1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 00:30:31 +00:00

Attempts to complete all input processing — an RGB, S-Video or composite input buffer is now produced.

... for all input data types.
This commit is contained in:
Thomas Harte 2018-11-22 17:20:31 -05:00
parent 396cf72029
commit a697a2e4f6
5 changed files with 79 additions and 57 deletions

View File

@ -78,6 +78,7 @@
ignoresPersistentStateOnLaunch = "NO" ignoresPersistentStateOnLaunch = "NO"
debugDocumentVersioning = "YES" debugDocumentVersioning = "YES"
stopOnEveryThreadSanitizerIssue = "YES" stopOnEveryThreadSanitizerIssue = "YES"
stopOnEveryUBSanitizerIssue = "YES"
debugServiceExtension = "internal" debugServiceExtension = "internal"
allowLocationSimulation = "NO"> allowLocationSimulation = "NO">
<BuildableProductRunnable <BuildableProductRunnable

View File

@ -206,7 +206,7 @@ void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_
uint16_t(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_)); uint16_t(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_));
// Prepare for the next line. // Prepare for the next line.
if(next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace) { if(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) {
is_alernate_line_ ^= phase_alternates_; is_alernate_line_ ^= phase_alternates_;
colour_burst_amplitude_ = 0; colour_burst_amplitude_ = 0;
} }

View File

@ -157,6 +157,21 @@ void ScanTarget::set_modals(Modals modals) {
set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Line, *input_shader_); set_uniforms(Outputs::Display::OpenGL::ScanTarget::ShaderType::Line, *input_shader_);
input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0)); input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0));
switch(modals.composite_colour_space) {
case ColourSpace::YIQ: {
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
input_shader_->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
input_shader_->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
} break;
case ColourSpace::YUV: {
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
input_shader_->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
input_shader_->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
} break;
}
output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0)); output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
output_shader_->set_uniform("origin", modals.visible_area.origin.x, modals.visible_area.origin.y); output_shader_->set_uniform("origin", modals.visible_area.origin.x, modals.visible_area.origin.y);
@ -521,7 +536,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
// If this is start-of-frame, clear any untouched pixels and flush the stencil buffer // If this is start-of-frame, clear any untouched pixels and flush the stencil buffer
if(line_metadata_buffer_[start_line].is_first_in_frame) { if(line_metadata_buffer_[start_line].is_first_in_frame) {
if(stencil_is_valid_ && line_metadata_buffer_[start_line].previous_frame_was_complete) { if(stencil_is_valid_ && line_metadata_buffer_[start_line].previous_frame_was_complete) {
full_display_rectangle_.draw(1.0, 0.0, 0.0f); full_display_rectangle_.draw(0.0f, 0.0f, 0.0f);
} }
stencil_is_valid_ = true; stencil_is_valid_ = true;
glClear(GL_STENCIL_BUFFER_BIT); glClear(GL_STENCIL_BUFFER_BIT);

