1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 20:31:36 +00:00

Merge pull request #5 from TomHarte/Glitches

Started tackling the sources of graphical glitching
This commit is contained in:
Thomas Harte 2016-05-08 21:16:06 -04:00
commit 95ee2fffdb
12 changed files with 380 additions and 346 deletions

View File

@ -157,7 +157,7 @@ void Machine::get_output_pixel(uint8_t *pixel, int offset)
}
// store colour
pixel[0] = outputColour;
*pixel = outputColour;
}
// in imputing the knowledge that all we're dealing with is the rollover from 159 to 0,
@ -237,8 +237,8 @@ void Machine::output_pixels(unsigned int count)
}
if(_horizontalTimer < (_vBlankExtend ? 152 : 160)) {
if(_outputBuffer)
get_output_pixel(&_outputBuffer[_lastOutputStateDuration], 159 - _horizontalTimer);
uint8_t throwaway_pixel;
get_output_pixel(_outputBuffer ? &_outputBuffer[_lastOutputStateDuration] : &throwaway_pixel, 159 - _horizontalTimer);
// increment all graphics counters
increment_object_counter(0);

View File

@ -537,7 +537,7 @@ inline void Machine::start_pixel_line()
}
_currentScreenAddress = _startLineAddress;
_current_pixel_column = 0;
_current_output_target = nullptr;
_initial_output_target = _current_output_target = nullptr;
}
inline void Machine::end_pixel_line()
@ -564,7 +564,7 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
case 2: case 5: divider = 8; break;
}
if(!_current_output_target || divider != _current_output_divider)
if(!_initial_output_target || divider != _current_output_divider)
{
if(_current_output_target) _crt->output_data((unsigned int)((_current_output_target - _initial_output_target) * _current_output_divider), _current_output_divider);
_current_output_divider = divider;
@ -582,6 +582,8 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
switch(_screen_mode)
{
case 0: case 3:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
@ -589,9 +591,12 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
_current_output_target += 4;
_current_pixel_column++;
}
} else _current_output_target += 4*number_of_cycles;
break;
case 1:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
@ -599,9 +604,12 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
_current_output_target += 2;
_current_pixel_column++;
}
} else _current_output_target += 2*number_of_cycles;
break;
case 2:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
@ -609,9 +617,12 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
_current_output_target += 1;
_current_pixel_column++;
}
} else _current_output_target += number_of_cycles;
break;
case 4: case 6:
if(_initial_output_target)
{
if(_current_pixel_column&1)
{
_last_pixel_byte <<= 4;
@ -641,9 +652,12 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
_current_output_target += 2;
_current_pixel_column++;
}
} else _current_output_target += 2 * number_of_cycles;
break;
case 5:
if(_initial_output_target)
{
if(_current_pixel_column&1)
{
_last_pixel_byte <<= 2;
@ -673,6 +687,7 @@ inline void Machine::output_pixels(unsigned int number_of_cycles)
_current_output_target += 1;
_current_pixel_column++;
}
} else _current_output_target += number_of_cycles;
break;
}

View File

@ -69,7 +69,8 @@ CRT::CRT(unsigned int common_output_divisor) :
_common_output_divisor(common_output_divisor),
_is_writing_composite_run(false),
_delegate(nullptr),
_frames_since_last_delegate_call(0) {}
_frames_since_last_delegate_call(0),
_did_start_run(false) {}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) : CRT(common_output_divisor)
{
@ -99,15 +100,13 @@ Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested,
#define output_position_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 2])
#define output_tex_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 0])
#define output_tex_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 2])
#define output_lateral(v) next_run[OutputVertexSize*v + OutputVertexOffsetOfLateral]
#define source_input_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 0])
#define source_input_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 2])
#define source_output_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 0])
#define source_output_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 2])
#define source_phase(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 0]
#define source_amplitude(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 1]
#define source_offset(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 2]
#define source_phase(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAndAmplitude + 0]
#define source_amplitude(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAndAmplitude + 1]
#define source_phase_time(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseTime])
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y)
@ -131,7 +130,7 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
uint8_t *next_run = nullptr;
if(is_output_segment)
if(is_output_segment && !_openGL_output_builder->composite_output_buffer_is_full())
{
next_run = _openGL_output_builder->get_next_source_run();
}
@ -150,8 +149,6 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
source_phase(0) = source_phase(1) = _colour_burst_phase;
source_amplitude(0) = source_amplitude(1) = _colour_burst_amplitude;
source_phase_time(0) = source_phase_time(1) = _colour_burst_time;
source_offset(0) = 0;
source_offset(1) = 255;
}
// decrement the number of cycles left to run for and increment the
@ -188,18 +185,24 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
if(needs_endpoint)
{
if(
_is_writing_composite_run == _did_start_run &&
_openGL_output_builder->composite_output_run_has_room_for_vertices(_did_start_run ? 3 : 6) &&
!_openGL_output_builder->composite_output_buffer_is_full())
{
uint8_t *next_run = _openGL_output_builder->get_next_output_run();
if(next_run)
{
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = _openGL_output_builder->get_composite_output_y();
output_lateral(0) = 0;
output_lateral(1) = _is_writing_composite_run ? 1 : 0;
output_lateral(2) = 1;
_openGL_output_builder->complete_output_run(3);
_did_start_run ^= true;
}
}
_is_writing_composite_run ^= true;
}
@ -297,8 +300,8 @@ void CRT::output_level(unsigned int number_of_cycles)
Scan scan {
.type = Scan::Type::Level,
.number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posiiton(),
.tex_y = _openGL_output_builder->get_last_write_y_posiiton()
.tex_x = _openGL_output_builder->get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon()
};
output_scan(&scan);
}
@ -316,16 +319,22 @@ void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{
_openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
if(_openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider))
{
Scan scan {
.type = Scan::Type::Data,
.number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posiiton(),
.tex_y = _openGL_output_builder->get_last_write_y_posiiton(),
.tex_x = _openGL_output_builder->get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon(),
.source_divider = source_divider
};
output_scan(&scan);
}
else
{
output_blank(number_of_cycles);
}
}
Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio)
{

