
int _cycles_until_event; int cycles_until_event_;
Time _subcycles_until_event; Time subcycles_until_event_;
Time _event_interval;
}; };
} }