1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-08 02:29:54 +00:00

Proves that per-pixel sine/cos evaluation avoids phase issues.

Even in PAL mode. But I'd rather not _require_ this as it kind of negates directly-sampled input.
This commit is contained in:
Thomas Harte 2020-08-29 18:53:37 -04:00
parent 02cea40ffa
commit 3d564d85fd
2 changed files with 55 additions and 15 deletions

View File

@ -15,6 +15,22 @@
#include "BufferingScanTarget.hpp"
#include "FIRFilter.hpp"
/*
Pipelines in use:
RGB input -> RGB display:
just output it.
RGB input -> angular:
Composition in the display colour space (YIQ or YUV), conversion to and from S-Video or composite per output pixel.
Luminance/Phase -> angular:
Composition, conversion per output pixel.
Luminance -> composite:
Composition, conversion per input pixel.
*/
namespace {
struct Uniforms {
@ -154,9 +170,9 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
// Create a composition texture up front. (TODO: is it worth switching to an 8bpp texture in composite mode?)
MTLTextureDescriptor *const textureDescriptor = [MTLTextureDescriptor
texture2DDescriptorWithPixelFormat:MTLPixelFormatRG8Unorm
texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm
width:2048 // This 'should do'.
height:NumBufferedLines
height:NumBufferedLines // TODO: I want to turn this down _considerably_. A frame and a bit should be sufficient, though probably I'd also want to adjust the buffering scan target to keep most recent data?
mipmapped:NO];
textureDescriptor.usage = MTLTextureUsageRenderTarget | MTLTextureUsageShaderRead;
textureDescriptor.resourceOptions = MTLResourceStorageModePrivate;
@ -395,10 +411,10 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
}
// Whether S-Video or composite, apply the same relatively strong filter to colour channels.
SignalProcessing::FIRFilter chrominancefilter(15, cyclesPerLine, 0.0f, colourCyclesPerLine * 0.25f);
SignalProcessing::FIRFilter chrominancefilter(15, cyclesPerLine, 0.0f, colourCyclesPerLine);
const auto calculatedCoefficients = chrominancefilter.get_coefficients();
for(size_t c = 0; c < 8; ++c) {
firCoefficients[c].y = firCoefficients[c].z = calculatedCoefficients[c] * (isSVideoOutput ? 4.0f : 1.0f);
firCoefficients[c].y = firCoefficients[c].z = calculatedCoefficients[c] * (isSVideoOutput ? 2.0f : 1.0f);
}
uniforms()->radiansPerPixel = (colourCyclesPerLine * 3.141592654f * 2.0f) / cyclesPerLine;

View File

@ -81,10 +81,9 @@ struct SourceInterpolator {
float4 position [[position]];
float2 textureCoordinates;
float colourPhase;
float colourAmplitude;
float colourAmplitude [[flat]];
};
// MARK: - Vertex shaders.
float2 textureLocation(constant Line *line, float offset) {
@ -202,6 +201,10 @@ vertex SourceInterpolator scanToComposition( constant Uniforms &uniforms [[buffe
// MARK: - Various input format conversion samplers.
float2 quadrature(float phase) {
return float2(cos(phase), sin(phase));
}
// There's only one meaningful way to sample the luminance formats.
fragment float4 sampleLuminance1(SourceInterpolator vert [[stage_in]], texture2d<ushort> texture [[texture(0)]]) {
@ -276,13 +279,7 @@ float3 convertRed1Green1Blue1(SourceInterpolator vert, texture2d<ushort> texture
\
fragment float4 svideoSample##name(SourceInterpolator vert [[stage_in]], texture2d<pixelType> texture [[texture(0)]], constant Uniforms &uniforms [[buffer(0)]]) { \
const auto colour = uniforms.fromRGB * convert##name(vert, texture); \
const float2 colourSubcarrier = float2(cos(vert.colourPhase), sin(vert.colourPhase)); \
return float4( \
colour.r, \
dot(colour.gb, colourSubcarrier)*0.5 + 0.5, \
0.0, \
1.0 \
); \
return float4(colour, 1.0); \
} \
\
fragment float4 compositeSample##name(SourceInterpolator vert [[stage_in]], texture2d<pixelType> texture [[texture(0)]], constant Uniforms &uniforms [[buffer(0)]]) { \
@ -297,6 +294,14 @@ float3 convertRed1Green1Blue1(SourceInterpolator vert, texture2d<ushort> texture
); \
}
// const float2 colourSubcarrier = float2(cos(vert.colourPhase), sin(vert.colourPhase)); \
// return float4( \
// colour.r, \
// dot(colour.gb, colourSubcarrier)*0.5 + 0.5, \
// 0.0, \
// 1.0 \
// ); \
DeclareShaders(Red8Green8Blue8, float)
DeclareShaders(Red4Green4Blue4, ushort)
DeclareShaders(Red2Green2Blue2, ushort)
@ -340,14 +345,33 @@ fragment float4 clearFragment() {
// MARK: - Conversion fragment shaders
fragment float4 filterSVideoFragment(SourceInterpolator vert [[stage_in]], texture2d<float> texture [[texture(0)]], constant Uniforms &uniforms [[buffer(0)]]) {
#define Sample(x) texture.sample(standardSampler, vert.textureCoordinates + float2(x, 0.0f)).rg - float2(0.0f, 0.5f)
const float2 rawSamples[] = {
#define Sample(x) texture.sample(standardSampler, vert.textureCoordinates + float2(x, 0.0f))
float4 rawSamples[] = {
Sample(-7), Sample(-6), Sample(-5), Sample(-4), Sample(-3), Sample(-2), Sample(-1),
Sample(0),
Sample(1), Sample(2), Sample(3), Sample(4), Sample(5), Sample(6), Sample(7),
};
#undef Sample
#define Offset(x) vert.colourPhase + (x)*uniforms.radiansPerPixel
const float angles[] = {
Offset(-7), Offset(-6), Offset(-5), Offset(-4), Offset(-3), Offset(-2), Offset(-1),
vert.colourPhase,
Offset(1), Offset(2), Offset(3), Offset(4), Offset(5), Offset(6), Offset(7)
};
#undef Offset
#define Map(x) { \
const float2 colourSubcarrier = float2(cos(angles[x]), sin(angles[x])); \
rawSamples[x].g = dot(rawSamples[x].gb, colourSubcarrier); \
}
Map(0); Map(1); Map(2); Map(3); Map(4); Map(5);
Map(6); Map(7); Map(8); Map(9); Map(10); Map(11);
Map(12); Map(13); Map(14);
#undef Map
#define Sample(c, o, a) \
uniforms.firCoefficients[c] * float3(rawSamples[o].r, rawSamples[o].g*cos(vert.colourPhase + (a)*uniforms.radiansPerPixel), rawSamples[o].g*sin(vert.colourPhase + (a)*uniforms.radiansPerPixel))