mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-08 02:29:54 +00:00
Forces a no-op compute shader into the S-Video pipeline.
The intention is to restrict the area acted over, and to do the S-Video filtering in there. Then I'll just need two such stages for composite.
This commit is contained in:
parent
67d4dbf91a
commit
67ca298a72
@ -202,9 +202,10 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
|
||||
// Textures: additional storage used when processing S-Video and composite colour input.
|
||||
id<MTLTexture> _finalisedLineTexture;
|
||||
MTLRenderPassDescriptor *_finalisedLineRenderPass;
|
||||
id<MTLComputePipelineState> _finalisedLineState;
|
||||
id<MTLTexture> _separatedLumaTexture;
|
||||
MTLRenderPassDescriptor *_separatedLumaRenderPass;
|
||||
id<MTLComputePipelineState> _separatedLumaState;
|
||||
NSUInteger _lineBufferPixelsPerLine;
|
||||
|
||||
// The scan target in C++-world terms and the non-GPU storage for it.
|
||||
BufferingScanTarget _scanTarget;
|
||||
@ -341,16 +342,15 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
width:2048 // This 'should do'.
|
||||
height:NumBufferedLines
|
||||
mipmapped:NO];
|
||||
lineTextureDescriptor.usage = MTLTextureUsageRenderTarget | MTLTextureUsageShaderRead;
|
||||
lineTextureDescriptor.resourceOptions = MTLResourceStorageModePrivate;
|
||||
|
||||
if(_pipeline == Pipeline::DirectToDisplay) {
|
||||
// Buffers are not required when outputting direct to display; so if this isn't that then release anything
|
||||
// currently being held and return.
|
||||
_finalisedLineTexture = nil;
|
||||
_finalisedLineRenderPass = nil;
|
||||
_finalisedLineState = nil;
|
||||
_separatedLumaTexture = nil;
|
||||
_separatedLumaRenderPass = nil;
|
||||
_separatedLumaState = nil;
|
||||
_compositionTexture = nil;
|
||||
_compositionRenderPass = nil;
|
||||
return;
|
||||
@ -358,12 +358,18 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
|
||||
// Create a composition texture if one does not yet exist.
|
||||
if(!_compositionTexture) {
|
||||
lineTextureDescriptor.usage = MTLTextureUsageRenderTarget | MTLTextureUsageShaderRead;
|
||||
_compositionTexture = [_view.device newTextureWithDescriptor:lineTextureDescriptor];
|
||||
}
|
||||
|
||||
// Grab the shader library.
|
||||
id<MTLLibrary> library = [_view.device newDefaultLibrary];
|
||||
lineTextureDescriptor.usage = MTLTextureUsageShaderWrite | MTLTextureUsageShaderRead;
|
||||
|
||||
// The finalised texture will definitely exist.
|
||||
if(!_finalisedLineTexture) {
|
||||
_finalisedLineTexture = [_view.device newTextureWithDescriptor:lineTextureDescriptor];
|
||||
_finalisedLineState = [_view.device newComputePipelineStateWithFunction:[library newFunctionWithName:@"copyKernel"] error:nil];
|
||||
}
|
||||
|
||||
// A luma separation texture will exist only for composite colour.
|
||||
@ -542,7 +548,7 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
|
||||
// Create suitable FIR filters.
|
||||
auto *const firCoefficients = uniforms()->firCoefficients;
|
||||
const float cyclesPerLine = float(modals.cycles_per_line) * uniforms()->cyclesMultiplier;
|
||||
_lineBufferPixelsPerLine = NSUInteger(modals.cycles_per_line) * NSUInteger(uniforms()->cyclesMultiplier);
|
||||
const float colourCyclesPerLine = float(modals.colour_cycle_numerator) / float(modals.colour_cycle_denominator);
|
||||
|
||||
if(isSVideoOutput) {
|
||||
@ -553,7 +559,7 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
firCoefficients[7].x = 1.0f;
|
||||
} else {
|
||||
// In composite, filter luminance gently.
