1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-27 16:31:31 +00:00

Merge pull request #529 from TomHarte/AppleDelay

Corrects Apple II video defects
This commit is contained in:
Thomas Harte 2018-08-24 22:11:41 -04:00 committed by GitHub
commit adb574e1cd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 584 additions and 354 deletions

View File

@ -0,0 +1,81 @@
//
// ClockDeferrer.hpp
// Clock Signal
//
// Created by Thomas Harte on 23/08/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#ifndef ClockDeferrer_h
#define ClockDeferrer_h
#include <vector>
/*!
A ClockDeferrer maintains a list of ordered actions and the times at which
they should happen, and divides a total execution period up into the portions
that occur between those actions, triggering each action when it is reached.
*/
template <typename TimeUnit> class ClockDeferrer {
public:
/// Constructs a ClockDeferrer that will call target(period) in between deferred actions.
ClockDeferrer(std::function<void(TimeUnit)> &&target) : target_(std::move(target)) {}
/*!
Schedules @c action to occur in @c delay units of time.
Actions must be scheduled in the order they will occur. It is undefined behaviour
to schedule them out of order.
*/
void defer(TimeUnit delay, const std::function<void(void)> &action) {
pending_actions_.emplace_back(delay, action);
}
/*!
Runs for @c length units of time.
The constructor-supplied target will be called with one or more periods that add up to @c length;
any scheduled actions will be called between periods.
*/
void run_for(TimeUnit length) {
// If there are no pending actions, just run for the entire length.
// This should be the normal branch.
if(pending_actions_.empty()) {
target_(length);
return;
}
// Divide the time to run according to the pending actions.
while(length > TimeUnit(0)) {
TimeUnit next_period = pending_actions_.empty() ? length : std::min(length, pending_actions_[0].delay);
target_(next_period);
length -= next_period;
off_t performances = 0;
for(auto &action: pending_actions_) {
action.delay -= next_period;
if(!action.delay) {
action.action();
++performances;
}
}
if(performances) {
pending_actions_.erase(pending_actions_.begin(), pending_actions_.begin() + performances);
}
}
}
private:
std::function<void(TimeUnit)> target_;
// The list of deferred actions.
struct DeferredAction {
TimeUnit delay;
std::function<void(void)> action;
DeferredAction(TimeUnit delay, const std::function<void(void)> &action) : delay(delay), action(std::move(action)) {}
};
std::vector<DeferredAction> pending_actions_;
};
#endif /* ClockDeferrer_h */

View File

@ -52,11 +52,9 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
public:
VideoBusHandler(uint8_t *ram, uint8_t *aux_ram) : ram_(ram), aux_ram_(aux_ram) {}
uint8_t perform_read(uint16_t address) {
return ram_[address];
}
uint16_t perform_aux_read(uint16_t address) {
return static_cast<uint16_t>(ram_[address] | (aux_ram_[address] << 8));
void perform_read(uint16_t address, size_t count, uint8_t *base_target, uint8_t *auxiliary_target) {
memcpy(base_target, &ram_[address], count);
memcpy(auxiliary_target, &aux_ram_[address], count);
}
private:

View File

@ -10,8 +10,10 @@
using namespace AppleII::Video;
VideoBase::VideoBase() :
crt_(new Outputs::CRT::CRT(910, 1, Outputs::CRT::DisplayType::NTSC60, 1)) {
VideoBase::VideoBase(bool is_iie, std::function<void(Cycles)> &&target) :
crt_(new Outputs::CRT::CRT(910, 1, Outputs::CRT::DisplayType::NTSC60, 1)),
is_iie_(is_iie),
deferrer_(std::move(target)) {
// Set a composite sampling function that assumes one byte per pixel input, and
// accepts any non-zero value as being fully on, zero being fully off.
@ -23,7 +25,7 @@ VideoBase::VideoBase() :
// Show only the centre 75% of the TV frame.
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
crt_->set_visible_area(Outputs::CRT::Rect(0.115f, 0.122f, 0.77f, 0.77f));
crt_->set_visible_area(Outputs::CRT::Rect(0.118f, 0.122f, 0.77f, 0.77f));
crt_->set_immediate_default_phase(0.0f);
}
@ -35,67 +37,85 @@ Outputs::CRT::CRT *VideoBase::get_crt() {
Rote setters and getters.
