1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-02-23 03:29:04 +00:00

Commented the heck out of this thing, to put my thoughts in order if nothing else.

This commit is contained in:
Thomas Harte 2015-07-21 16:37:39 -04:00
parent a1a1b15d18
commit 908c171d2d
2 changed files with 87 additions and 29 deletions

View File

@ -16,18 +16,19 @@ static const int syncCapacityLineChargeThreshold = 3;
static const int millisecondsHorizontalRetraceTime = 16;
static const int scanlinesVerticalRetraceTime = 26;
#define kEmergencyRetraceTime (_expected_next_hsync + _hsync_error_window)
using namespace Outputs;
CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
{
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line;
_horizontalOffset = 0.0f;
_verticalOffset = 0.0f;
// generate timing values implied by the given arbuments
_hsync_error_window = cycles_per_line >> 5;
// generate buffers for signal storage as requested — format is
// number of buffers, size of buffer 1, size of buffer 2...
_numberOfBuffers = number_of_buffers;
_bufferSizes = new int[_numberOfBuffers];
_buffers = new uint8_t *[_numberOfBuffers];
@ -41,16 +42,26 @@ CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
}
va_end(va);
// reset pointer into output buffers
_write_allocation_pointer = 0;
// reset the run buffer pointer
_run_pointer = 0;
// reset raster position
_horizontalOffset = 0.0f;
_verticalOffset = 0.0f;
// reset flywheel sync
_expected_next_hsync = cycles_per_line;
_hsync_error_window = cycles_per_line >> 5;
_horizontal_counter = 0;
// reset the vertical charge capacitor
_sync_capacitor_charge_level = 0;
// start off not in horizontal sync, not receiving a sync signal
_is_receiving_sync = false;
_is_in_hsync = false;
_run_pointer = 0;
}
CRT::~CRT()
@ -122,12 +133,18 @@ CRT::SyncEvent CRT::advance_to_next_sync_event(bool hsync_is_requested, bool vsy
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const CRTRun::Type type, const char *data_type)
{
// this is safe to keep locally because it accumulates over this run of cycles only
int buffer_offset = 0;
while(number_of_cycles) {
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
int next_run_length;
SyncEvent next_event = advance_to_next_sync_event(hsync_requested, vsync_charging, number_of_cycles, &next_run_length);
hsync_requested = false;
// get a run from the allocated list, allocating more if we're about to overrun
if(_run_pointer >= _all_runs.size())
{
_all_runs.resize((_all_runs.size() * 2)+1);
@ -136,17 +153,20 @@ void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool
CRTRun *nextRun = &_all_runs[_run_pointer];
_run_pointer++;
// set the type, initial raster position and type of this run
nextRun->type = type;
nextRun->start_point.dst_x = _horizontalOffset;
nextRun->start_point.dst_y = _verticalOffset;
nextRun->data_type = data_type;
// if this is a data or level run then store a starting data position
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->start_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->start_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
}
nextRun->data_type = data_type;
// advance the raster position as dictated by current sync status
if (_vretrace_counter > 0)
{
_verticalOffset = std::max(0.0f, _verticalOffset - (float)number_of_cycles / (float)(scanlinesVerticalRetraceTime * _cycles_per_line));
@ -165,36 +185,50 @@ void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool
_horizontalOffset = std::min(1.0f, _horizontalOffset + (float)((((64 - millisecondsHorizontalRetraceTime) * _cycles_per_line) >> 6) * number_of_cycles) / (float)_cycles_per_line);
}
// store the final raster position
nextRun->end_point.dst_x = _horizontalOffset;
nextRun->end_point.dst_y = _verticalOffset;
// if this is a data run then advance the buffer pointer
if(type == CRTRun::Type::Data)
{
buffer_offset += next_run_length;
}
// if this is a data or level run then store the end point
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->end_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->end_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
}
hsync_requested = false;
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
_horizontal_counter += next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if (vsync_charging)
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0);
// decrement the vertical retrace counter, making sure it stops at 0
_vretrace_counter = std::max(_vretrace_counter - next_run_length, 0);
// react to the incoming event...
switch(next_event) {
default: break;
// start of hsync: zero the scanline counter, note that we're now in
// horizontal sync, increment the lines-in-this-frame counter
case SyncEvent::StartHSync:
_horizontal_counter = 0;
_is_in_hsync = true;
_hsync_counter++;
break;
// end of horizontal sync: update the flywheel's velocity, note that we're no longer
// in horizontal sync
case SyncEvent::EndHSync:
if (!_did_detect_hsync) {
_expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1;
@ -202,16 +236,23 @@ void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool
_did_detect_hsync = false;
_is_in_hsync = false;
break;
// start of vertical sync: reset the lines-in-this-frame counter,
// load the retrace counter with the amount of time it'll take to retrace
case SyncEvent::StartVSync:
_vretrace_counter = scanlinesVerticalRetraceTime * _cycles_per_line;
_hsync_counter = 0;
break;
// end of vertical sync: tell the delegate that we finished vertical sync,
// releasing all runs back into the common pool
case SyncEvent::EndVSync:
if(_delegate != nullptr)
_delegate->crt_did_start_vertical_retrace_with_runs(&_all_runs[0], _run_pointer);
_run_pointer = 0;
break;
default: break;
}
}
}
@ -225,9 +266,12 @@ void CRT::set_crt_delegate(CRTDelegate *delegate)
#pragma mark - stream feeding methods
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(int number_of_cycles)
{
bool _hsync_requested = !_is_receiving_sync;
bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice
_is_receiving_sync = true;
advance_cycles(number_of_cycles, _hsync_requested, true, CRTRun::Type::Sync, nullptr);
}

