1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 00:30:31 +00:00

Basic attempts to organise myself into shape for composite output continue.

This commit is contained in:
Thomas Harte 2016-03-07 21:22:47 -05:00
parent 1e5fe2b2c1
commit 6dfe877c43
2 changed files with 93 additions and 62 deletions

View File

@ -40,7 +40,7 @@ Machine::Machine() :
"float texValue = texture(texID, coordinate).r;" "float texValue = texture(texID, coordinate).r;"
"return vec4(step(4.0/256.0, mod(texValue, 8.0/256.0)), step(2.0/256.0, mod(texValue, 4.0/256.0)), step(1.0/256.0, mod(texValue, 2.0/256.0)), 1.0);" "return vec4(step(4.0/256.0, mod(texValue, 8.0/256.0)), step(2.0/256.0, mod(texValue, 4.0/256.0)), step(1.0/256.0, mod(texValue, 2.0/256.0)), 1.0);"
"}"); "}");
_crt->set_output_device(Outputs::CRT::Television); _crt->set_output_device(Outputs::CRT::Monitor);
// _crt->set_visible_area(Outputs::Rect(0.23108f, 0.0f, 0.8125f, 0.98f)); //1875 // _crt->set_visible_area(Outputs::Rect(0.23108f, 0.0f, 0.8125f, 0.98f)); //1875
memset(_key_states, 0, sizeof(_key_states)); memset(_key_states, 0, sizeof(_key_states));