View File

@ -17,9 +17,11 @@ std::string ScanTarget::glsl_globals(ShaderType type) {
"#version 150\n" "#version 150\n"
"uniform vec2 scale;" "uniform vec2 scale;"
"uniform float rowHeight;"
"uniform mat3 lumaChromaToRGB;" "uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;" "uniform mat3 rgbToLumaChroma;"
"uniform float rowHeight;"
"uniform float processingWidth;" "uniform float processingWidth;"
"in vec2 startPoint;" "in vec2 startPoint;"
@ -32,6 +34,7 @@ std::string ScanTarget::glsl_globals(ShaderType type) {
"in float dataY;" "in float dataY;"
"in float lineY;" "in float lineY;"
"in float compositeAmplitude;"
"uniform usampler2D textureName;"; "uniform usampler2D textureName;";
@ -59,12 +62,16 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
case ShaderType::Scan: case ShaderType::Scan:
return return
"out vec2 textureCoordinate;" "out vec2 textureCoordinate;"
"out float compositeAngle;"
"out float compositeAmplitudeOut;"
"void main(void) {" "void main(void) {"
"float lateral = float(gl_VertexID & 1);" "float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY) / textureSize(textureName, 0);" "textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY) / textureSize(textureName, 0);"
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
"compositeAmplitudeOut = compositeAmplitude / 255.0;"
"vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);" "vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);"
"gl_Position = vec4(eyePosition*2 - vec2(1.0), 0.0, 1.0);" "gl_Position = vec4(eyePosition*2 - vec2(1.0), 0.0, 1.0);"
@ -126,6 +133,12 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
sizeof(Scan), sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, line)), reinterpret_cast<void *>(offsetof(Scan, line)),
1); 1);
target.enable_vertex_attribute_with_pointer(
"compositeAmplitude",
1, GL_UNSIGNED_BYTE, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.composite_amplitude)),
1);
break; break;
case ShaderType::Line: case ShaderType::Line:
@ -155,85 +168,78 @@ std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type,
"#version 150\n" "#version 150\n"
"out vec4 fragColour;" "out vec4 fragColour;"
"in vec2 textureCoordinate;"; "in vec2 textureCoordinate;"
"in float compositeAngle;"
"in float compositeAmplitudeOut;"
switch(input_data_type) { "uniform mat3 lumaChromaToRGB;"
case InputDataType::Luminance1: "uniform mat3 rgbToLumaChroma;"
fragment_shader +=
"uniform usampler2D textureName;" "uniform usampler2D textureName;"
"void main(void) {"; "void main(void) {";
switch(display_type) { DisplayType computed_display_type;
case DisplayType::RGB: switch(input_data_type) {
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr, 1.0);"; case InputDataType::Luminance1:
break; computed_display_type = DisplayType::CompositeMonochrome;
default: fragment_shader += "fragColour = vec4(vec3(texture(textureName, textureCoordinate).r), 1.0);";
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).r, 0.0, 0.0, 1.0);";
break;
}
fragment_shader += "}";
break; break;
case InputDataType::Luminance8: case InputDataType::Luminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = vec4(vec3(texture(textureName, textureCoordinate).r / 255.0), 1.0);";
break; break;
// SVideo,
// CompositeColour,
// CompositeMonochrome
case InputDataType::Phase8Luminance8: case InputDataType::Phase8Luminance8:
return nullptr; computed_display_type = DisplayType::SVideo;
// fragment_shader += fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rg / vec2(255.0), 0.0, 1.0);";
// "uniform sampler2D textureName;" break;
// "void main(void) {";
//
// switch(display_type) {
// default: return nullptr;
//
// case OutputType::SVideo:
// break;
//// CompositeColour,
//// CompositeMonochrome
// }
//
// fragment_shader += "}";
// break;
// TODO: write encoding functions for RGB -> composite/s-video for the RGB inputs.
case InputDataType::Red1Green1Blue1: case InputDataType::Red1Green1Blue1:
computed_display_type = DisplayType::RGB;
fragment_shader += fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {"
"uint textureValue = texture(textureName, textureCoordinate).r;" "uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);" "fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);";
"}";
break; break;
case InputDataType::Red2Green2Blue2: case InputDataType::Red2Green2Blue2:
computed_display_type = DisplayType::RGB;
fragment_shader += fragment_shader +=
"uniform usampler2D textureName;"
"void main(void) {"
"uint textureValue = texture(textureName, textureCoordinate).r;" "uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0, 1.0);" "fragColour = vec4(vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0, 1.0);";
"}";
break; break;
case InputDataType::Red4Green4Blue4: case InputDataType::Red4Green4Blue4:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uvec2 textureValue = texture(textureName, textureCoordinate).rg;"
"fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);";
break; break;
case InputDataType::Red8Green8Blue8: case InputDataType::Red8Green8Blue8:
fragment_shader += computed_display_type = DisplayType::RGB;
"uniform usampler2D textureName;" fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rgb / vec3(255.0), 1.0);";
"void main(void) {"
"fragColour = vec4(texture(textureName, textureCoordinate).rgb / vec3(255.0), 1.0);"
"}";
break; break;
} }
if(computed_display_type != display_type) {
// If the input type is RGB but the output type isn't then
// there'll definitely be an RGB to SVideo step.
if(computed_display_type == DisplayType::RGB) {
fragment_shader +=
"vec3 composite_colour = rgbToLumaChroma * vec3(fragColour);"
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
"fragColour = vec4(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0, 1.0);";
}
// If the output type isn't SVideo, add an SVideo to composite step.
if(computed_display_type != DisplayType::SVideo) {
fragment_shader += "fragColour = vec4(vec3(mix(fragColour.r,fragColour.g, compositeAmplitudeOut)), 1.0);";
}
}
return std::unique_ptr<Shader>(new Shader( return std::unique_ptr<Shader>(new Shader(
glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan), glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan),
fragment_shader fragment_shader + "}"
)); ));
} }

View File

@ -124,7 +124,7 @@ struct ScanTarget {
InputDataType input_data_type; InputDataType input_data_type;
/// Describes the type of display that the data is being shown on. /// Describes the type of display that the data is being shown on.
DisplayType display_type = DisplayType::RGB; DisplayType display_type = DisplayType::CompositeMonochrome;
/// If being fed composite data, this defines the colour space in use. /// If being fed composite data, this defines the colour space in use.
ColourSpace composite_colour_space; ColourSpace composite_colour_space;