*/
void VideoBase::set_alternative_character_set(bool alternative_character_set) {
alternative_character_set_ = alternative_character_set;
set_alternative_character_set_ = alternative_character_set;
deferrer_.defer(Cycles(2), [=] {
alternative_character_set_ = alternative_character_set;
});
}
bool VideoBase::get_alternative_character_set() {
return alternative_character_set_;
return set_alternative_character_set_;
}
void VideoBase::set_80_columns(bool columns_80) {
columns_80_ = columns_80;
set_columns_80_ = columns_80;
deferrer_.defer(Cycles(2), [=] {
columns_80_ = columns_80;
});
}
bool VideoBase::get_80_columns() {
return columns_80_;
return set_columns_80_;
}
void VideoBase::set_80_store(bool store_80) {
store_80_ = store_80;
set_store_80_ = store_80_ = store_80;
}
bool VideoBase::get_80_store() {
return store_80_;
return set_store_80_;
}
void VideoBase::set_page2(bool page2) {
page2_ = page2;
set_page2_ = page2_ = page2;
}
bool VideoBase::get_page2() {
return page2_;
return set_page2_;
}
void VideoBase::set_text(bool text) {
text_ = text;
set_text_ = text;
deferrer_.defer(Cycles(2), [=] {
text_ = text;
});
}
bool VideoBase::get_text() {
return text_;
return set_text_;
}
void VideoBase::set_mixed(bool mixed) {
mixed_ = mixed;
set_mixed_ = mixed;
deferrer_.defer(Cycles(2), [=] {
mixed_ = mixed;
});
}
bool VideoBase::get_mixed() {
return mixed_;
return set_mixed_;
}
void VideoBase::set_high_resolution(bool high_resolution) {
high_resolution_ = high_resolution;
set_high_resolution_ = high_resolution;
deferrer_.defer(Cycles(2), [=] {
high_resolution_ = high_resolution;
});
}
bool VideoBase::get_high_resolution() {
return high_resolution_;
return set_high_resolution_;
}
void VideoBase::set_double_high_resolution(bool double_high_resolution) {
double_high_resolution_ = double_high_resolution;
set_double_high_resolution_ = double_high_resolution;
deferrer_.defer(Cycles(2), [=] {
double_high_resolution_ = double_high_resolution;
});
}
bool VideoBase::get_double_high_resolution() {
return double_high_resolution_;
return set_double_high_resolution_;
}
void VideoBase::set_character_rom(const std::vector<uint8_t> &character_rom) {
@ -115,3 +135,170 @@ void VideoBase::set_character_rom(const std::vector<uint8_t> &character_rom) {
}
}
}
void VideoBase::output_text(uint8_t *target, uint8_t *source, size_t length, size_t pixel_row) const {
const uint8_t inverses[] = {
0xff,
is_iie_ ? static_cast<uint8_t>(0xff) : static_cast<uint8_t>((flash_ / flash_length) * 0xff),
is_iie_ ? static_cast<uint8_t>(0xff) : static_cast<uint8_t>(0x00),
is_iie_ ? static_cast<uint8_t>(0xff) : static_cast<uint8_t>(0x00)
};
const int or_mask = alternative_character_set_ ? 0x100 : 0x000;
const int and_mask = is_iie_ ? ~0 : 0x3f;
for(size_t c = 0; c < length; ++c) {
const int character = (source[c] | or_mask) & and_mask;
const uint8_t xor_mask = inverses[character >> 6];
const std::size_t character_address = static_cast<std::size_t>(character << 3) + pixel_row;
const uint8_t character_pattern = character_rom_[character_address] ^ xor_mask;
// The character ROM is output MSB to LSB rather than LSB to MSB.
target[0] = target[1] = character_pattern & 0x40;
target[2] = target[3] = character_pattern & 0x20;
target[4] = target[5] = character_pattern & 0x10;
target[6] = target[7] = character_pattern & 0x08;
target[8] = target[9] = character_pattern & 0x04;
target[10] = target[11] = character_pattern & 0x02;
target[12] = target[13] = character_pattern & 0x01;
graphics_carry_ = character_pattern & 0x01;
target += 14;
}
}
void VideoBase::output_double_text(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length, size_t pixel_row) const {
for(size_t c = 0; c < length; ++c) {
const std::size_t character_addresses[2] = {
static_cast<std::size_t>(
auxiliary_source[c] << 3
) + pixel_row,
static_cast<std::size_t>(
source[c] << 3
) + pixel_row,
};
const size_t pattern_offset = alternative_character_set_ ? (256*8) : 0;
const uint8_t character_patterns[2] = {
character_rom_[character_addresses[0] + pattern_offset],
character_rom_[character_addresses[1] + pattern_offset],
};
// The character ROM is output MSB to LSB rather than LSB to MSB.
target[0] = character_patterns[0] & 0x40;
target[1] = character_patterns[0] & 0x20;
target[2] = character_patterns[0] & 0x10;
target[3] = character_patterns[0] & 0x08;
target[4] = character_patterns[0] & 0x04;
target[5] = character_patterns[0] & 0x02;
target[6] = character_patterns[0] & 0x01;
target[7] = character_patterns[1] & 0x40;
target[8] = character_patterns[1] & 0x20;
target[9] = character_patterns[1] & 0x10;
target[10] = character_patterns[1] & 0x08;
target[11] = character_patterns[1] & 0x04;
target[12] = character_patterns[1] & 0x02;
target[13] = character_patterns[1] & 0x01;
graphics_carry_ = character_patterns[1] & 0x01;
target += 14;
}
}
void VideoBase::output_low_resolution(uint8_t *target, uint8_t *source, size_t length, int column, int row) const {
const int row_shift = row&4;
for(size_t c = 0; c < length; ++c) {
// Low-resolution graphics mode shifts the colour code on a loop, but has to account for whether this
// 14-sample output window is starting at the beginning of a colour cycle or halfway through.