View File

@ -17,7 +17,8 @@
using namespace Outputs; using namespace Outputs;
struct CRT::OpenGLState { struct CRT::OpenGLState {
std::unique_ptr<OpenGL::Shader> rgb_shader_program, composite_input_shader_program; std::unique_ptr<OpenGL::Shader> rgb_shader_program;
std::unique_ptr<OpenGL::Shader> composite_input_shader_program, composite_output_shader_program;
GLuint arrayBuffer, vertexArray; GLuint arrayBuffer, vertexArray;
size_t verticesPerSlice; size_t verticesPerSlice;
@ -122,16 +123,6 @@ void CRT::draw_frame(unsigned int output_width, unsigned int output_height, bool
// lock down any further work on the current frame // lock down any further work on the current frame
_output_mutex->lock(); _output_mutex->lock();
// update uniforms
push_size_uniforms(output_width, output_height);
// clear the buffer
glClear(GL_COLOR_BUFFER_BIT);
glBindFramebuffer(GL_FRAMEBUFFER, _openGL_state->defaultFramebuffer);
// glBindTexture(GL_TEXTURE_2D, _openGL_state->textureName);
// glGetIntegerv(GL_VIEWPORT, results);
// upload more source pixel data if any; we'll always resubmit the last line submitted last // upload more source pixel data if any; we'll always resubmit the last line submitted last
// time as it may have had extra data appended to it // time as it may have had extra data appended to it
for(unsigned int buffer = 0; buffer < _buffer_builder->number_of_buffers; buffer++) for(unsigned int buffer = 0; buffer < _buffer_builder->number_of_buffers; buffer++)
@ -159,6 +150,20 @@ void CRT::draw_frame(unsigned int output_width, unsigned int output_height, bool
} }
} }
// check for anything to decode from composite
if(_composite_src_runs->number_of_vertices)
{
_openGL_state->composite_input_shader_program->bind();
_composite_src_runs->reset();
}
// _output_mutex->unlock();
// return;
// reinstate the output framebuffer
// glBindTexture(GL_TEXTURE_2D, _openGL_state->textureName);
// glGetIntegerv(GL_VIEWPORT, results);
// ensure array buffer is up to date // ensure array buffer is up to date
size_t max_number_of_vertices = 0; size_t max_number_of_vertices = 0;
for(int c = 0; c < kCRTNumberOfFields; c++) for(int c = 0; c < kCRTNumberOfFields; c++)
@ -178,8 +183,20 @@ void CRT::draw_frame(unsigned int output_width, unsigned int output_height, bool
} }
} }
// switch to the output shader
if(_openGL_state->rgb_shader_program)
{
_openGL_state->rgb_shader_program->bind();
// update uniforms
push_size_uniforms(output_width, output_height);
// Ensure we're back on the output framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, _openGL_state->defaultFramebuffer); glBindFramebuffer(GL_FRAMEBUFFER, _openGL_state->defaultFramebuffer);
// clear the buffer
glClear(GL_COLOR_BUFFER_BIT);
// draw all sitting frames // draw all sitting frames
unsigned int run = (unsigned int)_run_write_pointer; unsigned int run = (unsigned int)_run_write_pointer;
// printf("%d: %zu v %zu\n", run, _run_builders[run]->uploaded_vertices, _run_builders[run]->number_of_vertices); // printf("%d: %zu v %zu\n", run, _run_builders[run]->uploaded_vertices, _run_builders[run]->number_of_vertices);
@ -209,6 +226,7 @@ void CRT::draw_frame(unsigned int output_width, unsigned int output_height, bool
// advance back in time // advance back in time
run = (run - 1 + kCRTNumberOfFields) % kCRTNumberOfFields; run = (run - 1 + kCRTNumberOfFields) % kCRTNumberOfFields;
} }
}
_output_mutex->unlock(); _output_mutex->unlock();
} }
@ -262,7 +280,8 @@ char *CRT::get_input_vertex_shader()
"in vec2 phaseAndAmplitude;" "in vec2 phaseAndAmplitude;"
"in float phaseTime;" "in float phaseTime;"
"uniform vec2 textureSize;" "uniform vec2 outputTextureSize;"
"uniform vec2 inputTextureSize;"
"uniform float phaseCyclesPerTick;" "uniform float phaseCyclesPerTick;"
"out vec2 inputPositionVarying;" "out vec2 inputPositionVarying;"
@ -270,8 +289,8 @@ char *CRT::get_input_vertex_shader()
"void main(void)" "void main(void)"
"{" "{"
"inputPositionVarying = inputPosition;" "inputPositionVarying = vec2(inputPositionVarying.x / inputTextureSize.x, (inputPositionVarying.y + 0.5) / inputTextureSize.y);"
"gl_Position = vec4(outputPosition.x * 2.0 / textureSize.x - 1.0, outputPosition.y * 2.0 / textureSize.y - 1.0, 0.0, 1.0);" "gl_Position = vec4(outputPosition.x * 2.0 / outputTextureSize - 1.0, outputPosition.y * 2.0 / outputTextureSize - 1.0, 0.0, 1.0);"
"phaseVarying = (phaseCyclesPerTick * phaseTime + phaseAndAmplitude.x) * 2.0 * 3.141592654;" "phaseVarying = (phaseCyclesPerTick * phaseTime + phaseAndAmplitude.x) * 2.0 * 3.141592654;"
"}"); "}");
} }
@ -281,6 +300,7 @@ char *CRT::get_input_fragment_shader()
const char *composite_shader = _composite_shader; const char *composite_shader = _composite_shader;
if(!composite_shader) if(!composite_shader)
{ {
// TODO: synthesise an RGB -> (selected colour space) shader
} }
return get_compound_shader( return get_compound_shader(
@ -393,53 +413,6 @@ char *CRT::get_output_fragment_shader(const char *sampling_function)
, sampling_function); , sampling_function);
} }
// const char *const ntscVertexShaderGlobals =
// "out vec2 srcCoordinatesVarying[4];\n"
// "out float phase;\n";
//
// const char *const ntscVertexShaderBody =
// "phase = srcCoordinates.x * 6.283185308;\n"
// "\n"
// "srcCoordinatesVarying[0] = vec2(srcCoordinates.x / textureSize.x, (srcCoordinates.y + 0.5) / textureSize.y);\n"
// "srcCoordinatesVarying[3] = srcCoordinatesVarying[0] + vec2(0.375 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[2] = srcCoordinatesVarying[0] + vec2(0.125 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[1] = srcCoordinatesVarying[0] - vec2(0.125 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[0] = srcCoordinatesVarying[0] - vec2(0.325 / textureSize.x, 0.0);\n";
