1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-03-25 06:30:38 +00:00

Establish more of the 680x0 executor loop.

This commit is contained in:
Thomas Harte 2022-05-01 13:00:20 -04:00
parent df999978f1
commit 42927c1e32
6 changed files with 146 additions and 19 deletions

@ -21,24 +21,83 @@ Executor<model, BusHandler>::Executor(BusHandler &handler) : bus_handler_(handle
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::reset() {
// TODO.
// Establish: supervisor state, all interrupts blocked.
status_.set_status(0b0010'0011'1000'0000);
// Seed stack pointer and program counter.
data_[7] = bus_handler_.template read<uint32_t>(0);
program_counter_.l = bus_handler_.template read<uint32_t>(4);
}
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandler>::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) {
EffectiveAddress ea;
switch(instruction.mode(index)) {
case AddressingMode::None:
// Permit an uninitialised effective address to be returned;
// this value shouldn't be used.
break;
//
// Operands that don't have effective addresses, which are returned as values.
//
case AddressingMode::DataRegisterDirect:
ea.value = data_[instruction.reg(index)];
ea.is_address = false;
break;
case AddressingMode::AddressRegisterDirect:
ea.value = address_[instruction.reg(index)];
ea.is_address = false;
break;
case AddressingMode::Quick:
ea.value = quick(instruction.operation, opcode);
ea.is_address = false;
break;
//
// Operands that are effective addresses.
//
default:
// TODO.
assert(false);
break;
}
return ea;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run_for_instructions(int count) {
while(count--) {
// TODO: check interrupt level, trace flag.
// Read the next instruction.
const Preinstruction instruction = decoder_.decode(bus_handler_.template read<uint16_t>(program_counter_.l));
const auto instruction_address = program_counter_.l;
const uint16_t opcode = bus_handler_.template read<uint16_t>(program_counter_.l);
const Preinstruction instruction = decoder_.decode(opcode);
program_counter_.l += 2;
// Obtain the appropriate sequence.
Sequence<model> sequence(instruction.operation);
// Temporary storage.
CPU::SlicedInt32 source, dest;
CPU::SlicedInt32 operand_[2];
EffectiveAddress effective_address_[2];
// Calculate effective addresses; copy 'addresses' into the
// operands by default both: (i) because they might be values,
// rather than addresses; and (ii) then they'll be there for use
// by LEA and PEA.
//
// TODO: this work should be performed by a full Decoder, so that it can be cached.
effective_address_[0] = calculate_effective_address(instruction, opcode, 0);
effective_address_[1] = calculate_effective_address(instruction, opcode, 1);
operand_[0].l = effective_address_[0].value;
operand_[1].l = effective_address_[1].value;
// Obtain the appropriate sequence.
//
// TODO: make a decision about whether this goes into a fully-decoded Instruction.
Sequence<model> sequence(instruction.operation);
// Perform it.
while(!sequence.empty()) {
@ -47,9 +106,67 @@ void Executor<model, BusHandler>::run_for_instructions(int count) {
switch(step) {
default: assert(false); // i.e. TODO
case Step::FetchOp1:
case Step::FetchOp2: {
const auto index = int(step) & 1;
// If the operand wasn't indirect, it's already fetched.
if(!effective_address_[index].is_address) continue;
// TODO: potential bus alignment exception.
switch(instruction.size()) {
case DataSize::Byte:
operand_[index].l = bus_handler_.template read<uint8_t>(effective_address_[index].value);
break;
case DataSize::Word:
operand_[index].l = bus_handler_.template read<uint16_t>(effective_address_[index].value);
break;
case DataSize::LongWord:
operand_[index].l = bus_handler_.template read<uint32_t>(effective_address_[index].value);
break;
}
} break;
case Step::Perform:
perform<model>(instruction, source, dest, status_, this);
perform<model>(instruction, operand_[0], operand_[1], status_, this);
break;
case Step::StoreOp1:
case Step::StoreOp2: {
const auto index = int(step) & 1;
// If the operand wasn't indirect, it's already fetched.
if(!effective_address_[index].is_address) {
// This must be either address or data register indirect.
assert(
instruction.mode(index) == AddressingMode::DataRegisterDirect ||
instruction.mode(index) == AddressingMode::AddressRegisterDirect);
// TODO: is it worth holding registers as a single block to avoid this conditional?
if(instruction.mode(index) == AddressingMode::DataRegisterDirect) {
data_[instruction.reg(index)] = operand_[index];
} else {
address_[instruction.reg(index)] = operand_[index];
}
break;
}
// TODO: potential bus alignment exception.
switch(instruction.size()) {
case DataSize::Byte:
bus_handler_.write(effective_address_[index].value, operand_[index].b);
break;
case DataSize::Word:
bus_handler_.write(effective_address_[index].value, operand_[index].w);
break;
case DataSize::LongWord:
bus_handler_.write(effective_address_[index].value, operand_[index].l);
break;
}
} break;
}
}
}