if((column + static_cast<int>(c))&1) {
target[0] = target[4] = target[8] = target[12] = (source[c] >> row_shift) & 4;
target[1] = target[5] = target[9] = target[13] = (source[c] >> row_shift) & 8;
target[2] = target[6] = target[10] = (source[c] >> row_shift) & 1;
target[3] = target[7] = target[11] = (source[c] >> row_shift) & 2;
graphics_carry_ = (source[c] >> row_shift) & 8;
} else {
target[0] = target[4] = target[8] = target[12] = (source[c] >> row_shift) & 1;
target[1] = target[5] = target[9] = target[13] = (source[c] >> row_shift) & 2;
target[2] = target[6] = target[10] = (source[c] >> row_shift) & 4;
target[3] = target[7] = target[11] = (source[c] >> row_shift) & 8;
graphics_carry_ = (source[c] >> row_shift) & 2;
}
target += 14;
}
}
void VideoBase::output_double_low_resolution(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length, int column, int row) const {
const int row_shift = row&4;
for(size_t c = 0; c < length; ++c) {
if((column + static_cast<int>(c))&1) {
target[0] = target[4] = (auxiliary_source[c] >> row_shift) & 2;
target[1] = target[5] = (auxiliary_source[c] >> row_shift) & 4;
target[2] = target[6] = (auxiliary_source[c] >> row_shift) & 8;
target[3] = (auxiliary_source[c] >> row_shift) & 1;
target[8] = target[12] = (source[c] >> row_shift) & 4;
target[9] = target[13] = (source[c] >> row_shift) & 8;
target[10] = (source[c] >> row_shift) & 1;
target[7] = target[11] = (source[c] >> row_shift) & 2;
graphics_carry_ = (source[c] >> row_shift) & 8;
} else {
target[0] = target[4] = (auxiliary_source[c] >> row_shift) & 8;
target[1] = target[5] = (auxiliary_source[c] >> row_shift) & 1;
target[2] = target[6] = (auxiliary_source[c] >> row_shift) & 2;
target[3] = (auxiliary_source[c] >> row_shift) & 4;
target[8] = target[12] = (source[c] >> row_shift) & 1;
target[9] = target[13] = (source[c] >> row_shift) & 2;
target[10] = (source[c] >> row_shift) & 4;
target[7] = target[11] = (source[c] >> row_shift) & 8;
graphics_carry_ = (source[c] >> row_shift) & 2;
}
target += 14;
}
}
void VideoBase::output_high_resolution(uint8_t *target, uint8_t *source, size_t length) const {
for(size_t c = 0; c < length; ++c) {
// High resolution graphics shift out LSB to MSB, optionally with a delay of half a pixel.
// If there is a delay, the previous output level is held to bridge the gap.
if(source[c] & 0x80) {
target[0] = graphics_carry_;
target[1] = target[2] = source[c] & 0x01;
target[3] = target[4] = source[c] & 0x02;
target[5] = target[6] = source[c] & 0x04;
target[7] = target[8] = source[c] & 0x08;
target[9] = target[10] = source[c] & 0x10;
target[11] = target[12] = source[c] & 0x20;
target[13] = source[c] & 0x40;
} else {
target[0] = target[1] = source[c] & 0x01;
target[2] = target[3] = source[c] & 0x02;
target[4] = target[5] = source[c] & 0x04;
target[6] = target[7] = source[c] & 0x08;
target[8] = target[9] = source[c] & 0x10;
target[10] = target[11] = source[c] & 0x20;
target[12] = target[13] = source[c] & 0x40;
}
graphics_carry_ = source[c] & 0x40;
target += 14;
}
}
void VideoBase::output_double_high_resolution(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length) const {
for(size_t c = 0; c < length; ++c) {
target[0] = auxiliary_source[c] & 0x01;
target[1] = auxiliary_source[c] & 0x02;
target[2] = auxiliary_source[c] & 0x04;
target[3] = auxiliary_source[c] & 0x08;
target[4] = auxiliary_source[c] & 0x10;
target[5] = auxiliary_source[c] & 0x20;
target[6] = auxiliary_source[c] & 0x40;
target[7] = source[c] & 0x01;
target[8] = source[c] & 0x02;
target[9] = source[c] & 0x04;
target[10] = source[c] & 0x08;
target[11] = source[c] & 0x10;
target[12] = source[c] & 0x20;
target[13] = source[c] & 0x40;
graphics_carry_ = auxiliary_source[c] & 0x40;
target += 14;
}
}

View File

@ -11,7 +11,9 @@
#include "../../Outputs/CRT/CRT.hpp"
#include "../../ClockReceiver/ClockReceiver.hpp"
#include "../../ClockReceiver/ClockDeferrer.hpp"
#include <array>
#include <vector>
namespace AppleII {
@ -20,25 +22,19 @@ namespace Video {
class BusHandler {
public:
/*!
Reads an 8-bit value from the ordinary II/II+ memory pool.
*/
uint8_t perform_read(uint16_t address) {
return 0xff;
}
Requests fetching of the @c count bytes starting from @c address.
/*!
Reads two 8-bit values, from the same address one from
main RAM, one from auxiliary. Should return as
(main) | (aux << 8).
The handler should write the values from base memory to @c base_target, and those
from auxiliary memory to @c auxiliary_target. If the machine has no axiliary memory,
it needn't write anything to auxiliary_target.
*/
uint16_t perform_aux_read(uint16_t address) {
return 0xffff;
void perform_read(uint16_t address, size_t count, uint8_t *base_target, uint8_t *auxiliary_target) {
}
};
class VideoBase {
public:
VideoBase();
VideoBase(bool is_iie, std::function<void(Cycles)> &&target);
/// @returns The CRT this video feed is feeding.
