1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-04-05 19:37:19 +00:00

Merge pull request #1410 from TomHarte/CPCLatency

Further improve the CPC side of the CPC:CRTC relationship.
This commit is contained in:
Thomas Harte 2024-10-15 21:30:39 -04:00 committed by GitHub
commit 131ab00304
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 210 additions and 210 deletions

View File

@ -55,8 +55,6 @@ class InterruptTimer {
trailing edge because it is active high.
*/
inline void signal_hsync() {
// printf("count h: %d/%d [%d]\n", timer_, reset_counter_, interrupt_request_);
// Increment the timer and if it has hit 52 then reset it and
// set the interrupt request line to true.
++timer_;
@ -81,13 +79,11 @@ class InterruptTimer {
/// Indicates the leading edge of a new vertical sync.
inline void signal_vsync() {
// printf("count v\n");
reset_counter_ = 2;
}
/// Indicates that an interrupt acknowledge has been received from the Z80.
inline void signal_interrupt_acknowledge() {
// printf("count IRQA\n");
interrupt_request_ = false;
timer_ &= ~32;
}
@ -104,7 +100,6 @@ class InterruptTimer {
/// Resets the timer.
inline void reset_count() {
// printf("count reset\n");
timer_ = 0;
interrupt_request_ = false;
}
@ -190,6 +185,8 @@ class CRTCBusHandler {
bus state and determines what output to produce based on the current palette and mode.
*/
forceinline void perform_bus_cycle(const Motorola::CRTC::BusState &state) {
// TODO: there's a one-tick delay on pixel output; incorporate that.
// The gate array waits 2us to react to the CRTC's vsync signal, and then
// caps output at 4us. Since the clock rate is 1Mhz, that's 2 and 4 cycles,
// respectively.
@ -240,10 +237,10 @@ class CRTCBusHandler {
previous_output_mode_ = output_mode;
}
// increment cycles since state changed
// Increment cycles since state changed.
cycles_++;
// collect some more pixels if output is ongoing
// Collect some more pixels if output is ongoing.
if(previous_output_mode_ == OutputMode::Pixels) {
if(!pixel_data_) {
pixel_pointer_ = pixel_data_ = crt_.begin_data(320, 8);
@ -300,34 +297,28 @@ class CRTCBusHandler {
}
}
// Notify a leading hsync edge to the interrupt timer.
// Per Interrupts in the CPC: "to be confirmed: does gate array count positive or negative edge transitions of HSYNC signal?";
// if you take it as given that display mode is latched as a result of hsync then Pipe Mania seems to imply that the count
// occurs on a leading edge and the mode lock on a trailing.
if(!was_hsync_ && state.hsync) {
interrupt_timer_.signal_hsync();
}
// Check for a trailing CRTC hsync; if one occurred then that's the trigger potentially to change modes.
if(was_hsync_ && !state.hsync) {
if(mode_ != next_mode_) {
mode_ = next_mode_;
switch(mode_) {
default:
case 0: pixel_divider_ = 4; break;
case 1: pixel_divider_ = 2; break;
case 2: pixel_divider_ = 1; break;
}
build_mode_table();
// Latch mode four cycles after HSYNC was signalled, if still active.
if(cycles_into_hsync_ == 4 && mode_ != next_mode_) {
mode_ = next_mode_;
switch(mode_) {
default:
case 0: pixel_divider_ = 4; break;
case 1: pixel_divider_ = 2; break;
case 2: pixel_divider_ = 1; break;
}
build_mode_table();
}
// check for a leading vsync; that also needs to be communicated to the interrupt timer
// For the interrupt timer: notify the leading edge of vertical sync and the
// trailing edge of horizontal sync.
if(!was_vsync_ && state.vsync) {
interrupt_timer_.signal_vsync();
}
if(was_hsync_ && !state.hsync) {
interrupt_timer_.signal_hsync();
}
// update current state for edge detection next time around
// Update current state for edge detection next time around.
was_vsync_ = state.vsync;
was_hsync_ = state.hsync;
}
@ -858,223 +849,229 @@ class ConcreteMachine:
clock_offset_ = (clock_offset_ + cycle.length) & HalfCycles(7);
z80_.set_wait_line(clock_offset_ >= HalfCycles(2));
// Update the CRTC once every eight half cycles; aiming for half-cycle 4 as
// per the initial seed to the crtc_counter_, but any time in the final four
// will do as it's safe to conclude that nobody else has touched video RAM
// during that whole window.