View File

@ -68,7 +68,7 @@ class CRT {
uint8_t _colour_burst_phase, _colour_burst_amplitude;
uint16_t _colour_burst_time;
bool _is_writing_composite_run;
bool _is_writing_composite_run, _did_start_run;
// the outer entry point for dispatching output_sync, output_blank, output_level and output_data
void advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y);
@ -176,14 +176,16 @@ class CRT {
*/
void output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude);
/*! Ensures that the given number of output samples are allocated for writing.
/*! Attempts to allocate the given number of output samples for writing.
The beginning of the most recently allocated area is used as the start
of data written by a call to @c output_data; it is acceptable to write and to
output less data than the amount requested but that may be less efficient.
Allocation should fail only if emulation is running significantly below real speed.
@param required_length The number of samples to allocate.
@returns A pointer to the allocated area.
@returns A pointer to the allocated area if room is available; @c nullptr otherwise.
*/
inline uint8_t *allocate_write_area(size_t required_length)
{
@ -240,18 +242,6 @@ class CRT {
_openGL_output_builder->set_rgb_sampling_function(shader);
}
/*! Optionally sets a function that will map from an input cycle count to a colour carrier phase.
If this function is not supplied then the colour phase is determined from
the input clock rate and the the colour cycle clock rate. Machines whose per-line clock rate
is not intended exactly to match the normal line time may prefer to supply a custom function.
@param A GLSL fragent including a function with the signature
`float phase_for_clock_cycle(int cycle)` that returns the colour phase at the beginning of
the supplied cycle.
*/
// void set_phase_function(const char *shader);
inline void set_output_device(OutputDevice output_device)
{
_openGL_output_builder->set_output_device(output_device);

View File

@ -19,30 +19,29 @@ namespace CRT {
// or is one of the intermediate buffers that we've used to convert from composite towards RGB.
const GLsizei OutputVertexOffsetOfPosition = 0;
const GLsizei OutputVertexOffsetOfTexCoord = 4;
const GLsizei OutputVertexOffsetOfLateral = 8;
const GLsizei OutputVertexSize = 12;
const GLsizei OutputVertexSize = 8;
// Input vertices, used only in composite mode, map from the input buffer to temporary buffer locations; such
// remapping occurs to ensure a continous stream of data for each scan, giving correct out-of-bounds behaviour
const GLsizei SourceVertexOffsetOfInputPosition = 0;
const GLsizei SourceVertexOffsetOfOutputPosition = 4;
const GLsizei SourceVertexOffsetOfPhaseAmplitudeAndOffset = 8;
const GLsizei SourceVertexOffsetOfPhaseAndAmplitude = 8;
const GLsizei SourceVertexOffsetOfPhaseTime = 12;
const GLsizei SourceVertexSize = 16;
// These constants hold the size of the rolling buffer to which the CPU writes
const GLsizei InputBufferBuilderWidth = 2048;
const GLsizei InputBufferBuilderHeight = 1024;
const GLsizei InputBufferBuilderHeight = 512;
// This is the size of the intermediate buffers used during composite to RGB conversion
const GLsizei IntermediateBufferWidth = 2048;
const GLsizei IntermediateBufferHeight = 2048;
const GLsizei IntermediateBufferHeight = 512;
// Some internal buffer sizes
const GLsizeiptr OutputVertexBufferDataSize = 89856; // a multiple of 6 * OutputVertexSize
const GLsizeiptr SourceVertexBufferDataSize = 87360; // a multiple of 2 * SourceVertexSize
const GLsizeiptr OutputVertexBufferDataSize = 6 * 8 * 312; // a multiple of 6 * OutputVertexSize
const GLsizeiptr SourceVertexBufferDataSize = 2 * 16 * 312; // a multiple of 2 * SourceVertexSize
}
}