Outputs::CRT::CRT *get_crt();
@ -153,350 +149,98 @@ class VideoBase {
// State affecting output video stream generation.
uint8_t *pixel_pointer_ = nullptr;
int pixel_pointer_column_ = 0;
bool pixels_are_high_density_ = false;
// State affecting logical state.
int row_ = 0, column_ = 0, flash_ = 0;
// Enumerates all Apple II and IIe display modes.
enum class GraphicsMode {
LowRes,
LowRes = 0,
DoubleLowRes,
HighRes,
DoubleHighRes,
Text,
DoubleText
DoubleText,
};
bool is_text_mode(GraphicsMode m) { return m >= GraphicsMode::Text; }
bool is_double_mode(GraphicsMode m) { return !!(static_cast<int>(m)&1); }
// Various soft-switch values.
bool alternative_character_set_ = false;
bool columns_80_ = false;
bool store_80_ = false;
bool page2_ = false;
bool text_ = true;
bool mixed_ = false;
bool high_resolution_ = false;
bool double_high_resolution_ = false;
bool alternative_character_set_ = false, set_alternative_character_set_ = false;
bool columns_80_ = false, set_columns_80_ = false;
bool store_80_ = false, set_store_80_ = false;
bool page2_ = false, set_page2_ = false;
bool text_ = true, set_text_ = true;
bool mixed_ = false, set_mixed_ = false;
bool high_resolution_ = false, set_high_resolution_ = false;
bool double_high_resolution_ = false, set_double_high_resolution_ = false;
// Graphics carry is the final level output in a fetch window;
// it carries on into the next if it's high resolution with
// the delay bit set.
uint8_t graphics_carry_ = 0;
mutable uint8_t graphics_carry_ = 0;
bool was_double_ = false;
// This holds a copy of the character ROM. The regular character
// set is assumed to be in the first 64*8 bytes; the alternative
// is in the 128*8 bytes after that.
std::vector<uint8_t> character_rom_;
// Memory is fetched ahead of time into this array;
// this permits the correct delay between fetching
// without having to worry about a rolling buffer.
std::array<uint8_t, 40> base_stream_;
std::array<uint8_t, 40> auxiliary_stream_;
bool is_iie_ = false;
static const int flash_length = 8406;
/*!
Outputs 40-column text to @c target, using @c length bytes from @c source.
*/
void output_text(uint8_t *target, uint8_t *source, size_t length, size_t pixel_row) const;
/*!
Outputs 80-column text to @c target, drawing @c length columns from @c source and @c auxiliary_source.
*/
void output_double_text(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length, size_t pixel_row) const;
/*!
Outputs 40-column low-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_low_resolution(uint8_t *target, uint8_t *source, size_t length, int column, int row) const;
/*!
Outputs 80-column low-resolution graphics to @c target, drawing @c length columns from @c source and @c auxiliary_source.
*/
void output_double_low_resolution(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length, int column, int row) const;
/*!
Outputs 40-column high-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_high_resolution(uint8_t *target, uint8_t *source, size_t length) const;
/*!
Outputs 80-column double-high-resolution graphics to @c target, drawing @c length columns from @c source.
*/
void output_double_high_resolution(uint8_t *target, uint8_t *source, uint8_t *auxiliary_source, size_t length) const;
// Maintain a ClockDeferrer for delayed mode switches.
ClockDeferrer<Cycles> deferrer_;
};
template <class BusHandler, bool is_iie> class Video: public VideoBase {
public:
/// Constructs an instance of the video feed; a CRT is also created.
Video(BusHandler &bus_handler) :
VideoBase(),
VideoBase(is_iie, [=] (Cycles cycles) { advance(cycles); }),
bus_handler_(bus_handler) {}
/*!
Advances time by @c cycles; expects to be fed by the CPU clock.
Implicitly adds an extra half a colour clock at the end of every
line.
Runs video for @c cycles.
*/
void run_for(const Cycles cycles) {
/*
Addressing scheme used throughout is that column 0 is the first column with pixels in it;
row 0 is the first row with pixels in it.
A frame is oriented around 65 cycles across, 262 lines down.
*/
static const int first_sync_line = 220; // A complete guess. Information needed.
static const int first_sync_column = 49; // Also a guess.
static const int sync_length = 4; // One of the two likely candidates.
int int_cycles = cycles.as_int();
while(int_cycles) {
const int cycles_this_line = std::min(65 - column_, int_cycles);
const int ending_column = column_ + cycles_this_line;
if(row_ >= first_sync_line && row_ < first_sync_line + 3) {
// In effect apply an XOR to HSYNC and VSYNC flags in order to include equalising
// pulses (and hencce keep hsync approximately where it should be during vsync).
const int blank_start = std::max(first_sync_column - sync_length, column_);
const int blank_end = std::min(first_sync_column, ending_column);
if(blank_end > blank_start) {
if(blank_start > column_) {
crt_->output_sync(static_cast<unsigned int>(blank_start - column_) * 14);
}
crt_->output_blank(static_cast<unsigned int>(blank_end - blank_start) * 14);
if(blank_end < ending_column) {
crt_->output_sync(static_cast<unsigned int>(ending_column - blank_end) * 14);
}
} else {
crt_->output_sync(static_cast<unsigned int>(cycles_this_line) * 14);
}
} else {
const GraphicsMode line_mode = graphics_mode(row_);
// The first 40 columns are submitted to the CRT only upon completion;
// they'll be either graphics or blank, depending on which side we are
// of line 192.