crtc_counter_ += cycle.length;
const Cycles crtc_cycles = crtc_counter_.divide_cycles(Cycles(4));
if(crtc_cycles > Cycles(0)) crtc_.run_for(crtc_cycles);
// Float this out as a lambda to allow easy repositioning relative to the CPU activity;
// for now this is largely experimental.
const auto update_subsystems = [&] {
// Update the CRTC once every eight half cycles; aiming for half-cycle 4 as
// per the initial seed to the crtc_counter_, but any time in the final four
// will do as it's safe to conclude that nobody else has touched video RAM
// during that whole window.
crtc_counter_ += cycle.length;
const Cycles crtc_cycles = crtc_counter_.divide_cycles(Cycles(4));
if(crtc_cycles > Cycles(0)) crtc_.run_for(crtc_cycles);
// Check whether that prompted a change in the interrupt line. If so then date
// it to whenever the cycle was triggered.
if(interrupt_timer_.request_has_changed()) z80_.set_interrupt_line(interrupt_timer_.get_request(), -crtc_counter_);
// Check whether that prompted a change in the interrupt line. If so then date
// it to whenever the cycle was triggered.
if(interrupt_timer_.request_has_changed()) z80_.set_interrupt_line(interrupt_timer_.get_request(), -crtc_counter_);
// TODO (in the player, not here): adapt it to accept an input clock rate and
// run_for as HalfCycles.
if(!tape_player_is_sleeping_) tape_player_.run_for(cycle.length.as_integral());
// TODO (in the player, not here): adapt it to accept an input clock rate and
// run_for as HalfCycles.
if(!tape_player_is_sleeping_) tape_player_.run_for(cycle.length.as_integral());
// Pump the AY.
ay_.run_for(cycle.length);
// Pump the AY.
ay_.run_for(cycle.length);
if constexpr (has_fdc) {
// Clock the FDC, if connected, using a lazy scale by two.
time_since_fdc_update_ += cycle.length;
}
if constexpr (has_fdc) {
// Clock the FDC, if connected, using a lazy scale by two.
time_since_fdc_update_ += cycle.length;
}
// Update typing activity.
if(typer_) typer_->run_for(cycle.length);
// Update typing activity.
if(typer_) typer_->run_for(cycle.length);
};
// Stop now if no action is strictly required.
if(!cycle.is_terminal()) return HalfCycles(0);
// Continue only if action strictly required.
if(cycle.is_terminal()) {
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
// TODO: just capturing byte reads as below doesn't seem to do that much in terms of acceleration;
// I'm not immediately clear whether that's just because the machine still has to sit through
// pilot tone in real time, or just that almost no software uses the ROM loader.
if(use_fast_tape_hack_ && address == tape_read_byte_address && read_pointers_[0] == roms_[ROMType::OS].data()) {
using Parser = Storage::Tape::ZXSpectrum::Parser;
Parser parser(Parser::MachineType::AmstradCPC);
// TODO: just capturing byte reads as below doesn't seem to do that much in terms of acceleration;
// I'm not immediately clear whether that's just because the machine still has to sit through
// pilot tone in real time, or just that almost no software uses the ROM loader.
if(use_fast_tape_hack_ && address == tape_read_byte_address && read_pointers_[0] == roms_[ROMType::OS].data()) {
using Parser = Storage::Tape::ZXSpectrum::Parser;
Parser parser(Parser::MachineType::AmstradCPC);
const auto speed = read_pointers_[tape_speed_value_address >> 14][tape_speed_value_address & 16383];
parser.set_cpc_read_speed(speed);
const auto speed = read_pointers_[tape_speed_value_address >> 14][tape_speed_value_address & 16383];
parser.set_cpc_read_speed(speed);
// Seed with the current pulse; the CPC will have finished the
// preceding symbol and be a short way into the pulse that should determine the
// first bit of this byte.
