1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-25 18:30:21 +00:00

Starts towards picking an input shader based on data type and pipeline.

This commit is contained in:
Thomas Harte 2018-11-15 21:02:46 -05:00
parent 15b1176841
commit 8f6664f0d7
6 changed files with 122 additions and 33 deletions

View File

@ -48,12 +48,6 @@ VideoOutput::VideoOutput(uint8_t *memory) :
setup_screen_map(); setup_screen_map();
setup_base_address(); setup_base_address();
// crt_->set_rgb_sampling_function(
// "vec3 rgb_sample(usampler2D sampler, vec2 coordinate)"
// "{"
// "uint texValue = texture(sampler, coordinate).r;"
// "return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
// "}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate. // TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
crt_.set_visible_area(crt_.get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f)); crt_.set_visible_area(crt_.get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
} }

View File

@ -107,8 +107,6 @@ class CRT {
in multiples of half a line. in multiples of half a line.
@param data_type The format that the caller will use for input data. @param data_type The format that the caller will use for input data.
@param scan_target The destination for generated scans.
*/ */
CRT(int cycles_per_line, CRT(int cycles_per_line,
int clocks_per_pixel_greatest_common_divisor, int clocks_per_pixel_greatest_common_divisor,

View File

@ -89,24 +89,6 @@ ScanTarget::ScanTarget() :
glGenTextures(1, &write_area_texture_name_); glGenTextures(1, &write_area_texture_name_);
input_shader_.reset(new Shader(
glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan),
"#version 150\n"
"out vec4 fragColour;"
"in vec2 textureCoordinate;"
"uniform usampler2D textureName;"
"void main(void) {"
"fragColour = vec4(float(texture(textureName, textureCoordinate).r), 0.0, 0.0, 1.0);"
"}"
));
glBindVertexArray(scan_vertex_array_);
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
enable_vertex_attributes(ShaderType::Scan, *input_shader_);
output_shader_.reset(new Shader( output_shader_.reset(new Shader(
glsl_globals(ShaderType::Line) + glsl_default_vertex_shader(ShaderType::Line), glsl_globals(ShaderType::Line) + glsl_default_vertex_shader(ShaderType::Line),
"#version 150\n" "#version 150\n"
@ -160,6 +142,26 @@ void ScanTarget::set_modals(Modals modals) {
processing_width_ = colour_cycle_width + (overflow ? dot_clock - overflow : 0); processing_width_ = colour_cycle_width + (overflow ? dot_clock - overflow : 0);
processing_width_ = std::min(processing_width_, 2048); processing_width_ = std::min(processing_width_, 2048);
// Establish an input shader.
input_shader_ = input_shader(modals_.input_data_type, OutputType::RGB);
// input_shader_ = reset(new Shader(
// glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan),
// "#version 150\n"
//
// "out vec4 fragColour;"
// "in vec2 textureCoordinate;"
//
// "uniform usampler2D textureName;"
//
// "void main(void) {"
// "fragColour = vec4(vec3(texture(textureName, textureCoordinate).rgb), 1.0);"
// "}"
// ));
glBindVertexArray(scan_vertex_array_);
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
enable_vertex_attributes(ShaderType::Scan, *input_shader_);
set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Scan, *output_shader_); set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Scan, *output_shader_);
set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Line, *input_shader_); set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Line, *input_shader_);
@ -412,7 +414,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
1 + end_y - start_y, 1 + end_y - start_y,
formatForDepth(data_type_size_), formatForDepth(data_type_size_),
GL_UNSIGNED_BYTE, GL_UNSIGNED_BYTE,
&write_area_texture_[size_t(TextureAddress(0, start_y))]); &write_area_texture_[size_t(TextureAddress(0, start_y)) * data_type_size_]);
} else { } else {
// The circular buffer wrapped around; submit the data from the read pointer to the end of // The circular buffer wrapped around; submit the data from the read pointer to the end of
// the buffer and from the start of the buffer to the submit pointer. // the buffer and from the start of the buffer to the submit pointer.
@ -429,7 +431,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
WriteAreaHeight - start_y, WriteAreaHeight - start_y,
formatForDepth(data_type_size_), formatForDepth(data_type_size_),
GL_UNSIGNED_BYTE, GL_UNSIGNED_BYTE,
&write_area_texture_[size_t(TextureAddress(0, start_y))]); &write_area_texture_[size_t(TextureAddress(0, start_y)) * data_type_size_]);
} }
} }