View File

@ -13,25 +13,25 @@
using namespace Outputs::CRT;
CRTInputBufferBuilder::CRTInputBufferBuilder(size_t bytes_per_pixel) :
bytes_per_pixel(bytes_per_pixel),
_bytes_per_pixel(bytes_per_pixel),
_next_write_x_position(0),
_next_write_y_position(0),
last_uploaded_line(0),
_wraparound_sync(glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0))
_image(new uint8_t[bytes_per_pixel * InputBufferBuilderWidth * InputBufferBuilderHeight])
{}
CRTInputBufferBuilder::~CRTInputBufferBuilder()
{
glDeleteSync(_wraparound_sync);
}
void CRTInputBufferBuilder::allocate_write_area(size_t required_length)
{
if(_next_write_y_position != InputBufferBuilderHeight)
{
_last_allocation_amount = required_length;
if(_next_write_x_position + required_length + 2 > InputBufferBuilderWidth)
{
move_to_new_line();
_next_write_x_position = 0;
_next_write_y_position++;
if(_next_write_y_position == InputBufferBuilderHeight)
return;
}
_write_x_position = _next_write_x_position + 1;
@ -39,19 +39,67 @@ void CRTInputBufferBuilder::allocate_write_area(size_t required_length)
_write_target_pointer = (_write_y_position * InputBufferBuilderWidth) + _write_x_position;
_next_write_x_position += required_length + 2;
}
}
void CRTInputBufferBuilder::reduce_previous_allocation_to(size_t actual_length, uint8_t *buffer)
bool CRTInputBufferBuilder::reduce_previous_allocation_to(size_t actual_length)
{
if(_next_write_y_position == InputBufferBuilderHeight) return false;
uint8_t *const image_pointer = _image.get();
// correct if the writing cursor was reset while a client was writing
if(_next_write_x_position == 0 && _next_write_y_position == 0 && _write_target_pointer != 1)
{
memmove(&image_pointer[1], &image_pointer[_write_target_pointer], actual_length);
_write_target_pointer = 1;
_last_allocation_amount = actual_length;
_next_write_x_position = (uint16_t)(actual_length + 2);
}
// book end the allocation with duplicates of the first and last pixel, to protect
// against rounding errors when this run is drawn
memcpy( &buffer[(_write_target_pointer - 1) * bytes_per_pixel],
&buffer[_write_target_pointer * bytes_per_pixel],
bytes_per_pixel);
memcpy( &image_pointer[(_write_target_pointer - 1) * _bytes_per_pixel],
&image_pointer[_write_target_pointer * _bytes_per_pixel],
_bytes_per_pixel);
memcpy( &buffer[(_write_target_pointer + actual_length) * bytes_per_pixel],
&buffer[(_write_target_pointer + actual_length - 1) * bytes_per_pixel],
bytes_per_pixel);
memcpy( &image_pointer[(_write_target_pointer + actual_length) * _bytes_per_pixel],
&image_pointer[(_write_target_pointer + actual_length - 1) * _bytes_per_pixel],
_bytes_per_pixel);
// return any allocated length that wasn't actually used to the available pool
_next_write_x_position -= (_last_allocation_amount - actual_length);
return true;
}
uint8_t *CRTInputBufferBuilder::get_image_pointer()
{
return _image.get();
}
uint16_t CRTInputBufferBuilder::get_and_finalise_current_line()
{
uint16_t result = _write_y_position + (_next_write_x_position ? 1 : 0);
_next_write_x_position = _next_write_y_position = 0;
return result;
}
uint8_t *CRTInputBufferBuilder::get_write_target()
{
return (_next_write_y_position == InputBufferBuilderHeight) ? nullptr : &_image.get()[_write_target_pointer * _bytes_per_pixel];
}
uint16_t CRTInputBufferBuilder::get_last_write_x_position()
{
return _write_x_position;
}
uint16_t CRTInputBufferBuilder::get_last_write_y_position()
{
return _write_y_position;
}
size_t CRTInputBufferBuilder::get_bytes_per_pixel()
{
return _bytes_per_pixel;
}

View File

@ -14,41 +14,44 @@
#include <stddef.h>
#include "CRTConstants.hpp"
#include "OpenGL.hpp"
#include <memory>
namespace Outputs {
namespace CRT {
struct CRTInputBufferBuilder {
CRTInputBufferBuilder(size_t bytes_per_pixel);
~CRTInputBufferBuilder();
void allocate_write_area(size_t required_length);
void reduce_previous_allocation_to(size_t actual_length, uint8_t *buffer);
bool reduce_previous_allocation_to(size_t actual_length);
// a pointer to the section of content buffer currently being
// returned and to where the next section will begin
uint16_t get_and_finalise_current_line();
uint8_t *get_image_pointer();
uint8_t *get_write_target();
uint16_t get_last_write_x_position();
uint16_t get_last_write_y_position();
size_t get_bytes_per_pixel();
private:
// where pixel data will be put to the next time a write is requested
uint16_t _next_write_x_position, _next_write_y_position;
// the most recent position returned for pixel data writing
uint16_t _write_x_position, _write_y_position;
// details of the most recent allocation
size_t _write_target_pointer;
size_t _last_allocation_amount;
size_t bytes_per_pixel;
// Storage for the amount of buffer uploaded so far; initialised correctly by the buffer
// builder but otherwise entrusted to the CRT to update.
unsigned int last_uploaded_line;
// the buffer size
size_t _bytes_per_pixel;
GLsync _wraparound_sync;
inline void move_to_new_line()
{
_next_write_x_position = 0;
_next_write_y_position = (_next_write_y_position+1)%InputBufferBuilderHeight;
}
inline uint8_t *get_write_target(uint8_t *buffer)
{
return &buffer[_write_target_pointer * bytes_per_pixel];
}
// the buffer
std::unique_ptr<uint8_t> _image;
};
}