if(column_ < 40) {
if(row_ < 192) {
const bool requires_high_density = line_mode != GraphicsMode::Text;
if(!column_ || requires_high_density != pixels_are_high_density_) {
if(column_) output_data_to_column(column_);
pixel_pointer_ = crt_->allocate_write_area(561);
pixel_pointer_column_ = column_;
pixels_are_high_density_ = requires_high_density;
graphics_carry_ = 0;
}
const int pixel_end = std::min(40, ending_column);
const int character_row = row_ >> 3;
const int pixel_row = row_ & 7;
const uint16_t row_address = static_cast<uint16_t>((character_row >> 3) * 40 + ((character_row&7) << 7));
const uint16_t text_address = static_cast<uint16_t>(((video_page()+1) * 0x400) + row_address);
switch(line_mode) {
case GraphicsMode::Text: {
const uint8_t inverses[] = {
0xff,
static_cast<uint8_t>((flash_ / flash_length) * 0xff),
0x00,
0x00
};
for(int c = column_; c < pixel_end; ++c) {
int character = bus_handler_.perform_read(static_cast<uint16_t>(text_address + c));
if(is_iie) {
character |= alternative_character_set_ ? 0x100 : 0;
} else {
character &= 0x3f;
}
const uint8_t xor_mask = is_iie ? 0xff : inverses[character >> 6];
const std::size_t character_address = static_cast<std::size_t>((character << 3) + pixel_row);
const uint8_t character_pattern = character_rom_[character_address] ^ xor_mask;
// The character ROM is output MSB to LSB rather than LSB to MSB.
pixel_pointer_[0] = character_pattern & 0x40;
pixel_pointer_[1] = character_pattern & 0x20;
pixel_pointer_[2] = character_pattern & 0x10;
pixel_pointer_[3] = character_pattern & 0x08;
pixel_pointer_[4] = character_pattern & 0x04;
pixel_pointer_[5] = character_pattern & 0x02;
pixel_pointer_[6] = character_pattern & 0x01;
graphics_carry_ = character_pattern & 0x01;
pixel_pointer_ += 7;
}
} break;
case GraphicsMode::DoubleText: {
for(int c = column_; c < pixel_end; ++c) {
const uint16_t characters = bus_handler_.perform_aux_read(static_cast<uint16_t>(text_address + c));
const std::size_t character_addresses[2] = {
static_cast<std::size_t>(
(((characters >> 8)) << 3) + pixel_row
),
static_cast<std::size_t>(
(characters << 3) + pixel_row
),
};
const size_t pattern_offset = alternative_character_set_ ? (256*8) : 0;
const uint8_t character_patterns[2] = {
character_rom_[character_addresses[0] + pattern_offset],
character_rom_[character_addresses[1] + pattern_offset],
};
// The character ROM is output MSB to LSB rather than LSB to MSB.
pixel_pointer_[0] = character_patterns[0] & 0x40;
pixel_pointer_[1] = character_patterns[0] & 0x20;
pixel_pointer_[2] = character_patterns[0] & 0x10;
pixel_pointer_[3] = character_patterns[0] & 0x08;
pixel_pointer_[4] = character_patterns[0] & 0x04;
pixel_pointer_[5] = character_patterns[0] & 0x02;
pixel_pointer_[6] = character_patterns[0] & 0x01;
pixel_pointer_[7] = character_patterns[1] & 0x40;
pixel_pointer_[8] = character_patterns[1] & 0x20;
pixel_pointer_[9] = character_patterns[1] & 0x10;
pixel_pointer_[10] = character_patterns[1] & 0x08;
pixel_pointer_[11] = character_patterns[1] & 0x04;
pixel_pointer_[12] = character_patterns[1] & 0x02;
pixel_pointer_[13] = character_patterns[1] & 0x01;
graphics_carry_ = character_patterns[1] & 0x01;
pixel_pointer_ += 14;
}
} break;
case GraphicsMode::DoubleLowRes: {
const int row_shift = (row_&4);
for(int c = column_; c < pixel_end; ++c) {
const uint16_t nibble = bus_handler_.perform_aux_read(static_cast<uint16_t>(text_address + c)) >> row_shift;
if(c&1) {
pixel_pointer_[0] = pixel_pointer_[4] = (nibble >> 8) & 2;
pixel_pointer_[1] = pixel_pointer_[5] = (nibble >> 8) & 4;
pixel_pointer_[2] = pixel_pointer_[6] = (nibble >> 8) & 8;
pixel_pointer_[3] = (nibble >> 8) & 1;
pixel_pointer_[8] = pixel_pointer_[12] = nibble & 4;
pixel_pointer_[9] = pixel_pointer_[13] = nibble & 8;
pixel_pointer_[10] = nibble & 1;
pixel_pointer_[7] = pixel_pointer_[11] = nibble & 2;
graphics_carry_ = nibble & 8;
} else {
pixel_pointer_[0] = pixel_pointer_[4] = (nibble >> 8) & 8;
pixel_pointer_[1] = pixel_pointer_[5] = (nibble >> 8) & 1;
pixel_pointer_[2] = pixel_pointer_[6] = (nibble >> 8) & 2;
pixel_pointer_[3] = (nibble >> 8) & 4;
pixel_pointer_[8] = pixel_pointer_[12] = nibble & 1;
pixel_pointer_[9] = pixel_pointer_[13] = nibble & 2;
pixel_pointer_[10] = nibble & 4;
pixel_pointer_[7] = pixel_pointer_[11] = nibble & 8;
graphics_carry_ = nibble & 2;
}
pixel_pointer_ += 14;
}
} break;
case GraphicsMode::LowRes: {
const int row_shift = (row_&4);
// TODO: decompose into two loops, possibly.