// assumes y = [0, 1], i and q = [-0.5, 0.5]; therefore i components are multiplied by 1.1914 versus standard matrices, q by 1.0452
// const char *const yiqToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);";
// assumes y = [0,1], u and v = [-0.5, 0.5]; therefore u components are multiplied by 1.14678899082569, v by 0.8130081300813
// const char *const yuvToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 0.0, -0.75213899082569, 2.33040137614679, 0.92669105691057, -0.4720325203252, 0.0);";
// const char *const ntscFragmentShaderGlobals =
// "in vec2 srcCoordinatesVarying[4];\n"
// "in float phase;\n"
// "\n"
// "// for conversion from i and q are in the range [-0.5, 0.5] (so i needs to be multiplied by 1.1914 and q by 1.0452)\n"
// "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);\n";
// const char *const ntscFragmentShaderBody =
// "vec4 angles = vec4(phase) + vec4(-2.35619449019234, -0.78539816339745, 0.78539816339745, 2.35619449019234);\n"
// "vec4 samples = vec4("
// " sample(srcCoordinatesVarying[0], angles.x),"
// " sample(srcCoordinatesVarying[1], angles.y),"
// " sample(srcCoordinatesVarying[2], angles.z),"
// " sample(srcCoordinatesVarying[3], angles.w)"
// ");\n"
// "\n"
// "float y = dot(vec4(0.25), samples);\n"
// "samples -= vec4(y);\n"
// "\n"
// "float i = dot(cos(angles), samples);\n"
// "float q = dot(sin(angles), samples);\n"
// "\n"
// "fragColour = 5.0 * texture(shadowMaskTexID, shadowMaskCoordinates) * vec4(yiqToRGB * vec3(y, i, q), 1.0);//sin(lateralVarying));\n";
// dot(vec3(1.0/6.0, 2.0/3.0, 1.0/6.0), vec3(sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0])));//sin(lateralVarying));\n";
//}
#pragma mark - Shader utilities #pragma mark - Shader utilities
char *CRT::get_compound_shader(const char *base, const char *insert) char *CRT::get_compound_shader(const char *base, const char *insert)
@ -460,6 +433,16 @@ void CRT::prepare_composite_input_shader()
if(vertex_shader && fragment_shader) if(vertex_shader && fragment_shader)
{ {
_openGL_state->composite_input_shader_program = std::unique_ptr<OpenGL::Shader>(new OpenGL::Shader(vertex_shader, fragment_shader)); _openGL_state->composite_input_shader_program = std::unique_ptr<OpenGL::Shader>(new OpenGL::Shader(vertex_shader, fragment_shader));
GLint texIDUniform = _openGL_state->composite_input_shader_program->get_uniform_location("texID");
GLint inputTextureSizeUniform = _openGL_state->composite_input_shader_program->get_uniform_location("inputTextureSize");
GLint outputTextureSizeUniform = _openGL_state->composite_input_shader_program->get_uniform_location("outputTextureSize");
GLint phaseCyclesPerTickUniform = _openGL_state->composite_input_shader_program->get_uniform_location("phaseCyclesPerTick");
glUniform1i(texIDUniform, first_supplied_buffer_texture_unit);
glUniform2f(outputTextureSizeUniform, CRTIntermediateBufferWidth, CRTIntermediateBufferHeight);
glUniform2f(inputTextureSizeUniform, CRTInputBufferBuilderWidth, CRTInputBufferBuilderHeight);
glUniform1f(phaseCyclesPerTickUniform, (float)_colour_cycle_numerator / (float)(_colour_cycle_denominator * _cycles_per_line));
} }
free(vertex_shader); free(vertex_shader);
free(fragment_shader); free(fragment_shader);
@ -541,3 +524,51 @@ void CRT::set_output_device(CRT::OutputDevice output_device)
_composite_src_output_y = 0; _composite_src_output_y = 0;
} }
} }
// const char *const ntscVertexShaderGlobals =
// "out vec2 srcCoordinatesVarying[4];\n"
// "out float phase;\n";
//
// const char *const ntscVertexShaderBody =
// "phase = srcCoordinates.x * 6.283185308;\n"
// "\n"
// "srcCoordinatesVarying[0] = vec2(srcCoordinates.x / textureSize.x, (srcCoordinates.y + 0.5) / textureSize.y);\n"
// "srcCoordinatesVarying[3] = srcCoordinatesVarying[0] + vec2(0.375 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[2] = srcCoordinatesVarying[0] + vec2(0.125 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[1] = srcCoordinatesVarying[0] - vec2(0.125 / textureSize.x, 0.0);\n"
// "srcCoordinatesVarying[0] = srcCoordinatesVarying[0] - vec2(0.325 / textureSize.x, 0.0);\n";
// assumes y = [0, 1], i and q = [-0.5, 0.5]; therefore i components are multiplied by 1.1914 versus standard matrices, q by 1.0452
// const char *const yiqToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);";
// assumes y = [0,1], u and v = [-0.5, 0.5]; therefore u components are multiplied by 1.14678899082569, v by 0.8130081300813
// const char *const yuvToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 0.0, -0.75213899082569, 2.33040137614679, 0.92669105691057, -0.4720325203252, 0.0);";
// const char *const ntscFragmentShaderGlobals =
// "in vec2 srcCoordinatesVarying[4];\n"
// "in float phase;\n"
// "\n"
// "// for conversion from i and q are in the range [-0.5, 0.5] (so i needs to be multiplied by 1.1914 and q by 1.0452)\n"
// "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);\n";
// const char *const ntscFragmentShaderBody =
// "vec4 angles = vec4(phase) + vec4(-2.35619449019234, -0.78539816339745, 0.78539816339745, 2.35619449019234);\n"
// "vec4 samples = vec4("
// " sample(srcCoordinatesVarying[0], angles.x),"
// " sample(srcCoordinatesVarying[1], angles.y),"
// " sample(srcCoordinatesVarying[2], angles.z),"
// " sample(srcCoordinatesVarying[3], angles.w)"
// ");\n"
// "\n"
// "float y = dot(vec4(0.25), samples);\n"
// "samples -= vec4(y);\n"
// "\n"
// "float i = dot(cos(angles), samples);\n"
// "float q = dot(sin(angles), samples);\n"
// "\n"
// "fragColour = 5.0 * texture(shadowMaskTexID, shadowMaskCoordinates) * vec4(yiqToRGB * vec3(y, i, q), 1.0);//sin(lateralVarying));\n";
// dot(vec3(1.0/6.0, 2.0/3.0, 1.0/6.0), vec3(sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0])));//sin(lateralVarying));\n";
//}