View File

@ -37,40 +37,61 @@ static const GLenum formatForDepth(size_t depth)
}
}
static int getCircularRanges(GLsizei start, GLsizei end, GLsizei buffer_length, GLsizei granularity, GLsizei *ranges)
struct Range {
GLsizei location, length;
};
static int getCircularRanges(GLsizei start, GLsizei end, GLsizei buffer_length, GLsizei granularity, Range *ranges)
{
GLsizei startOffset = start%granularity;
if(startOffset)
{
start -= startOffset;
}
start -= start%granularity;
end -= end%granularity;
GLsizei length = end - start;
if(!length) return 0;
if(length > buffer_length)
if(length >= buffer_length)
{
ranges[0] = 0;
ranges[1] = buffer_length;
ranges[0].location = 0;
ranges[0].length = buffer_length;
return 1;
}
else
{
ranges[0] = start % buffer_length;
if(ranges[0]+length < buffer_length)
ranges[0].location = start % buffer_length;
if(ranges[0].location + length <= buffer_length)
{
ranges[1] = length;
ranges[0].length = length;
return 1;
}
else
{
ranges[1] = buffer_length - ranges[0];
ranges[2] = 0;
ranges[3] = length - ranges[1];
ranges[0].length = buffer_length - ranges[0].location;
ranges[1].location = 0;
ranges[1].length = length - ranges[0].length;
return 2;
}
}
}
static inline void drawArrayRanges(GLenum mode, GLsizei vertex_size, int number_of_ranges, Range *ranges)
{
for(int c = 0; c < number_of_ranges; c++)
{
glDrawArrays(mode, ranges[c].location / vertex_size, ranges[c].length / vertex_size);
}
}
static void submitArrayData(GLuint buffer, uint8_t *source, int number_of_ranges, Range *ranges)
{
glBindBuffer(GL_ARRAY_BUFFER, buffer);
for(int c = 0; c < number_of_ranges; c++)
{
uint8_t *data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, ranges[c].location, ranges[c].length, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
memcpy(data, &source[ranges[c].location], (size_t)ranges[c].length);
glFlushMappedBufferRange(GL_ARRAY_BUFFER, ranges[c].location, ranges[c].length);
glUnmapBuffer(GL_ARRAY_BUFFER);
}
}
using namespace Outputs::CRT;
namespace {
@ -89,15 +110,15 @@ OpenGLOutputBuilder::OpenGLOutputBuilder(unsigned int buffer_depth) :
_cleared_composite_output_y(0),
_composite_shader(nullptr),
_rgb_shader(nullptr),
_output_buffer_data(nullptr),
_source_buffer_data(nullptr),
_input_texture_data(nullptr),
_output_buffer_data(new uint8_t[OutputVertexBufferDataSize]),
_source_buffer_data(new uint8_t[SourceVertexBufferDataSize]),
_output_buffer_data_pointer(0),
_drawn_output_buffer_data_pointer(0),
_source_buffer_data_pointer(0),
_drawn_source_buffer_data_pointer(0),
_last_output_width(0),
_last_output_height(0)
_last_output_height(0),
_fence(nullptr)
{
_buffer_builder = std::unique_ptr<CRTInputBufferBuilder>(new CRTInputBufferBuilder(buffer_depth));
@ -118,16 +139,7 @@ OpenGLOutputBuilder::OpenGLOutputBuilder(unsigned int buffer_depth) :
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, internalFormatForDepth(_buffer_builder->bytes_per_pixel), InputBufferBuilderWidth, InputBufferBuilderHeight, 0, formatForDepth(_buffer_builder->bytes_per_pixel), GL_UNSIGNED_BYTE, nullptr);
// create a pixel unpack buffer
glGenBuffers(1, &_input_texture_array);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _input_texture_array);
_input_texture_array_size = (GLsizeiptr)(InputBufferBuilderWidth * InputBufferBuilderHeight * _buffer_builder->bytes_per_pixel);
glBufferData(GL_PIXEL_UNPACK_BUFFER, _input_texture_array_size, NULL, GL_STREAM_DRAW);
// map the buffer for clients
_input_texture_data = (uint8_t *)glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, _input_texture_array_size, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
glTexImage2D(GL_TEXTURE_2D, 0, internalFormatForDepth(_buffer_builder->get_bytes_per_pixel()), InputBufferBuilderWidth, InputBufferBuilderHeight, 0, formatForDepth(_buffer_builder->get_bytes_per_pixel()), GL_UNSIGNED_BYTE, nullptr);
// create the output vertex array
glGenVertexArrays(1, &output_vertex_array);
@ -137,9 +149,6 @@ OpenGLOutputBuilder::OpenGLOutputBuilder(unsigned int buffer_depth) :
glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer);
glBufferData(GL_ARRAY_BUFFER, OutputVertexBufferDataSize, NULL, GL_STREAM_DRAW);
// map that buffer too, for any CRT activity that may occur before the first draw
_output_buffer_data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, 0, OutputVertexBufferDataSize, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
// create the source vertex array
glGenVertexArrays(1, &source_vertex_array);
@ -147,17 +156,13 @@ OpenGLOutputBuilder::OpenGLOutputBuilder(unsigned int buffer_depth) :
glGenBuffers(1, &source_array_buffer);
glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer);
glBufferData(GL_ARRAY_BUFFER, SourceVertexBufferDataSize, NULL, GL_STREAM_DRAW);
// map that buffer too, for any CRT activity that may occur before the first draw
_source_buffer_data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, 0, SourceVertexBufferDataSize, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
}
OpenGLOutputBuilder::~OpenGLOutputBuilder()
{
glUnmapBuffer(GL_ARRAY_BUFFER);
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
// glUnmapBuffer(GL_ARRAY_BUFFER);
// glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
glDeleteTextures(1, &textureName);
glDeleteBuffers(1, &_input_texture_array);
glDeleteBuffers(1, &output_array_buffer);
glDeleteBuffers(1, &source_array_buffer);
glDeleteVertexArrays(1, &output_vertex_array);
@ -168,6 +173,9 @@ OpenGLOutputBuilder::~OpenGLOutputBuilder()
void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty)
{
// lock down any further work on the current frame
_output_mutex->lock();
// establish essentials
if(!output_shader_program)
{
@ -180,30 +188,39 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
set_timing_uniforms();
set_colour_space_uniforms();
// This should return either an actual framebuffer number, if this is a target with a framebuffer intended for output,
// or 0 if no framebuffer is bound, in which case 0 is also what we want to supply to bind the implied framebuffer. So
// it works either way.
glGetIntegerv(GL_FRAMEBUFFER_BINDING, (GLint *)&defaultFramebuffer);
// TODO: is this sustainable, cross-platform? If so, why store it at all?
defaultFramebuffer = 0;
}
// lock down any further work on the current frame
_output_mutex->lock();
// determine how many lines are newly reclaimed; they'll need to be cleared
Range clearing_zones[2], source_drawing_zones[2];
Range output_drawing_zones[2];