for(int c = column_; c < pixel_end; ++c) {
const uint8_t nibble = (bus_handler_.perform_read(static_cast<uint16_t>(text_address + c)) >> row_shift) & 0x0f;
// Low-resolution graphics mode shifts the colour code on a loop, but has to account for whether this
// 14-sample output window is starting at the beginning of a colour cycle or halfway through.
if(c&1) {
pixel_pointer_[0] = pixel_pointer_[4] = pixel_pointer_[8] = pixel_pointer_[12] = nibble & 4;
pixel_pointer_[1] = pixel_pointer_[5] = pixel_pointer_[9] = pixel_pointer_[13] = nibble & 8;
pixel_pointer_[2] = pixel_pointer_[6] = pixel_pointer_[10] = nibble & 1;
pixel_pointer_[3] = pixel_pointer_[7] = pixel_pointer_[11] = nibble & 2;
graphics_carry_ = nibble & 8;
} else {
pixel_pointer_[0] = pixel_pointer_[4] = pixel_pointer_[8] = pixel_pointer_[12] = nibble & 1;
pixel_pointer_[1] = pixel_pointer_[5] = pixel_pointer_[9] = pixel_pointer_[13] = nibble & 2;
pixel_pointer_[2] = pixel_pointer_[6] = pixel_pointer_[10] = nibble & 4;
pixel_pointer_[3] = pixel_pointer_[7] = pixel_pointer_[11] = nibble & 8;
graphics_carry_ = nibble & 2;
}
pixel_pointer_ += 14;
}
} break;
case GraphicsMode::HighRes: {
const uint16_t graphics_address = static_cast<uint16_t>(((video_page()+1) * 0x2000) + row_address + ((pixel_row&7) << 10));
for(int c = column_; c < pixel_end; ++c) {
const uint8_t graphic = bus_handler_.perform_read(static_cast<uint16_t>(graphics_address + c));
// High resolution graphics shift out LSB to MSB, optionally with a delay of half a pixel.
// If there is a delay, the previous output level is held to bridge the gap.
if(graphic & 0x80) {
pixel_pointer_[0] = graphics_carry_;
pixel_pointer_[1] = pixel_pointer_[2] = graphic & 0x01;
pixel_pointer_[3] = pixel_pointer_[4] = graphic & 0x02;
pixel_pointer_[5] = pixel_pointer_[6] = graphic & 0x04;
pixel_pointer_[7] = pixel_pointer_[8] = graphic & 0x08;
pixel_pointer_[9] = pixel_pointer_[10] = graphic & 0x10;
pixel_pointer_[11] = pixel_pointer_[12] = graphic & 0x20;
pixel_pointer_[13] = graphic & 0x40;
} else {
pixel_pointer_[0] = pixel_pointer_[1] = graphic & 0x01;
pixel_pointer_[2] = pixel_pointer_[3] = graphic & 0x02;
pixel_pointer_[4] = pixel_pointer_[5] = graphic & 0x04;
pixel_pointer_[6] = pixel_pointer_[7] = graphic & 0x08;
pixel_pointer_[8] = pixel_pointer_[9] = graphic & 0x10;
pixel_pointer_[10] = pixel_pointer_[11] = graphic & 0x20;
pixel_pointer_[12] = pixel_pointer_[13] = graphic & 0x40;
}
graphics_carry_ = graphic & 0x40;
pixel_pointer_ += 14;
}
} break;
case GraphicsMode::DoubleHighRes: {
const uint16_t graphics_address = static_cast<uint16_t>(((video_page()+1) * 0x2000) + row_address + ((pixel_row&7) << 10));
for(int c = column_; c < pixel_end; ++c) {
const uint16_t graphic = bus_handler_.perform_aux_read(static_cast<uint16_t>(graphics_address + c));
pixel_pointer_[0] = graphics_carry_;
pixel_pointer_[1] = (graphic >> 8) & 0x01;
pixel_pointer_[2] = (graphic >> 8) & 0x02;
pixel_pointer_[3] = (graphic >> 8) & 0x04;
pixel_pointer_[4] = (graphic >> 8) & 0x08;
pixel_pointer_[5] = (graphic >> 8) & 0x10;
pixel_pointer_[6] = (graphic >> 8) & 0x20;
pixel_pointer_[7] = (graphic >> 8) & 0x40;
pixel_pointer_[8] = graphic & 0x01;
pixel_pointer_[9] = graphic & 0x02;
pixel_pointer_[10] = graphic & 0x04;
pixel_pointer_[11] = graphic & 0x08;
pixel_pointer_[12] = graphic & 0x10;
pixel_pointer_[13] = graphic & 0x20;
graphics_carry_ = graphic & 0x40;
pixel_pointer_ += 14;
}
} break;
}
if(ending_column >= 40) {
output_data_to_column(40);
}
} else {
if(ending_column >= 40) {
crt_->output_blank(560);
}
}
}
/*
The left border, sync, right border pattern doesn't depend on whether
there were pixels this row and is output as soon as it is known.