|
||||
SignalProcessing::FIRFilter luminancefilter(15, cyclesPerLine, 0.0f, colourCyclesPerLine * 0.5f);
|
||||
SignalProcessing::FIRFilter luminancefilter(15, float(_lineBufferPixelsPerLine), 0.0f, colourCyclesPerLine * 0.5f);
|
||||
const auto calculatedCoefficients = luminancefilter.get_coefficients();
|
||||
for(size_t c = 0; c < 8; ++c) {
|
||||
firCoefficients[c].x = calculatedCoefficients[c];
|
||||
@ -561,13 +567,13 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
}
|
||||
|
||||
// Whether S-Video or composite, apply the same relatively strong filter to colour channels.
|
||||
SignalProcessing::FIRFilter chrominancefilter(15, cyclesPerLine, 0.0f, colourCyclesPerLine * (isSVideoOutput ? 1.0f : 0.25f));
|
||||
SignalProcessing::FIRFilter chrominancefilter(15, float(_lineBufferPixelsPerLine), 0.0f, colourCyclesPerLine * (isSVideoOutput ? 1.0f : 0.25f));
|
||||
const auto calculatedCoefficients = chrominancefilter.get_coefficients();
|
||||
for(size_t c = 0; c < 8; ++c) {
|
||||
firCoefficients[c].y = firCoefficients[c].z = calculatedCoefficients[c] * (isSVideoOutput ? 4.0f : 4.0f);
|
||||
}
|
||||
|
||||
uniforms()->radiansPerPixel = (colourCyclesPerLine * 3.141592654f * 2.0f) / cyclesPerLine;
|
||||
uniforms()->radiansPerPixel = (colourCyclesPerLine * 3.141592654f * 2.0f) / float(_lineBufferPixelsPerLine);
|
||||
}
|
||||
|
||||
// Build the output pipeline.
|
||||
@ -602,7 +608,7 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
[encoder setRenderPipelineState:_outputPipeline];
|
||||
|
||||
if(_pipeline != Pipeline::DirectToDisplay) {
|
||||
[encoder setFragmentTexture:_compositionTexture atIndex:0];
|
||||
[encoder setFragmentTexture:_finalisedLineTexture atIndex:0];
|
||||
[encoder setVertexBuffer:_linesBuffer offset:0 atIndex:0];
|
||||
} else {
|
||||
[encoder setFragmentTexture:_writeAreaTexture atIndex:0];
|
||||
@ -643,6 +649,38 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
[encoder endEncoding];
|
||||
}
|
||||
|
||||
- (void)composeOutputArea:(const BufferingScanTarget::OutputArea &)outputArea commandBuffer:(id<MTLCommandBuffer>)commandBuffer {
|
||||
// Output all scans to the composition buffer.
|
||||
const id<MTLRenderCommandEncoder> encoder = [commandBuffer renderCommandEncoderWithDescriptor:_compositionRenderPass];
|
||||
[encoder setRenderPipelineState:_composePipeline];
|
||||
|
||||
[encoder setVertexBuffer:_scansBuffer offset:0 atIndex:0];
|
||||
[encoder setVertexBuffer:_uniformsBuffer offset:0 atIndex:1];
|
||||
[encoder setVertexTexture:_compositionTexture atIndex:0];
|
||||
|
||||
[encoder setFragmentBuffer:_uniformsBuffer offset:0 atIndex:0];
|
||||
[encoder setFragmentTexture:_writeAreaTexture atIndex:0];
|
||||
|
||||
#define OutputScans(start, size) [encoder drawPrimitives:MTLPrimitiveTypeLine vertexStart:0 vertexCount:2 instanceCount:size baseInstance:start]
|
||||
RangePerform(outputArea.start.scan, outputArea.end.scan, NumBufferedScans, OutputScans);
|
||||
#undef OutputScans
|
||||
[encoder endEncoding];
|
||||
}
|
||||
|
||||
- (void)dispatchComputeCommandEncoder:(id<MTLComputeCommandEncoder>)encoder pipelineState:(id<MTLComputePipelineState>)pipelineState width:(NSUInteger)width height:(NSUInteger)height {
|
||||
// This follows the recommendations at https://developer.apple.com/documentation/metal/calculating_threadgroup_and_grid_sizes ;
|
||||
// I currently have no independent opinion whatsoever.