int number_of_clearing_zones = getCircularRanges(_cleared_composite_output_y, _composite_src_output_y, IntermediateBufferHeight, 1, clearing_zones);
int number_of_source_drawing_zones = getCircularRanges(_drawn_source_buffer_data_pointer, _source_buffer_data_pointer, SourceVertexBufferDataSize, 2*SourceVertexSize, source_drawing_zones);
int number_of_output_drawing_zones = getCircularRanges(_drawn_output_buffer_data_pointer, _output_buffer_data_pointer, OutputVertexBufferDataSize, 6*OutputVertexSize, output_drawing_zones);
uint16_t completed_texture_y = _buffer_builder->get_and_finalise_current_line();
_composite_src_output_y %= IntermediateBufferHeight;
_source_buffer_data_pointer %= SourceVertexBufferDataSize;
_output_buffer_data_pointer %= OutputVertexBufferDataSize;
_cleared_composite_output_y = _composite_src_output_y;
_drawn_source_buffer_data_pointer = _source_buffer_data_pointer;
_drawn_output_buffer_data_pointer = _output_buffer_data_pointer;
if(_fence != nullptr)
{
glClientWaitSync(_fence, GL_SYNC_FLUSH_COMMANDS_BIT, GL_TIMEOUT_IGNORED);
glDeleteSync(_fence);
}
// release the mapping, giving up on trying to draw if data has been lost
glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer);
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer);
glUnmapBuffer(GL_ARRAY_BUFFER);
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
submitArrayData(output_array_buffer, _output_buffer_data.get(), number_of_output_drawing_zones, output_drawing_zones);
// bind and flush the source array buffer
submitArrayData(source_array_buffer, _source_buffer_data.get(), number_of_source_drawing_zones, source_drawing_zones);
// make sure there's a target to draw to
if(!framebuffer || framebuffer->get_height() != output_height || framebuffer->get_width() != output_width)
{
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
std::unique_ptr<OpenGL::TextureTarget> new_framebuffer = std::unique_ptr<OpenGL::TextureTarget>(new OpenGL::TextureTarget((GLsizei)output_width, (GLsizei)output_height, pixel_accumulation_texture_unit));
if(framebuffer)
{
@ -217,30 +234,17 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
new_framebuffer->bind_texture();
}
framebuffer = std::move(new_framebuffer);
}
// upload new source pixels
if(completed_texture_y)
{
glActiveTexture(source_data_texture_unit);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _input_texture_array);
}
// upload more source pixel data if any; we'll always resubmit the last line submitted last
// time as it may have had extra data appended to it
if(_buffer_builder->_write_y_position < _buffer_builder->last_uploaded_line)
{
glTexSubImage2D( GL_TEXTURE_2D, 0,
0, (GLint)_buffer_builder->last_uploaded_line,
InputBufferBuilderWidth, (GLint)(InputBufferBuilderHeight - _buffer_builder->last_uploaded_line),
formatForDepth(_buffer_builder->bytes_per_pixel), GL_UNSIGNED_BYTE,
(void *)(_buffer_builder->last_uploaded_line * InputBufferBuilderWidth * _buffer_builder->bytes_per_pixel));
_buffer_builder->last_uploaded_line = 0;
}
if(_buffer_builder->_write_y_position > _buffer_builder->last_uploaded_line)
{
glTexSubImage2D( GL_TEXTURE_2D, 0,
0, (GLint)_buffer_builder->last_uploaded_line,
InputBufferBuilderWidth, (GLint)(1 + _buffer_builder->_next_write_y_position - _buffer_builder->last_uploaded_line),
formatForDepth(_buffer_builder->bytes_per_pixel), GL_UNSIGNED_BYTE,
(void *)(_buffer_builder->last_uploaded_line * InputBufferBuilderWidth * _buffer_builder->bytes_per_pixel));
_buffer_builder->last_uploaded_line = _buffer_builder->_next_write_y_position;
0, 0,
InputBufferBuilderWidth, completed_texture_y,
formatForDepth(_buffer_builder->get_bytes_per_pixel()), GL_UNSIGNED_BYTE,
_buffer_builder->get_image_pointer());
}
struct RenderStage {
@ -268,29 +272,12 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
RenderStage *active_pipeline = (_output_device == Television || !rgb_input_shader_program) ? composite_render_stages : rgb_render_stages;
// for television, update intermediate buffers and then draw; for a monitor, just draw
if(_drawn_source_buffer_data_pointer != _source_buffer_data_pointer)
if(number_of_source_drawing_zones)
{
// determine how many lines are newly reclaimed; they'll need to be cleared
GLsizei clearing_zones[4], drawing_zones[4];
int number_of_clearing_zones = getCircularRanges(_cleared_composite_output_y+1, _composite_src_output_y+1, IntermediateBufferHeight, 1, clearing_zones);
int number_of_drawing_zones = getCircularRanges(_drawn_source_buffer_data_pointer, _source_buffer_data_pointer, SourceVertexBufferDataSize, 2*SourceVertexSize, drawing_zones);
_composite_src_output_y %= IntermediateBufferHeight;
_cleared_composite_output_y = _composite_src_output_y;
_source_buffer_data_pointer %= SourceVertexBufferDataSize;
_drawn_source_buffer_data_pointer = _source_buffer_data_pointer;
// all drawing will be from the source vertex array and without blending
glBindVertexArray(source_vertex_array);
glDisable(GL_BLEND);
// flush the source data
glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer);
for(int c = 0; c < number_of_drawing_zones; c++)
{
glFlushMappedBufferRange(GL_ARRAY_BUFFER, drawing_zones[c*2] / SourceVertexSize, drawing_zones[c*2 + 1] / SourceVertexSize);
}
while(active_pipeline->target)
{
// switch to the initial texture
@ -304,17 +291,14 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
glClearColor(active_pipeline->clear_colour[0], active_pipeline->clear_colour[1], active_pipeline->clear_colour[2], 1.0);
for(int c = 0; c < number_of_clearing_zones; c++)
{
glScissor(0, clearing_zones[c*2], IntermediateBufferWidth, clearing_zones[c*2 + 1]);
glScissor(0, clearing_zones[c].location, IntermediateBufferWidth, clearing_zones[c].length);
glClear(GL_COLOR_BUFFER_BIT);
}
glDisable(GL_SCISSOR_TEST);
}
// draw as desired
for(int c = 0; c < number_of_drawing_zones; c++)
{
glDrawArrays(GL_LINES, drawing_zones[c*2] / SourceVertexSize, drawing_zones[c*2 + 1] / SourceVertexSize);
}
drawArrayRanges(GL_LINES, SourceVertexSize, number_of_source_drawing_zones, source_drawing_zones);
active_pipeline++;
}
@ -323,22 +307,7 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
// transfer to framebuffer
framebuffer->bind_framebuffer();
// draw all pending lines
GLsizei drawing_zones[4];
int number_of_drawing_zones = getCircularRanges(_drawn_output_buffer_data_pointer, _output_buffer_data_pointer, OutputVertexBufferDataSize, 6*OutputVertexSize, drawing_zones);
// flush the buffer data
glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer);
for(int c = 0; c < number_of_drawing_zones; c++)