*/
const int first_blank_start = std::max(40, column_);
const int first_blank_end = std::min(first_sync_column, ending_column);
if(first_blank_end > first_blank_start) {
crt_->output_blank(static_cast<unsigned int>(first_blank_end - first_blank_start) * 14);
}
const int sync_start = std::max(first_sync_column, column_);
const int sync_end = std::min(first_sync_column + sync_length, ending_column);
if(sync_end > sync_start) {
crt_->output_sync(static_cast<unsigned int>(sync_end - sync_start) * 14);
}
int second_blank_start;
if(!is_text_mode(graphics_mode(row_+1))) {
const int colour_burst_start = std::max(first_sync_column + sync_length + 1, column_);
const int colour_burst_end = std::min(first_sync_column + sync_length + 4, ending_column);
if(colour_burst_end > colour_burst_start) {
crt_->output_colour_burst(static_cast<unsigned int>(colour_burst_end - colour_burst_start) * 14, 128);
}
second_blank_start = std::max(first_sync_column + 7, column_);
} else {
second_blank_start = std::max(first_sync_column + 4, column_);
}
if(ending_column > second_blank_start) {
crt_->output_blank(static_cast<unsigned int>(ending_column - second_blank_start) * 14);
}
}
int_cycles -= cycles_this_line;
column_ = (column_ + cycles_this_line) % 65;
if(!column_) {
row_ = (row_ + 1) % 262;
flash_ = (flash_ + 1) % (2 * flash_length);
// Add an extra half a colour cycle of blank; this isn't counted in the run_for
// count explicitly but is promised.
crt_->output_blank(2);
}
}
void run_for(Cycles cycles) {
deferrer_.run_for(cycles);
}
/*!
@ -534,7 +278,9 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
// Calculate the address and return the value.
uint16_t read_address = static_cast<uint16_t>(get_row_address(mapped_row) + mapped_column - 25);
return bus_handler_.perform_read(read_address);
uint8_t value, aux_value;
bus_handler_.perform_read(read_address, 1, &value, &aux_value);
return value;
}
/*!
@ -555,6 +301,228 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
}
private:
/*!
Advances time by @c cycles; expects to be fed by the CPU clock.
Implicitly adds an extra half a colour clock at the end of
line.
*/
void advance(Cycles cycles) {
/*
Addressing scheme used throughout is that column 0 is the first column with pixels in it;
row 0 is the first row with pixels in it.
A frame is oriented around 65 cycles across, 262 lines down.
*/
static const int first_sync_line = 220; // A complete guess. Information needed.
static const int first_sync_column = 49; // Also a guess.
static const int sync_length = 4; // One of the two likely candidates.
int int_cycles = cycles.as_int();
while(int_cycles) {
const int cycles_this_line = std::min(65 - column_, int_cycles);
const int ending_column = column_ + cycles_this_line;
if(row_ >= first_sync_line && row_ < first_sync_line + 3) {
// In effect apply an XOR to HSYNC and VSYNC flags in order to include equalising
// pulses (and hencce keep hsync approximately where it should be during vsync).
const int blank_start = std::max(first_sync_column - sync_length, column_);
const int blank_end = std::min(first_sync_column, ending_column);
if(blank_end > blank_start) {
if(blank_start > column_) {
crt_->output_sync(static_cast<unsigned int>(blank_start - column_) * 14);
}
crt_->output_blank(static_cast<unsigned int>(blank_end - blank_start) * 14);
if(blank_end < ending_column) {
crt_->output_sync(static_cast<unsigned int>(ending_column - blank_end) * 14);
}
} else {
crt_->output_sync(static_cast<unsigned int>(cycles_this_line) * 14);
}
} else {
const GraphicsMode line_mode = graphics_mode(row_);
// Determine whether there's any fetching to do. Fetching occurs during the first
// 40 columns of rows prior to 192.
if(row_ < 192 && column_ < 40) {
const int character_row = row_ >> 3;
const uint16_t row_address = static_cast<uint16_t>((character_row >> 3) * 40 + ((character_row&7) << 7));
// Grab the memory contents that'll be needed momentarily.
const int fetch_end = std::min(40, ending_column);
uint16_t fetch_address;
switch(line_mode) {
case GraphicsMode::Text:
case GraphicsMode::DoubleText:
case GraphicsMode::LowRes:
case GraphicsMode::DoubleLowRes: {
const uint16_t text_address = static_cast<uint16_t>(((video_page()+1) * 0x400) + row_address);
fetch_address = static_cast<uint16_t>(text_address + column_);
} break;
case GraphicsMode::HighRes:
case GraphicsMode::DoubleHighRes:
fetch_address = static_cast<uint16_t>(((video_page()+1) * 0x2000) + row_address + ((row_&7) << 10) + column_);
break;
}
bus_handler_.perform_read(
fetch_address,
static_cast<size_t>(fetch_end - column_),
&base_stream_[static_cast<size_t>(column_)],
&auxiliary_stream_[static_cast<size_t>(column_)]);
// TODO: should character modes be mapped to character pixel outputs here?
}
if(row_ < 192) {
// The pixel area is the first 40.5 columns; base contents
// remain where they would naturally be but auxiliary
// graphics appear to the left of that.
