mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-12 00:30:31 +00:00
Sought both to [start to] optimise the AY and correct divider reloads. It turns out that conditionals aren't that troubling. But I can probably eliminate the counters.
This commit is contained in:
parent
09687a2e2f
commit
782ef960e1
@ -82,86 +82,90 @@ void AY38910::set_clock_rate(double clock_rate)
|
||||
|
||||
void AY38910::get_samples(unsigned int number_of_samples, int16_t *target)
|
||||
{
|
||||
for(int c = 0; c < number_of_samples; c++)
|
||||
int offset = _master_divider;
|
||||
int c = _master_divider;
|
||||
_master_divider += number_of_samples;
|
||||
|
||||
for(; c < 16 && c < _master_divider; c++) target[c - offset] = _output_volume;
|
||||
while(c < _master_divider)
|
||||
{
|
||||
// a master divider divides the clock by 16;
|
||||
// resulting_steps will be 1 if a tick occurred, 0 otherwise
|
||||
int former_master_divider = _master_divider;
|
||||
_master_divider++;
|
||||
int resulting_steps = ((_master_divider ^ former_master_divider) >> 4) & 1;
|
||||
|
||||
// Bluffer's guide to the stuff below: I wanted to avoid branches. If I avoid branches then
|
||||
// I avoid stalls.
|
||||
//
|
||||
// Repeating patterns are:
|
||||
// (1) decrement, then shift a high-order bit right and mask to get 1 for did underflow, 0 otherwise;
|
||||
// (2) did_underflow * a + (did_underflow ^ 1) * b to pick between reloading and not reloading
|
||||
int did_underflow;
|
||||
#define shift(x, r, steps) \
|
||||
x -= steps; \
|
||||
did_underflow = (x >> 16)&1; \
|
||||
x = did_underflow * r + (did_underflow^1) * x;
|
||||
|
||||
#define step_channel(c) \
|
||||
shift(_channel_dividers[c], _tone_generator_controls[c], resulting_steps); \
|
||||
_channel_output[c] ^= did_underflow;
|
||||
if(_channel_dividers[c]) _channel_dividers[c] --; \
|
||||
else { _channel_dividers[c] = _tone_generator_controls[c]; _channel_output[c] ^= 1; }
|
||||
|
||||
// update the tone channels
|
||||
step_channel(0);
|
||||
step_channel(1);
|
||||
step_channel(2);
|
||||
|
||||
#undef step_channel
|
||||
|
||||
// ... the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
|
||||
// it into the official 17 upon divider underflow.
|
||||
shift(_noise_divider, _output_registers[6]&0x1f, resulting_steps);
|
||||
_noise_output ^= did_underflow&_noise_shift_register&1;
|
||||
_noise_shift_register |= ((_noise_shift_register ^ (_noise_shift_register >> 3))&1) << 17;
|
||||
_noise_shift_register >>= did_underflow;
|
||||
if(_noise_divider) _noise_divider--;
|
||||
else
|
||||
{
|
||||
_noise_divider = _output_registers[6]&0x1f;
|
||||
_noise_output ^= _noise_shift_register&1;
|
||||
_noise_shift_register |= ((_noise_shift_register ^ (_noise_shift_register >> 3))&1) << 17;
|
||||
_noise_shift_register >>= 1;
|
||||
}
|
||||
|
||||
// ... and the envelope generator. Table based for pattern lookup, with a 'refill' step — a way of
|
||||
// implementing non-repeating patterns by locking them to table position 0x1f.
|
||||
// int envelope_divider = ((_master_divider ^ former_master_divider) >> 8) & 1;
|
||||
shift(_envelope_divider, _envelope_period, resulting_steps);
|
||||
_envelope_position += did_underflow;
|
||||
int refill = _envelope_overflow_masks[_output_registers[13]] * (_envelope_position >> 5);
|
||||
_envelope_position = (_envelope_position & 0x1f) | refill;
|
||||
int envelope_volume = _envelope_shapes[_output_registers[13]][_envelope_position];
|
||||
if(_envelope_divider) _envelope_divider--;
|
||||
else
|
||||
{
|
||||
_envelope_divider = _envelope_period;
|
||||
_envelope_position ++;
|
||||
if(_envelope_position == 32) _envelope_position = _envelope_overflow_masks[_output_registers[13]];
|
||||
}
|
||||
|
||||
#undef step_channel
|
||||
#undef shift
|
||||
evaluate_output_volume();
|
||||
|
||||
// The output level for a channel is:
|
||||
// 1 if neither tone nor noise is enabled;
|
||||
// 0 if either tone or noise is enabled and its value is low.