View File

@ -123,11 +123,11 @@ class ScanTarget: public Outputs::Display::ScanTarget {
from [...]OpenGL::ScanTarget and a vertex function to provide from [...]OpenGL::ScanTarget and a vertex function to provide
the standard varyings. the standard varyings.
*/ */
std::string glsl_globals(ShaderType type); static std::string glsl_globals(ShaderType type);
/*! /*!
*/ */
std::string glsl_default_vertex_shader(ShaderType type); static std::string glsl_default_vertex_shader(ShaderType type, bool unsigned_sampler = false);
/*! /*!
Calls @c taret.enable_vertex_attribute_with_pointer to attach all Calls @c taret.enable_vertex_attribute_with_pointer to attach all
@ -142,6 +142,8 @@ class ScanTarget: public Outputs::Display::ScanTarget {
int processing_width_ = 0; int processing_width_ = 0;
std::unique_ptr<Shader> input_shader_; std::unique_ptr<Shader> input_shader_;
std::unique_ptr<Shader> output_shader_; std::unique_ptr<Shader> output_shader_;
static std::unique_ptr<Shader> input_shader(InputDataType input_data_type, OutputType output_type);
}; };
} }

View File

@ -48,12 +48,13 @@ std::string ScanTarget::glsl_globals(ShaderType type) {
} }
} }
std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { std::string ScanTarget::glsl_default_vertex_shader(ShaderType type, bool unsigned_sampler) {
const std::string prefix = unsigned_sampler ? "uniform usampler2D textureName;" : "uniform sampler2D textureName;";
switch(type) { switch(type) {
case ShaderType::Scan: case ShaderType::Scan:
return return
prefix +
"out vec2 textureCoordinate;" "out vec2 textureCoordinate;"
"uniform usampler2D textureName;"
"void main(void) {" "void main(void) {"
"float lateral = float(gl_VertexID & 1);" "float lateral = float(gl_VertexID & 1);"
@ -67,8 +68,8 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
case ShaderType::Line: case ShaderType::Line:
return return
prefix +
"out vec2 textureCoordinate;" "out vec2 textureCoordinate;"
"uniform sampler2D textureName;"
"void main(void) {" "void main(void) {"
"float lateral = float(gl_VertexID & 1);" "float lateral = float(gl_VertexID & 1);"
@ -145,3 +146,88 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
break; break;
} }
} }
std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type, OutputType output_type) {
bool unsigned_sampler = false;
std::string fragment_shader =
"#version 150\n"
"out vec4 fragColour;"
"in vec2 textureCoordinate;";
switch(input_data_type) {
case InputDataType::Luminance1:
unsigned_sampler = true;
case InputDataType::Luminance8:
fragment_shader +=
unsigned_sampler ? "uniform usampler2D" : "uniform sampler2D";
fragment_shader +=
" textureName;"
"void main(void) {";
switch(output_type) {
case OutputType::RGB:
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr, 1.0);";
break;
default:
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).r, 0.0, 0.0, 1.0);";
break;
}
fragment_shader += "}";
break;
// SVideo,
// CompositeColour,
// CompositeMonochrome
case InputDataType::Phase8Luminance8:
return nullptr;
// fragment_shader +=
// "uniform sampler2D textureName;"
// "void main(void) {";
//
// switch(output_type) {
// default: return nullptr;
//
// case OutputType::SVideo:
// break;
//// CompositeColour,
//// CompositeMonochrome
// }
//
// fragment_shader += "}";
// break;
case InputDataType::Red1Green1Blue1:
// TODO: write encoding functions for RGB -> composite/s-video.
unsigned_sampler = true;
fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {"
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);"
"}";
break;
case InputDataType::Red2Green2Blue2:
break;
case InputDataType::Red4Green4Blue4:
break;
case InputDataType::Red8Green8Blue8:
fragment_shader +=
"uniform sampler2D textureName;"
"void main(void) {"
"fragColour = vec4(texture(textureName, textureCoordinate).rgb, 1.0);"
"}";
break;
}
return std::unique_ptr<Shader>(new Shader(
glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan, unsigned_sampler),
fragment_shader
));
}

View File

@ -48,6 +48,13 @@ enum class ColourSpace {
YUV YUV
}; };
enum class OutputType {
RGB,
SVideo,
CompositeColour,
CompositeMonochrome
};
/*! /*!
Enumerates the potential formats of input data. Enumerates the potential formats of input data.
*/ */