parser.process_pulse(tape_player_.get_current_pulse());
const auto byte = parser.get_byte(tape_player_.get_tape());
auto flags = z80_.value_of(CPU::Z80::Register::Flags);
// Seed with the current pulse; the CPC will have finished the
// preceding symbol and be a short way into the pulse that should determine the
// first bit of this byte.
parser.process_pulse(tape_player_.get_current_pulse());
const auto byte = parser.get_byte(tape_player_.get_tape());
auto flags = z80_.value_of(CPU::Z80::Register::Flags);
if(byte) {
// In A ROM-esque fashion, begin the first pulse after the final one
// that was just consumed.
tape_player_.complete_pulse();
if(byte) {
// In A ROM-esque fashion, begin the first pulse after the final one
// that was just consumed.
tape_player_.complete_pulse();
// Update in-memory CRC.
auto crc_value =
uint16_t(
read_pointers_[tape_crc_address >> 14][tape_crc_address & 16383] |
(read_pointers_[(tape_crc_address+1) >> 14][(tape_crc_address+1) & 16383] << 8)
);
// Update in-memory CRC.
auto crc_value =
uint16_t(
read_pointers_[tape_crc_address >> 14][tape_crc_address & 16383] |
(read_pointers_[(tape_crc_address+1) >> 14][(tape_crc_address+1) & 16383] << 8)
);
tape_crc_.set_value(crc_value);
tape_crc_.add(*byte);
crc_value = tape_crc_.get_value();
tape_crc_.set_value(crc_value);
tape_crc_.add(*byte);
crc_value = tape_crc_.get_value();
write_pointers_[tape_crc_address >> 14][tape_crc_address & 16383] = uint8_t(crc_value);
write_pointers_[(tape_crc_address+1) >> 14][(tape_crc_address+1) & 16383] = uint8_t(crc_value >> 8);
write_pointers_[tape_crc_address >> 14][tape_crc_address & 16383] = uint8_t(crc_value);
write_pointers_[(tape_crc_address+1) >> 14][(tape_crc_address+1) & 16383] = uint8_t(crc_value >> 8);
// Indicate successful byte read.
z80_.set_value_of(CPU::Z80::Register::A, *byte);
flags |= CPU::Z80::Flag::Carry;
} else {
// TODO: return tape player to previous state and decline to serve.
z80_.set_value_of(CPU::Z80::Register::A, 0);
flags &= ~CPU::Z80::Flag::Carry;
}
z80_.set_value_of(CPU::Z80::Register::Flags, flags);
// Indicate successful byte read.
z80_.set_value_of(CPU::Z80::Register::A, *byte);
flags |= CPU::Z80::Flag::Carry;
} else {
// TODO: return tape player to previous state and decline to serve.
z80_.set_value_of(CPU::Z80::Register::A, 0);
flags &= ~CPU::Z80::Flag::Carry;
// RET.
*cycle.value = 0xc9;
break;
}
z80_.set_value_of(CPU::Z80::Register::Flags, flags);
// RET.
*cycle.value = 0xc9;
break;
}
if constexpr (catches_ssm) {
ssm_code_ = (ssm_code_ << 8) | read_pointers_[address >> 14][address & 16383];
if(ssm_delegate_) {
if((ssm_code_ & 0xff00ff00) == 0xed00ed00) {
const auto code = uint16_t(
((ssm_code_ << 8) & 0xff00) | ((ssm_code_ >> 16) & 0x00ff)
);
if constexpr (catches_ssm) {
ssm_code_ = (ssm_code_ << 8) | read_pointers_[address >> 14][address & 16383];
if(ssm_delegate_) {
if((ssm_code_ & 0xff00ff00) == 0xed00ed00) {
const auto code = uint16_t(
((ssm_code_ << 8) & 0xff00) | ((ssm_code_ >> 16) & 0x00ff)
);
const auto is_valid = [](uint8_t digit) {
return
(digit <= 0x3f) ||
(digit >= 0x7f && digit <= 0x9f) ||
(digit >= 0xa4 && digit <= 0xa7) ||
(digit >= 0xac && digit <= 0xaf) ||
(digit >= 0xb4 && digit <= 0xb7) ||
(digit >= 0xbc && digit <= 0xbf) ||
(digit >= 0xc0 && digit <= 0xfd);
};
const auto is_valid = [](uint8_t digit) {
return
(digit <= 0x3f) ||
(digit >= 0x7f && digit <= 0x9f) ||
(digit >= 0xa4 && digit <= 0xa7) ||
(digit >= 0xac && digit <= 0xaf) ||