{
glFlushMappedBufferRange(GL_ARRAY_BUFFER, drawing_zones[c*2] / OutputVertexSize, drawing_zones[c*2 + 1] / OutputVertexSize);
}
_output_buffer_data_pointer %= SourceVertexBufferDataSize;
_output_buffer_data_pointer -= (_output_buffer_data_pointer%(6*OutputVertexSize));
_drawn_output_buffer_data_pointer = _output_buffer_data_pointer;
if(number_of_drawing_zones > 0)
if(number_of_output_drawing_zones)
{
glEnable(GL_BLEND);
@ -355,10 +324,7 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
output_shader_program->bind();
// draw
for(int c = 0; c < number_of_drawing_zones; c++)
{
glDrawArrays(GL_TRIANGLE_STRIP, drawing_zones[c*2] / OutputVertexSize, drawing_zones[c*2 + 1] / OutputVertexSize);
}
drawArrayRanges(GL_TRIANGLE_STRIP, OutputVertexSize, number_of_output_drawing_zones, output_drawing_zones);
}
// copy framebuffer to the intended place
@ -366,17 +332,10 @@ void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int out
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0, 0, (GLsizei)output_width, (GLsizei)output_height);
glClear(GL_COLOR_BUFFER_BIT);
framebuffer->draw((float)output_width / (float)output_height);
// drawing commands having been issued, reclaim the array buffer pointer
glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer);
_output_buffer_data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, 0, OutputVertexBufferDataSize, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer);
_source_buffer_data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, 0, SourceVertexBufferDataSize, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
_input_texture_data = (uint8_t *)glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, _input_texture_array_size, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT);
_fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
_output_mutex->unlock();
}
@ -435,21 +394,21 @@ void OpenGLOutputBuilder::prepare_source_vertex_array()
{
GLint inputPositionAttribute = composite_input_shader_program->get_attrib_location("inputPosition");
GLint outputPositionAttribute = composite_input_shader_program->get_attrib_location("outputPosition");
GLint phaseAmplitudeAndOffsetAttribute = composite_input_shader_program->get_attrib_location("phaseAmplitudeAndOffset");
GLint phaseAndAmplitudeAttribute = composite_input_shader_program->get_attrib_location("phaseAndAmplitude");
GLint phaseTimeAttribute = composite_input_shader_program->get_attrib_location("phaseTime");
glBindVertexArray(source_vertex_array);
glEnableVertexAttribArray((GLuint)inputPositionAttribute);
glEnableVertexAttribArray((GLuint)outputPositionAttribute);
glEnableVertexAttribArray((GLuint)phaseAmplitudeAndOffsetAttribute);
glEnableVertexAttribArray((GLuint)phaseAndAmplitudeAttribute);
glEnableVertexAttribArray((GLuint)phaseTimeAttribute);
const GLsizei vertexStride = SourceVertexSize;
glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer);
glVertexAttribPointer((GLuint)inputPositionAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)SourceVertexOffsetOfInputPosition);
glVertexAttribPointer((GLuint)outputPositionAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)SourceVertexOffsetOfOutputPosition);
glVertexAttribPointer((GLuint)phaseAmplitudeAndOffsetAttribute, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexStride, (void *)SourceVertexOffsetOfPhaseAmplitudeAndOffset);
glVertexAttribPointer((GLuint)phaseAndAmplitudeAttribute, 2, GL_UNSIGNED_BYTE, GL_TRUE, vertexStride, (void *)SourceVertexOffsetOfPhaseAndAmplitude);
glVertexAttribPointer((GLuint)phaseTimeAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)SourceVertexOffsetOfPhaseTime);
}
}
@ -466,19 +425,16 @@ void OpenGLOutputBuilder::prepare_output_vertex_array()
{
GLint positionAttribute = output_shader_program->get_attrib_location("position");
GLint textureCoordinatesAttribute = output_shader_program->get_attrib_location("srcCoordinates");
GLint lateralAttribute = output_shader_program->get_attrib_location("lateral");
glBindVertexArray(output_vertex_array);
glEnableVertexAttribArray((GLuint)positionAttribute);
glEnableVertexAttribArray((GLuint)textureCoordinatesAttribute);
glEnableVertexAttribArray((GLuint)lateralAttribute);
const GLsizei vertexStride = OutputVertexSize;
glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer);
glVertexAttribPointer((GLuint)positionAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)OutputVertexOffsetOfPosition);
glVertexAttribPointer((GLuint)textureCoordinatesAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)OutputVertexOffsetOfTexCoord);
glVertexAttribPointer((GLuint)lateralAttribute, 1, GL_UNSIGNED_BYTE, GL_FALSE, vertexStride, (void *)OutputVertexOffsetOfLateral);
}
}
@ -497,6 +453,7 @@ void OpenGLOutputBuilder::set_output_device(OutputDevice output_device)
void OpenGLOutputBuilder::set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider)
{
_output_mutex->lock();
_input_frequency = input_frequency;
_cycles_per_line = cycles_per_line;
_height_of_display = height_of_display;
@ -505,13 +462,13 @@ void OpenGLOutputBuilder::set_timing(unsigned int input_frequency, unsigned int
_vertical_period_divider = vertical_period_divider;
set_timing_uniforms();
_output_mutex->unlock();
}
#pragma mark - Internal Configuration
void OpenGLOutputBuilder::set_colour_space_uniforms()
{
_output_mutex->lock();
GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
@ -535,13 +492,10 @@ void OpenGLOutputBuilder::set_colour_space_uniforms()
if(composite_input_shader_program) composite_input_shader_program->set_colour_conversion_matrices(fromRGB, toRGB);
if(composite_chrominance_filter_shader_program) composite_chrominance_filter_shader_program->set_colour_conversion_matrices(fromRGB, toRGB);
_output_mutex->unlock();
}
void OpenGLOutputBuilder::set_timing_uniforms()
{
_output_mutex->lock();
OpenGL::IntermediateShader *intermediate_shaders[] = {
composite_input_shader_program.get(),
composite_separation_filter_program.get(),
@ -563,6 +517,4 @@ void OpenGLOutputBuilder::set_timing_uniforms()
if(composite_y_filter_shader_program) composite_y_filter_shader_program->set_filter_coefficients(_cycles_per_line, colour_subcarrier_frequency * 0.66f);
if(composite_chrominance_filter_shader_program) composite_chrominance_filter_shader_program->set_filter_coefficients(_cycles_per_line, colour_subcarrier_frequency * 0.5f);
if(rgb_filter_shader_program) rgb_filter_shader_program->set_filter_coefficients(_cycles_per_line, (float)_input_frequency * 0.5f);
_output_mutex->unlock();
}