|
||||
// (which is implemented here with reverse logic, assuming _channel_output and _noise_output are already inverted)
|
||||
for(int ic = 0; ic < 16 && c < _master_divider; ic++)
|
||||
{
|
||||
target[c - offset] = _output_volume;
|
||||
c++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void AY38910::evaluate_output_volume()
|
||||
{
|
||||
int envelope_volume = _envelope_shapes[_output_registers[13]][_envelope_position];
|
||||
|
||||
// The output level for a channel is:
|
||||
// 1 if neither tone nor noise is enabled;
|
||||
// 0 if either tone or noise is enabled and its value is low.
|
||||
// (which is implemented here with reverse logic, assuming _channel_output and _noise_output are already inverted)
|
||||
#define level(c, tb, nb) \
|
||||
(((((_output_registers[7] >> tb)&1)^1) & _channel_output[c]) | ((((_output_registers[7] >> nb)&1)^1) & _noise_output)) ^ 1
|
||||
|
||||
int channel_levels[3] = {
|
||||
level(0, 0, 3),
|
||||
level(1, 1, 4),
|
||||
level(2, 2, 5),
|
||||
};
|
||||
int channel_levels[3] = {
|
||||
level(0, 0, 3),
|
||||
level(1, 1, 4),
|
||||
level(2, 2, 5),
|
||||
};
|
||||
#undef level
|
||||
|
||||
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits
|
||||
#define channel_volume(c) \
|
||||
((_output_registers[c] >> 4)&1) * envelope_volume + (((_output_registers[c] >> 4)&1)^1) * (_output_registers[c]&0xf)
|
||||
|
||||
int volumes[3] = {
|
||||
channel_volume(8),
|
||||
channel_volume(9),
|
||||
channel_volume(10)
|
||||
};
|
||||
int volumes[3] = {
|
||||
channel_volume(8),
|
||||
channel_volume(9),
|
||||
channel_volume(10)
|
||||
};
|
||||
#undef channel_volume
|
||||
|
||||
// Mix additively. TODO: non-linear volume.
|
||||
target[c] = (int16_t)(
|
||||
_volumes[volumes[0]] * channel_levels[0] +
|
||||
_volumes[volumes[1]] * channel_levels[1] +
|
||||
_volumes[volumes[2]] * channel_levels[2]
|
||||
);
|
||||
}
|
||||
// Mix additively.
|
||||
_output_volume = (int16_t)(
|
||||
_volumes[volumes[0]] * channel_levels[0] +
|
||||
_volumes[volumes[1]] * channel_levels[1] +
|
||||
_volumes[volumes[2]] * channel_levels[2]
|
||||
);
|
||||
}
|
||||
|
||||
void AY38910::skip_samples(unsigned int number_of_samples)
|
||||
@ -188,21 +192,23 @@ void AY38910::set_register_value(uint8_t value)
|
||||
case 0: case 2: case 4:
|
||||
_tone_generator_controls[selected_register >> 1] =
|
||||
(_tone_generator_controls[selected_register >> 1] & ~0xff) | value;
|
||||
_channel_dividers[selected_register >> 1] = _tone_generator_controls[selected_register >> 1];
|
||||
break;
|
||||
|
||||
case 1: case 3: case 5:
|
||||
_tone_generator_controls[selected_register >> 1] =
|
||||
(_tone_generator_controls[selected_register >> 1] & 0xff) | (uint16_t)((value&0xf) << 8);
|
||||
_channel_dividers[selected_register >> 1] = _tone_generator_controls[selected_register >> 1];
|
||||
break;
|
||||
|
||||
case 11:
|
||||
_envelope_period = (_envelope_period & ~0xff) | value;
|
||||
// printf("e: %d", _envelope_period);
|
||||
_envelope_divider = _envelope_period;
|
||||
break;
|
||||
|
||||
case 12:
|
||||
_envelope_period = (_envelope_period & 0xff) | (int)(value << 8);
|
||||
// printf("e: %d", _envelope_period);
|
||||
_envelope_divider = _envelope_period;
|
||||
break;
|
||||
|
||||
case 13:
|
||||
@ -211,6 +217,7 @@ void AY38910::set_register_value(uint8_t value)
|
||||
break;
|
||||
}
|
||||
_output_registers[selected_register] = masked_value;
|
||||
evaluate_output_volume();
|
||||
});
|
||||
}
|
||||
}
|
||||
|
@ -86,6 +86,9 @@ class AY38910: public ::Outputs::Filter<AY38910> {
|
||||
uint8_t get_register_value();
|
||||
|
||||
uint8_t _data_input, _data_output;
|
||||
|
||||
int16_t _output_volume;
|
||||
void evaluate_output_volume();
|
||||
};
|
||||
|
||||
};
|
||||
|
Loading…
x
Reference in New Issue
Block a user