@ -42,6 +42,11 @@ template <Model model, typename BusHandler> class Executor {
Predecoder<model> decoder_;
void reset();
struct EffectiveAddress {
uint32_t value;
bool is_address;
};
EffectiveAddress calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index);
// Processor state.
Status status_;

@ -356,27 +356,37 @@ class Preinstruction {
// For one-operand instructions, only argument 0 will
// be provided, and will be a source and/or destination as
// per the semantics of the operation.
//
// The versions templated on index do a range check;
// if using the runtime versions then results for indices
// other than 0 and 1 are undefined.
AddressingMode mode(int index) const {
return AddressingMode(operands_[index] & 0x1f);
}
template <int index> AddressingMode mode() const {
if constexpr (index > 1) {
return AddressingMode::None;
}
return AddressingMode(operands_[index] & 0x1f);
return mode(index);
}
int reg(int index) const {
return operands_[index] >> 5;
}
template <int index> int reg() const {
if constexpr (index > 1) {
return 0;
}
return operands_[index] >> 5;
return reg(index);
}
bool requires_supervisor() {
bool requires_supervisor() const {
return flags_ & 0x80;
}
DataSize size() {
DataSize size() const {
return DataSize(flags_ & 0x03);
}
Condition condition() {
Condition condition() const {
return Condition((flags_ >> 2) & 0x0f);
}

@ -28,7 +28,6 @@ template<Model model> uint32_t Sequence<model>::steps_for(Operation operation) {
//
case Operation::LEA:
return Steps<
Step::CalcEA1,
Step::Perform
>::value;

@ -15,7 +15,7 @@
namespace InstructionSet {
namespace M68k {
/// Additional guarantees: [Fetch/Store/CalcEA][1/2] have an LSB of 0 for
/// Additional guarantees: [Fetch/Store][1/2] have an LSB of 0 for
/// operand 1, and an LSB of 1 for operand 2.
enum class Step {
/// No further steps remain.
@ -30,10 +30,6 @@ enum class Step {
StoreOp1,
/// Store the value of operand 2.
StoreOp2,
/// Calculate effective address of operand 1.
CalcEA1,
/// Calculate effective address of operand 2.
CalcEA2,
/// A catch-all for bus activity that doesn't fit the pattern
/// of fetch/stop operand 1/2, e.g. this opaquely covers almost
/// the entirety of MOVEM.

@ -22,7 +22,7 @@ struct Status {
int is_supervisor_ = 0; // 1 => processor is in supervisor mode; 0 => it isn't.
/* b7b9 */
int interrupt_level_ = 0; // The direct integer value of thee current interrupt level.
int interrupt_level_ = 0; // The direct integer value of the current interrupt level.
/* b0b4 */
uint_fast32_t zero_result_ = 0; // The zero flag is set if this value is zero.