|
||||
const MTLSize threadsPerThreadgroup = MTLSizeMake(
|
||||
pipelineState.threadExecutionWidth,
|
||||
pipelineState.maxTotalThreadsPerThreadgroup / pipelineState.threadExecutionWidth,
|
||||
1
|
||||
);
|
||||
const MTLSize threadsPerGrid = MTLSizeMake(width, height, 1);
|
||||
|
||||
[encoder setComputePipelineState:pipelineState];
|
||||
[encoder dispatchThreads:threadsPerGrid threadsPerThreadgroup:threadsPerThreadgroup];
|
||||
}
|
||||
|
||||
- (void)updateFrameBuffer {
|
||||
// TODO: rethink BufferingScanTarget::perform. Is it now really just for guarding the modals?
|
||||
_scanTarget.perform([=] {
|
||||
@ -681,48 +719,51 @@ using BufferingScanTarget = Outputs::Display::BufferingScanTarget;
|
||||
// Hence every pixel is touched every frame, regardless of the machine's output.
|
||||
//
|
||||
|
||||
if(_pipeline != Pipeline::DirectToDisplay) {
|
||||
// Output all scans to the composition buffer.
|
||||
id<MTLRenderCommandEncoder> encoder = [commandBuffer renderCommandEncoderWithDescriptor:_compositionRenderPass];
|
||||
[encoder setRenderPipelineState:_composePipeline];
|
||||
|
||||
[encoder setVertexBuffer:_scansBuffer offset:0 atIndex:0];
|
||||
[encoder setVertexBuffer:_uniformsBuffer offset:0 atIndex:1];
|
||||
[encoder setVertexTexture:_compositionTexture atIndex:0];
|
||||
|
||||
[encoder setFragmentBuffer:_uniformsBuffer offset:0 atIndex:0];
|
||||
[encoder setFragmentTexture:_writeAreaTexture atIndex:0];
|
||||
|
||||
#define OutputScans(start, size) [encoder drawPrimitives:MTLPrimitiveTypeLine vertexStart:0 vertexCount:2 instanceCount:size baseInstance:start]
|
||||
RangePerform(outputArea.start.scan, outputArea.end.scan, NumBufferedScans, OutputScans);
|
||||
#undef OutputScans
|
||||
[encoder endEncoding];
|
||||
|
||||
// Output lines, broken up by frame.
|
||||
size_t startLine = outputArea.start.line;
|
||||
size_t line = outputArea.start.line;
|
||||
while(line != outputArea.end.line) {
|
||||
if(_lineMetadataBuffer[line].is_first_in_frame && _lineMetadataBuffer[line].previous_frame_was_complete) {
|
||||
[self outputFrom:startLine to:line commandBuffer:commandBuffer];
|
||||
[self outputFrameCleanerToCommandBuffer:commandBuffer];
|
||||
startLine = line;
|
||||
switch(_pipeline) {
|
||||
case Pipeline::DirectToDisplay: {
|
||||
// Output scans directly, broken up by frame.
|
||||
size_t line = outputArea.start.line;
|
||||
size_t scan = outputArea.start.scan;
|
||||
while(line != outputArea.end.line) {
|
||||
if(_lineMetadataBuffer[line].is_first_in_frame && _lineMetadataBuffer[line].previous_frame_was_complete) {
|
||||
[self outputFrom:scan to:_lineMetadataBuffer[line].first_scan commandBuffer:commandBuffer];
|
||||
[self outputFrameCleanerToCommandBuffer:commandBuffer];
|
||||
scan = _lineMetadataBuffer[line].first_scan;
|
||||
}
|
||||
line = (line + 1) % NumBufferedLines;
|
||||
}
|
||||
line = (line + 1) % NumBufferedLines;
|
||||
}
|
||||
[self outputFrom:startLine to:outputArea.end.line commandBuffer:commandBuffer];
|
||||
} else {
|
||||
// Output scans directly, broken up by frame.