(digit >= 0xb4 && digit <= 0xb7) ||
(digit >= 0xbc && digit <= 0xbf) ||
(digit >= 0xc0 && digit <= 0xfd);
};
if(
is_valid(static_cast<uint8_t>(code)) && is_valid(static_cast<uint8_t>(code >> 8))
) {
ssm_delegate_->perform(code);
ssm_code_ = 0;
if(
is_valid(static_cast<uint8_t>(code)) && is_valid(static_cast<uint8_t>(code >> 8))
) {
ssm_delegate_->perform(code);
ssm_code_ = 0;
}
} else if((ssm_code_ & 0xffff) == 0xedfe) {
ssm_delegate_->perform(0xfffe);
} else if((ssm_code_ & 0xffff) == 0xedff) {
ssm_delegate_->perform(0xffff);
}
} else if((ssm_code_ & 0xffff) == 0xedfe) {
ssm_delegate_->perform(0xfffe);
} else if((ssm_code_ & 0xffff) == 0xedff) {
ssm_delegate_->perform(0xffff);
}
}
}
[[fallthrough]];
[[fallthrough]];
case CPU::Z80::PartialMachineCycle::Read:
*cycle.value = read_pointers_[address >> 14][address & 16383];
break;
case CPU::Z80::PartialMachineCycle::Read:
*cycle.value = read_pointers_[address >> 14][address & 16383];
break;
case CPU::Z80::PartialMachineCycle::Write:
write_pointers_[address >> 14][address & 16383] = *cycle.value;
break;
case CPU::Z80::PartialMachineCycle::Write:
write_pointers_[address >> 14][address & 16383] = *cycle.value;
break;
case CPU::Z80::PartialMachineCycle::Output:
// Check for a gate array access.
if((address & 0xc000) == 0x4000) {
write_to_gate_array(*cycle.value);
}
// Check for an upper ROM selection
if constexpr (has_fdc) {
if(!(address&0x2000)) {
upper_rom_ = (*cycle.value == 7) ? ROMType::AMSDOS : ROMType::BASIC;
if(upper_rom_is_paged_) read_pointers_[3] = roms_[upper_rom_].data();
case CPU::Z80::PartialMachineCycle::Output:
// Check for a gate array access.
if((address & 0xc000) == 0x4000) {
write_to_gate_array(*cycle.value);
}
}
// Check for a CRTC access
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: crtc_.select_register(*cycle.value); break;
case 1: crtc_.set_register(*cycle.value); break;
default: break;
// Check for an upper ROM selection
if constexpr (has_fdc) {
if(!(address&0x2000)) {
upper_rom_ = (*cycle.value == 7) ? ROMType::AMSDOS : ROMType::BASIC;
if(upper_rom_is_paged_) read_pointers_[3] = roms_[upper_rom_].data();
}
}
}
// Check for an 8255 PIO access
if(!(address & 0x800)) {
i8255_.write((address >> 8) & 3, *cycle.value);
}
// Check for a CRTC access
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: crtc_.select_register(*cycle.value); break;
case 1: crtc_.set_register(*cycle.value); break;
default: break;
}
}
// Check for an 8255 PIO access
if(!(address & 0x800)) {
i8255_.write((address >> 8) & 3, *cycle.value);
}
if constexpr (has_fdc) {
// Check for an FDC access
if((address & 0x580) == 0x100) {
flush_fdc();
fdc_.write(address & 1, *cycle.value);
}
// Check for a disk motor access
if(!(address & 0x580)) {
flush_fdc();
fdc_.set_motor_on(!!(*cycle.value));
}
}
break;
case CPU::Z80::PartialMachineCycle::Input:
// Default to nothing answering
*cycle.value = 0xff;
// Check for a PIO access
if(!(address & 0x800)) {
*cycle.value &= i8255_.read((address >> 8) & 3);
}
if constexpr (has_fdc) {
// Check for an FDC access
if((address & 0x580) == 0x100) {
flush_fdc();
fdc_.write(address & 1, *cycle.value);
if constexpr (has_fdc) {
if((address & 0x580) == 0x100) {
flush_fdc();
*cycle.value &= fdc_.read(address & 1);
}
}
// Check for a disk motor access
if(!(address & 0x580)) {
flush_fdc();
fdc_.set_motor_on(!!(*cycle.value));
// Check for a CRTC access; the below is not a typo, the CRTC can be selected