View File

@ -57,7 +57,7 @@ class OpenGLOutputBuilder {
// the run and input data buffers
std::unique_ptr<CRTInputBufferBuilder> _buffer_builder;
std::shared_ptr<std::mutex> _output_mutex;
std::unique_ptr<std::mutex> _output_mutex;
// transient buffers indicating composite data not yet decoded
uint16_t _composite_src_output_y, _cleared_composite_output_y;
@ -91,10 +91,12 @@ class OpenGLOutputBuilder {
inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_output_mutex->lock();
_colour_space = colour_space;
_colour_cycle_numerator = colour_cycle_numerator;
_colour_cycle_denominator = colour_cycle_denominator;
set_colour_space_uniforms();
_output_mutex->unlock();
}
inline void set_visible_area(Rect visible_area)
@ -104,8 +106,9 @@ class OpenGLOutputBuilder {
inline uint8_t *get_next_source_run()
{
if(_source_buffer_data_pointer == _drawn_source_buffer_data_pointer + SourceVertexBufferDataSize) return nullptr;
_output_mutex->lock();
return &_source_buffer_data[_source_buffer_data_pointer % SourceVertexBufferDataSize];
return &_source_buffer_data.get()[_source_buffer_data_pointer % SourceVertexBufferDataSize];
}
inline void complete_source_run()
@ -114,10 +117,16 @@ class OpenGLOutputBuilder {
_output_mutex->unlock();
}
inline bool composite_output_run_has_room_for_vertices(GLsizei vertices_to_write)
{
return _output_buffer_data_pointer <= _drawn_output_buffer_data_pointer + OutputVertexBufferDataSize - vertices_to_write * OutputVertexSize;
}
inline uint8_t *get_next_output_run()
{
if(_output_buffer_data_pointer == _drawn_output_buffer_data_pointer + OutputVertexBufferDataSize) return nullptr;
_output_mutex->lock();
return &_output_buffer_data[_output_buffer_data_pointer % OutputVertexBufferDataSize];
return &_output_buffer_data.get()[_output_buffer_data_pointer % OutputVertexBufferDataSize];
}
inline void complete_output_run(GLsizei vertices_written)
@ -131,38 +140,46 @@ class OpenGLOutputBuilder {
return _output_device;
}
inline bool composite_output_buffer_has_room_for_vertices(GLsizei vertices_to_write)
{
return _composite_src_output_y <= _cleared_composite_output_y + IntermediateBufferHeight - vertices_to_write * OutputVertexSize;
}
inline uint16_t get_composite_output_y()
{
return _composite_src_output_y % IntermediateBufferHeight;
}
inline bool composite_output_buffer_is_full()
{
return _composite_src_output_y == _cleared_composite_output_y + IntermediateBufferHeight;
}
inline void increment_composite_output_y()
{
if(!composite_output_buffer_is_full())
_composite_src_output_y++;
}
inline uint8_t *allocate_write_area(size_t required_length)
{
_output_mutex->lock();
_buffer_builder->allocate_write_area(required_length);
uint8_t *output = _input_texture_data ? _buffer_builder->get_write_target(_input_texture_data) : nullptr;
_output_mutex->unlock();
return output;
return _buffer_builder->get_write_target();
}
inline void reduce_previous_allocation_to(size_t actual_length)
inline bool reduce_previous_allocation_to(size_t actual_length)
{
_buffer_builder->reduce_previous_allocation_to(actual_length, _input_texture_data);
return _buffer_builder->reduce_previous_allocation_to(actual_length);
}
inline uint16_t get_last_write_x_posiiton()
inline uint16_t get_last_write_x_posititon()
{
return _buffer_builder->_write_x_position;
return _buffer_builder->get_last_write_x_position();
}
inline uint16_t get_last_write_y_posiiton()
inline uint16_t get_last_write_y_posititon()
{
return _buffer_builder->_write_y_position;
return _buffer_builder->get_last_write_y_position();
}
void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty);
@ -172,18 +189,15 @@ class OpenGLOutputBuilder {
void set_output_device(OutputDevice output_device);
void set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider);
uint8_t *_input_texture_data;
GLuint _input_texture_array;
GLsync _input_texture_sync;
GLsizeiptr _input_texture_array_size;
uint8_t *_source_buffer_data;
std::unique_ptr<uint8_t> _source_buffer_data;
GLsizei _source_buffer_data_pointer;
GLsizei _drawn_source_buffer_data_pointer;
uint8_t *_output_buffer_data;
std::unique_ptr<uint8_t> _output_buffer_data;
GLsizei _output_buffer_data_pointer;
GLsizei _drawn_output_buffer_data_pointer;
GLsync _fence;
};
}

