1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-25 03:32:01 +00:00

Moves all LowpassSpeaker delegate calls outside of critical sections.

This commit is contained in:
Thomas Harte 2018-03-22 19:01:20 -04:00
parent 1acdab9448
commit 3d0c832a21

View File

@ -35,7 +35,7 @@ template <typename T> class LowpassSpeaker: public Speaker {
// Implemented as per Speaker.
float get_ideal_clock_rate_in_range(float minimum, float maximum) {
std::lock_guard<std::recursive_mutex> lock_guard(filter_parameters_mutex_);
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
// return twice the cut off, if applicable
if( filter_parameters_.high_frequency_cutoff > 0.0f &&
@ -58,7 +58,7 @@ template <typename T> class LowpassSpeaker: public Speaker {
// Implemented as per Speaker.
void set_output_rate(float cycles_per_second, int buffer_size) {
std::lock_guard<std::recursive_mutex> lock_guard(filter_parameters_mutex_);
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
filter_parameters_.output_cycles_per_second = cycles_per_second;
filter_parameters_.parameters_are_dirty = true;
output_buffer_.resize(static_cast<std::size_t>(buffer_size));
@ -68,7 +68,7 @@ template <typename T> class LowpassSpeaker: public Speaker {
Sets the clock rate of the input audio.
*/
void set_input_rate(float cycles_per_second) {
std::lock_guard<std::recursive_mutex> lock_guard(filter_parameters_mutex_);
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
filter_parameters_.input_cycles_per_second = cycles_per_second;
filter_parameters_.parameters_are_dirty = true;
filter_parameters_.input_rate_changed = true;
@ -81,7 +81,7 @@ template <typename T> class LowpassSpeaker: public Speaker {
path to be explicit about its effect, and get that simulation for free.
*/
void set_high_frequency_cutoff(float high_frequency) {
std::lock_guard<std::recursive_mutex> lock_guard(filter_parameters_mutex_);
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
filter_parameters_.high_frequency_cutoff = high_frequency;
filter_parameters_.parameters_are_dirty = true;
}
@ -96,17 +96,22 @@ template <typename T> class LowpassSpeaker: public Speaker {
std::size_t cycles_remaining = static_cast<size_t>(cycles.as_int());
if(!cycles_remaining) return;
std::lock_guard<std::recursive_mutex> lock_guard(filter_parameters_mutex_);
if(filter_parameters_.parameters_are_dirty) update_filter_coefficients();
if(filter_parameters_.input_rate_changed) {
delegate_->speaker_did_change_input_clock(this);
FilterParameters filter_parameters;
{
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
filter_parameters = filter_parameters_;
filter_parameters_.parameters_are_dirty = false;
filter_parameters_.input_rate_changed = false;
}
if(filter_parameters.parameters_are_dirty) update_filter_coefficients(filter_parameters);
if(filter_parameters.input_rate_changed) {
delegate_->speaker_did_change_input_clock(this);
}
// If input and output rates exactly match, and no additional cut-off has been specified,
// just accumulate results and pass on.
if( filter_parameters_.input_cycles_per_second == filter_parameters_.output_cycles_per_second &&
filter_parameters_.high_frequency_cutoff < 0.0) {
if( filter_parameters.input_cycles_per_second == filter_parameters.output_cycles_per_second &&
filter_parameters.high_frequency_cutoff < 0.0) {
while(cycles_remaining) {
std::size_t cycles_to_read = std::min(output_buffer_.size() - output_buffer_pointer_, cycles_remaining);
@ -126,8 +131,8 @@ template <typename T> class LowpassSpeaker: public Speaker {
}
// if the output rate is less than the input rate, or an additional cut-off has been specified, use the filter.
if( filter_parameters_.input_cycles_per_second > filter_parameters_.output_cycles_per_second ||
(filter_parameters_.input_cycles_per_second == filter_parameters_.output_cycles_per_second && filter_parameters_.high_frequency_cutoff >= 0.0)) {
if( filter_parameters.input_cycles_per_second > filter_parameters.output_cycles_per_second ||
(filter_parameters.input_cycles_per_second == filter_parameters.output_cycles_per_second && filter_parameters.high_frequency_cutoff >= 0.0)) {
while(cycles_remaining) {
std::size_t cycles_to_read = std::min(cycles_remaining, input_buffer_.size() - input_buffer_depth_);
sample_source_.get_samples(cycles_to_read, &input_buffer_[input_buffer_depth_]);
@ -188,7 +193,7 @@ template <typename T> class LowpassSpeaker: public Speaker {
std::unique_ptr<SignalProcessing::Stepper> stepper_;
std::unique_ptr<SignalProcessing::FIRFilter> filter_;
std::recursive_mutex filter_parameters_mutex_;
std::mutex filter_parameters_mutex_;
struct FilterParameters {
float input_cycles_per_second = 0.0f;
float output_cycles_per_second = 0.0f;
@ -198,27 +203,26 @@ template <typename T> class LowpassSpeaker: public Speaker {
bool input_rate_changed = false;
} filter_parameters_;
void update_filter_coefficients() {
void update_filter_coefficients(const FilterParameters &filter_parameters) {
// Make a guess at a good number of taps.
std::size_t number_of_taps = static_cast<std::size_t>(
ceilf((filter_parameters_.input_cycles_per_second + filter_parameters_.output_cycles_per_second) / filter_parameters_.output_cycles_per_second)
ceilf((filter_parameters.input_cycles_per_second + filter_parameters.output_cycles_per_second) / filter_parameters.output_cycles_per_second)
);
number_of_taps = (number_of_taps * 2) | 1;
filter_parameters_.parameters_are_dirty = false;
output_buffer_pointer_ = 0;
stepper_.reset(new SignalProcessing::Stepper(
static_cast<uint64_t>(filter_parameters_.input_cycles_per_second),
static_cast<uint64_t>(filter_parameters_.output_cycles_per_second)));
static_cast<uint64_t>(filter_parameters.input_cycles_per_second),
static_cast<uint64_t>(filter_parameters.output_cycles_per_second)));
float high_pass_frequency = filter_parameters_.output_cycles_per_second / 2.0f;
if(filter_parameters_.high_frequency_cutoff > 0.0) {
high_pass_frequency = std::min(filter_parameters_.output_cycles_per_second / 2.0f, high_pass_frequency);
float high_pass_frequency = filter_parameters.output_cycles_per_second / 2.0f;
if(filter_parameters.high_frequency_cutoff > 0.0) {
high_pass_frequency = std::min(filter_parameters.output_cycles_per_second / 2.0f, high_pass_frequency);
}
filter_.reset(new SignalProcessing::FIRFilter(
static_cast<unsigned int>(number_of_taps),
filter_parameters_.input_cycles_per_second,
filter_parameters.input_cycles_per_second,
0.0,
high_pass_frequency,
SignalProcessing::FIRFilter::DefaultAttenuation));