if(!column_) {
pixel_pointer_ = crt_->allocate_write_area(568);
graphics_carry_ = 0;
was_double_ = true;
}
if(column_ < 40) {
const int pixel_start = std::max(0, column_);
const int pixel_end = std::min(40, ending_column);
const int pixel_row = row_ & 7;
const bool is_double = Video::is_double_mode(line_mode);
if(!is_double && was_double_) {
pixel_pointer_[pixel_start*14 + 0] =
pixel_pointer_[pixel_start*14 + 1] =
pixel_pointer_[pixel_start*14 + 2] =
pixel_pointer_[pixel_start*14 + 3] =
pixel_pointer_[pixel_start*14 + 4] =
pixel_pointer_[pixel_start*14 + 5] =
pixel_pointer_[pixel_start*14 + 6] = 0;
}
was_double_ = is_double;
switch(line_mode) {
case GraphicsMode::Text:
output_text(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start),
static_cast<size_t>(pixel_row));
break;
case GraphicsMode::DoubleText:
output_double_text(
&pixel_pointer_[pixel_start * 14],
&base_stream_[static_cast<size_t>(pixel_start)],
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start),
static_cast<size_t>(pixel_row));
break;
case GraphicsMode::LowRes:
output_low_resolution(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start),
pixel_start,
pixel_row);
break;
case GraphicsMode::DoubleLowRes:
output_double_low_resolution(
&pixel_pointer_[pixel_start * 14],
&base_stream_[static_cast<size_t>(pixel_start)],
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start),
pixel_start,
pixel_row);
break;
case GraphicsMode::HighRes:
output_high_resolution(
&pixel_pointer_[pixel_start * 14 + 7],
&base_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start));
break;
case GraphicsMode::DoubleHighRes:
output_double_high_resolution(
&pixel_pointer_[pixel_start * 14],
&base_stream_[static_cast<size_t>(pixel_start)],
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
static_cast<size_t>(pixel_end - pixel_start));
break;
default: break;
}
if(pixel_end == 40) {
if(was_double_) {
pixel_pointer_[563] =
pixel_pointer_[564] =
pixel_pointer_[565] =
pixel_pointer_[566] =
pixel_pointer_[567] = 0;
} else {
if(line_mode == GraphicsMode::HighRes && base_stream_[39]&0x80)
pixel_pointer_[567] = graphics_carry_;
else
pixel_pointer_[567] = 0;
}
crt_->output_data(568, 568);
pixel_pointer_ = nullptr;
}
}
} else {
if(column_ < 40 && ending_column >= 40) {
crt_->output_blank(568);
}
}
/*
The left border, sync, right border pattern doesn't depend on whether
there were pixels this row and is output as soon as it is known.
*/
if(column_ < first_sync_column && ending_column >= first_sync_column) {
crt_->output_blank((first_sync_column - 41)*14 - 1);
}
if(column_ < (first_sync_column + sync_length) && ending_column >= (first_sync_column + sync_length)) {
crt_->output_sync(sync_length*14);
}
int second_blank_start;
if(!is_text_mode(graphics_mode(row_+1))) {
const int colour_burst_start = std::max(first_sync_column + sync_length + 1, column_);
const int colour_burst_end = std::min(first_sync_column + sync_length + 4, ending_column);
if(colour_burst_end > colour_burst_start) {
crt_->output_colour_burst(static_cast<unsigned int>(colour_burst_end - colour_burst_start) * 14, 192);
}
second_blank_start = std::max(first_sync_column + sync_length + 3, column_);
} else {
second_blank_start = std::max(first_sync_column + sync_length, column_);
}
if(ending_column > second_blank_start) {
crt_->output_blank(static_cast<unsigned int>(ending_column - second_blank_start) * 14);
}
}
int_cycles -= cycles_this_line;
column_ = (column_ + cycles_this_line) % 65;
if(!column_) {
row_ = (row_ + 1) % 262;
flash_ = (flash_ + 1) % (2 * flash_length);
// Add an extra half a colour cycle of blank; this isn't counted in the run_for
// count explicitly but is promised.
crt_->output_blank(2);
}
}
}
GraphicsMode graphics_mode(int row) {
if(text_) return columns_80_ ? GraphicsMode::DoubleText : GraphicsMode::Text;
if(mixed_ && row >= 160 && row < 192) {
@ -582,13 +550,7 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
static_cast<uint16_t>(((video_page()+1) * 0x400) + row_address);
}
static const int flash_length = 8406;
BusHandler &bus_handler_;
void output_data_to_column(int column) {
int length = column - pixel_pointer_column_;
crt_->output_data(static_cast<unsigned int>(length*14), static_cast<unsigned int>(length * (pixels_are_high_density_ ? 14 : 7)));
pixel_pointer_ = nullptr;
}
};
}

View File

@ -1007,6 +1007,7 @@
4B894516201967B4007DE474 /* StaticAnalyser.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = StaticAnalyser.cpp; sourceTree = "<group>"; };
4B894517201967B4007DE474 /* StaticAnalyser.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = StaticAnalyser.cpp; sourceTree = "<group>"; };
4B894540201967D6007DE474 /* Machines.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Machines.hpp; sourceTree = "<group>"; };
4B8A7E85212F988200F2BBC6 /* ClockDeferrer.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = ClockDeferrer.hpp; sourceTree = "<group>"; };
4B8D287E1F77207100645199 /* TrackSerialiser.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = TrackSerialiser.hpp; sourceTree = "<group>"; };
4B8E4ECD1DCE483D003716C3 /* KeyboardMachine.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = KeyboardMachine.hpp; sourceTree = "<group>"; };
4B8EF6071FE5AF830076CCDD /* LowpassSpeaker.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = LowpassSpeaker.hpp; sourceTree = "<group>"; };
@ -3149,6 +3150,7 @@
4BB06B211F316A3F00600C7A /* ForceInline.hpp */,
4BB146C61F49D7D700253439 /* ClockingHintSource.hpp */,
4B449C942063389900A095C8 /* TimeTypes.hpp */,
4B8A7E85212F988200F2BBC6 /* ClockDeferrer.hpp */,
);
name = ClockReceiver;
path = ../../ClockReceiver;