View File

@ -20,7 +20,7 @@ namespace {
{
{"inputPosition", 0},
{"outputPosition", 1},
{"phaseAmplitudeAndOffset", 2},
{"phaseAndAmplitude", 2},
{"phaseTime", 3},
{nullptr}
};
@ -37,7 +37,7 @@ std::unique_ptr<IntermediateShader> IntermediateShader::make_shader(const char *
"in vec2 inputPosition;"
"in vec2 outputPosition;"
"in vec3 phaseAmplitudeAndOffset;"
"in vec2 phaseAndAmplitude;"
"in float phaseTime;"
"uniform float phaseCyclesPerTick;"
@ -53,7 +53,8 @@ std::unique_ptr<IntermediateShader> IntermediateShader::make_shader(const char *
"void main(void)"
"{"
"vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (phaseAmplitudeAndOffset.z - 0.5);"
"float direction = float(gl_VertexID & 1);"
"vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (direction - 0.5);"
"vec2 extendedInputPosition = %s + extensionVector;"
"vec2 extendedOutputPosition = outputPosition + extensionVector;"
@ -74,10 +75,10 @@ std::unique_ptr<IntermediateShader> IntermediateShader::make_shader(const char *
"inputPositionsVarying[10] = mappedInputPosition + (vec2(offsets[0], 0.0) / textureSize);"
"delayLinePositionVarying = mappedInputPosition - vec2(0.0, 1.0);"
"phaseAndAmplitudeVarying.x = (phaseCyclesPerTick * (extendedOutputPosition.x - phaseTime) + phaseAmplitudeAndOffset.x) * 2.0 * 3.141592654;"
"phaseAndAmplitudeVarying.y = 0.33;"
"phaseAndAmplitudeVarying.x = (phaseCyclesPerTick * (extendedOutputPosition.x - phaseTime) + phaseAndAmplitude.x) * 2.0 * 3.141592654;"
"phaseAndAmplitudeVarying.y = 0.33;" // TODO: reinstate connection with phaseAndAmplitude
"vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0) + vec2(0.5)/textureSize;"
"vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0) + vec2(1.0)/outputTextureSize;"
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
"}", sampler_type, input_variable);

View File

@ -18,7 +18,6 @@ namespace {
{
{"position", 0},
{"srcCoordinates", 1},
{"lateral", 2},
{nullptr}
};
}
@ -33,7 +32,6 @@ std::unique_ptr<OutputShader> OutputShader::make_shader(const char *fragment_met
"in vec2 position;"
"in vec2 srcCoordinates;"
"in float lateral;"
"uniform vec2 boundsOrigin;"
"uniform vec2 boundsSize;"
@ -47,6 +45,8 @@ std::unique_ptr<OutputShader> OutputShader::make_shader(const char *fragment_met
"void main(void)"
"{"
"float laterals[] = float[](0, 0, 1, 0, 1, 1);"
"float lateral = laterals[gl_VertexID %% 6];"
"lateralVarying = lateral - 0.5;"
"ivec2 textureSize = textureSize(texID, 0);"

View File

@ -8,6 +8,7 @@
#include "TextureTarget.hpp"
#include <math.h>
#include <stdlib.h>
using namespace OpenGL;
@ -29,7 +30,9 @@ TextureTarget::TextureTarget(GLsizei width, GLsizei height, GLenum texture_unit)
glGenTextures(1, &_texture);
glActiveTexture(texture_unit);
glBindTexture(GL_TEXTURE_2D, _texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)_expanded_width, (GLsizei)_expanded_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
uint8_t *blank_buffer = (uint8_t *)calloc((size_t)(_expanded_width * _expanded_height), 4);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)_expanded_width, (GLsizei)_expanded_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, blank_buffer);
free(blank_buffer);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);