// for writing via an input, and will sample whatever happens to be available
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: crtc_.select_register(*cycle.value); break;
case 1: crtc_.set_register(*cycle.value); break;
case 2: *cycle.value &= crtc_.get_status(); break;
case 3: *cycle.value &= crtc_.get_register(); break;
}
}
}
break;
case CPU::Z80::PartialMachineCycle::Input:
// Default to nothing answering
*cycle.value = 0xff;
// Check for a PIO access
if(!(address & 0x800)) {
*cycle.value &= i8255_.read((address >> 8) & 3);
}
// Check for an FDC access
if constexpr (has_fdc) {
if((address & 0x580) == 0x100) {
flush_fdc();
*cycle.value &= fdc_.read(address & 1);
// As with the CRTC, the gate array will sample the bus if the address decoding
// implies that it should, unaware of data direction
if((address & 0xc000) == 0x4000) {
write_to_gate_array(*cycle.value);
}
}
break;
// Check for a CRTC access; the below is not a typo, the CRTC can be selected
// for writing via an input, and will sample whatever happens to be available
if(!(address & 0x4000)) {
switch((address >> 8) & 3) {
case 0: crtc_.select_register(*cycle.value); break;
case 1: crtc_.set_register(*cycle.value); break;
case 2: *cycle.value &= crtc_.get_status(); break;
case 3: *cycle.value &= crtc_.get_register(); break;
}
}
case CPU::Z80::PartialMachineCycle::Interrupt:
// Nothing is loaded onto the bus during an interrupt acknowledge, but
// the fact of the acknowledge needs to be posted on to the interrupt timer.
*cycle.value = 0xff;
interrupt_timer_.signal_interrupt_acknowledge();
break;
// As with the CRTC, the gate array will sample the bus if the address decoding
// implies that it should, unaware of data direction
if((address & 0xc000) == 0x4000) {
write_to_gate_array(*cycle.value);
}
break;
default: break;
}
case CPU::Z80::PartialMachineCycle::Interrupt:
// Nothing is loaded onto the bus during an interrupt acknowledge, but
// the fact of the acknowledge needs to be posted on to the interrupt timer.
*cycle.value = 0xff;
interrupt_timer_.signal_interrupt_acknowledge();
break;
default: break;
// Check whether the interrupt signal has changed due to CPU intervention.
if(interrupt_timer_.request_has_changed()) z80_.set_interrupt_line(interrupt_timer_.get_request());
}
// Check whether the interrupt signal has changed the other way.
if(interrupt_timer_.request_has_changed()) z80_.set_interrupt_line(interrupt_timer_.get_request());
update_subsystems();
// This implementation doesn't use time-stuffing; once in-phase waits won't be longer
// than a single cycle so there's no real performance benefit to trying to find the

View File

@ -43,9 +43,6 @@ struct ScanTarget: public Outputs::Display::ScanTarget {
const int src_pixels = scan_.end_points[1].data_offset - scan_.end_points[0].data_offset;
const int dst_pixels = (scan_.end_points[1].x - scan_.end_points[0].x) / WidthDivider;
const int step = (src_pixels << 16) / dst_pixels;
int position = 0;
const auto x1 = scan_.end_points[0].x / WidthDivider;
const auto x2 = scan_.end_points[1].x / WidthDivider;
@ -53,9 +50,15 @@ struct ScanTarget: public Outputs::Display::ScanTarget {
if(x_ < x1) {
std::fill(&line[x_], &line[x1], 0);
}
for(int x = x1; x < x2; x++) {
line[x] = data_[position >> 16];
position += step;
if(x2 != x1) {
const int step = (src_pixels << 16) / dst_pixels;
int position = 0;
for(int x = x1; x < x2; x++) {
line[x] = data_[position >> 16];
position += step;
}
}
x_ = x2;
}