View File

@ -48,43 +48,57 @@ class CRT {
uint8_t *get_write_target_for_buffer(int buffer);
private:
// fundamental creator-specified properties
int _cycles_per_line;
int _height_of_display;
// properties directly derived from there
int _hsync_error_window; // the permitted window around the expected sync position in which a sync pulse will be recognised; calculated once at init
// the run delegate, buffer and buffer pointer
CRTDelegate *_delegate;
std::vector<CRTRun> _all_runs;
int _run_pointer;
// the current scanning position
float _horizontalOffset, _verticalOffset;
// the content buffers
uint8_t **_buffers;
int *_bufferSizes;
int _numberOfBuffers;
// a pointer to the section of content buffer currently being
// returned and to where the next section will begin
int _write_allocation_pointer, _write_target_pointer;
void propose_hsync();
void charge_vsync(int number_of_cycles);
void drain_vsync(int number_of_cycles);
void run_line_for_cycles(int number_of_cycles);
void run_hline_for_cycles(int number_of_cycles);
void do_hsync();
void do_vsync();
int _cycles_per_line;
int _height_of_display;
// a counter of horizontal syncs, to allow an automatic vertical
// sync to be triggered if we appear to be exiting the display
// (TODO: switch to evaluating _verticalOffset for this)
int _hsync_counter;
// outer elements of sync separation
bool _is_receiving_sync; // true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync)
bool _did_detect_hsync; // true if horizontal sync was detected during this scanline (so, this affects flywheel adjustments)
int _sync_capacitor_charge_level; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync
int _vretrace_counter; // a down-counter for time during a vertical retrace
// components of the flywheel sync
int _horizontal_counter; // time run since the _start_ of the last horizontal sync
int _expected_next_hsync; // our current expection of when the next horizontal sync will be encountered (which implies current flywheel velocity)
bool _is_in_hsync; // true for the duration of a horizontal sync — used to determine beam running direction and speed
// the outer entry point for dispatching output_sync, output_blank, output_level and output_data
void advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_charging, CRTRun::Type type, const char *data_type);
// the inner entry point that determines whether and when the next sync event will occur within
// the current output window
enum SyncEvent {
None,
StartHSync, EndHSync,
StartVSync, EndVSync
};
SyncEvent advance_to_next_sync_event(bool hsync_is_requested, bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced);
bool _is_receiving_sync, _did_detect_hsync;
int _sync_capacitor_charge_level, _vretrace_counter;
int _horizontal_counter, _expected_next_hsync, _hsync_error_window;
bool _is_in_hsync;
void advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_charging, CRTRun::Type type, const char *data_type);
};
}