|
||||
size_t line = outputArea.start.line;
|
||||
size_t scan = outputArea.start.scan;
|
||||
while(line != outputArea.end.line) {
|
||||
if(_lineMetadataBuffer[line].is_first_in_frame && _lineMetadataBuffer[line].previous_frame_was_complete) {
|
||||
[self outputFrom:scan to:_lineMetadataBuffer[line].first_scan commandBuffer:commandBuffer];
|
||||
[self outputFrameCleanerToCommandBuffer:commandBuffer];
|
||||
scan = _lineMetadataBuffer[line].first_scan;
|
||||
[self outputFrom:scan to:outputArea.end.scan commandBuffer:commandBuffer];
|
||||
} break;
|
||||
|
||||
default: // TODO: add composite colour pipeline, and eliminate default.
|
||||
case Pipeline::SVideo: {
|
||||
// Build the composition buffer.
|
||||
[self composeOutputArea:outputArea commandBuffer:commandBuffer];
|
||||
|
||||
// Filter to the finalised line texture.
|
||||
id<MTLComputeCommandEncoder> computeEncoder = [commandBuffer computeCommandEncoder];
|
||||
[computeEncoder setTexture:_compositionTexture atIndex:0];
|
||||
[computeEncoder setTexture:_finalisedLineTexture atIndex:1];
|
||||
[computeEncoder setBuffer:_uniformsBuffer offset:0 atIndex:0];
|
||||
|
||||
// TODO: limit processed area to those lines that are actually in use.
|
||||
[self dispatchComputeCommandEncoder:computeEncoder pipelineState:_finalisedLineState width:_lineBufferPixelsPerLine height:NumBufferedLines];
|
||||
|
||||
[computeEncoder endEncoding];
|
||||
|
||||
// Output lines, broken up by frame.
|
||||
size_t startLine = outputArea.start.line;
|
||||
size_t line = outputArea.start.line;
|
||||
while(line != outputArea.end.line) {
|
||||
if(_lineMetadataBuffer[line].is_first_in_frame && _lineMetadataBuffer[line].previous_frame_was_complete) {
|
||||
[self outputFrom:startLine to:line commandBuffer:commandBuffer];
|
||||
[self outputFrameCleanerToCommandBuffer:commandBuffer];
|
||||
startLine = line;
|
||||
}
|
||||
line = (line + 1) % NumBufferedLines;
|
||||
}
|
||||
line = (line + 1) % NumBufferedLines;
|
||||
}
|
||||
[self outputFrom:scan to:outputArea.end.scan commandBuffer:commandBuffer];
|
||||
[self outputFrom:startLine to:outputArea.end.line commandBuffer:commandBuffer];
|
||||
} break;
|
||||
}
|
||||
|
||||
// Add a callback to update the scan target buffer and commit the drawing.
|
||||
|
@ -384,3 +384,13 @@ fragment float4 filterSVideoFragment(SourceInterpolator vert [[stage_in]], textu
|
||||
fragment float4 filterCompositeFragment(SourceInterpolator vert [[stage_in]], texture2d<float> texture [[texture(0)]], constant Uniforms &uniforms [[buffer(0)]]) {
|
||||
return applyFilter<true>(vert, texture, uniforms);
|
||||
}
|
||||
|
||||
// MARK: - Kernel functions
|
||||
|
||||
// TEST FUNCTION. Just copies from input to output.
|
||||
kernel void copyKernel( texture2d<float, access::read> inTexture [[texture(0)]],
|
||||
texture2d<float, access::write> outTexture [[texture(1)]],
|
||||
uint2 gid [[thread_position_in_grid]],
|
||||
constant Uniforms &uniforms [[buffer(0)]]) {
|
||||
outTexture.write(inTexture.read(gid), gid);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user