1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-17 02:30:54 +00:00

Also template Base.

This commit is contained in:
Thomas Harte 2022-12-31 21:47:05 -05:00
parent 7d6eac2895
commit b7c315058f
3 changed files with 305 additions and 289 deletions

View File

@ -88,7 +88,8 @@ constexpr ReverseTable reverse_table;
}
Base::Base(Personality p) :
template <Personality personality>
Base<personality>::Base(Personality p) :
personality_(p),
crt_(CRTCyclesPerLine, CRTCyclesDivider, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Red8Green8Blue8) {
// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
@ -112,37 +113,37 @@ Base::Base(Personality p) :
template <Personality personality>
TMS9918<personality>::TMS9918(Personality p):
Base(p) {
crt_.set_display_type(Outputs::Display::DisplayType::RGB);
crt_.set_visible_area(Outputs::Display::Rect(0.07f, 0.0375f, 0.875f, 0.875f));
Base<personality>(p) {
this->crt_.set_display_type(Outputs::Display::DisplayType::RGB);
this->crt_.set_visible_area(Outputs::Display::Rect(0.07f, 0.0375f, 0.875f, 0.875f));
// The TMS remains in-phase with the NTSC colour clock; this is an empirical measurement
// intended to produce the correct relationship between the hard edges between pixels and
// the colour clock. It was eyeballed rather than derived from any knowledge of the TMS
// colour burst generator because I've yet to find any.
crt_.set_immediate_default_phase(0.85f);
this->crt_.set_immediate_default_phase(0.85f);
}
template <Personality personality>
void TMS9918<personality>::set_tv_standard(TVStandard standard) {
tv_standard_ = standard;
this->tv_standard_ = standard;
switch(standard) {
case TVStandard::PAL:
mode_timing_.total_lines = 313;
mode_timing_.first_vsync_line = 253;
crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::PAL50);
this->mode_timing_.total_lines = 313;
this->mode_timing_.first_vsync_line = 253;
this->crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::PAL50);
break;
default:
mode_timing_.total_lines = 262;
mode_timing_.first_vsync_line = 227;
crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::NTSC60);
this->mode_timing_.total_lines = 262;
this->mode_timing_.first_vsync_line = 227;
this->crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::NTSC60);
break;
}
}
template <Personality personality>
void TMS9918<personality>::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
this->crt_.set_scan_target(scan_target);
}
template <Personality personality>
@ -151,20 +152,20 @@ Outputs::Display::ScanStatus TMS9918<personality>::get_scaled_scan_status() cons
// so undo that and also allow for: (i) the multiply by 4 that it takes
// to reach the CRT; and (ii) the fact that the half-cycles value was scaled,
// and this should really reply in whole cycles.
return crt_.get_scaled_scan_status() * (4.0f / (3.0f * 8.0f));
return this->crt_.get_scaled_scan_status() * (4.0f / (3.0f * 8.0f));
}
template <Personality personality>
void TMS9918<personality>::set_display_type(Outputs::Display::DisplayType display_type) {
crt_.set_display_type(display_type);
this->crt_.set_display_type(display_type);
}
template <Personality personality>
Outputs::Display::DisplayType TMS9918<personality>::get_display_type() const {
return crt_.get_display_type();
return this->crt_.get_display_type();
}
void Base::LineBuffer::reset_sprite_collection() {
void LineBuffer::reset_sprite_collection() {
sprites_stopped = false;
active_sprite_slot = 0;
@ -173,7 +174,8 @@ void Base::LineBuffer::reset_sprite_collection() {
}
}
void Base::posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_position, int screen_row) {
template <Personality personality>
void Base<personality>::posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_position, int screen_row) {
if(!(status_ & StatusSpriteOverflow)) {
status_ = uint8_t((status_ & ~0x1f) | (sprite_number & 0x1f));
}
@ -209,8 +211,8 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// Convert 456 clocked half cycles per line to 342 internal cycles per line;
// the internal clock is 1.5 times the nominal 3.579545 Mhz that I've advertised
// for this part. So multiply by three quarters.
int int_cycles = int(cycles.as_integral() * 3) + cycles_error_;
cycles_error_ = int_cycles & 3;
int int_cycles = int(cycles.as_integral() * 3) + this->cycles_error_;
this->cycles_error_ = int_cycles & 3;
int_cycles >>= 2;
if(!int_cycles) return;
@ -222,40 +224,40 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
while(write_cycles_pool || read_cycles_pool) {
#ifndef NDEBUG
LineBufferPointer backup = read_pointer_;
LineBufferPointer backup = this->read_pointer_;
#endif
if(write_cycles_pool) {
// Determine how much writing to do.
const int write_cycles = std::min(342 - write_pointer_.column, write_cycles_pool);
const int end_column = write_pointer_.column + write_cycles;
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const int write_cycles = std::min(342 - this->write_pointer_.column, write_cycles_pool);
const int end_column = this->write_pointer_.column + write_cycles;
LineBuffer &line_buffer = this->line_buffers_[this->write_pointer_.row];
// Determine what this does to any enqueued VRAM access.
minimum_access_column_ = write_pointer_.column + cycles_until_access_;
cycles_until_access_ -= write_cycles;
this->minimum_access_column_ = this->write_pointer_.column + this->cycles_until_access_;
this->cycles_until_access_ -= write_cycles;
// ---------------------------------------
// Latch scrolling position, if necessary.
// ---------------------------------------
if(is_sega_vdp(personality_)) {
if(write_pointer_.column < 61 && end_column >= 61) {
if(!write_pointer_.row) {
master_system_.latched_vertical_scroll = master_system_.vertical_scroll;
if constexpr (is_sega_vdp(personality)) {
if(this->write_pointer_.column < 61 && end_column >= 61) {
if(!this->write_pointer_.row) {
this->master_system_.latched_vertical_scroll = this->master_system_.vertical_scroll;
if(master_system_.mode4_enable) {
mode_timing_.pixel_lines = 192;
if(mode2_enable_ && mode1_enable_) mode_timing_.pixel_lines = 224;
if(mode2_enable_ && mode3_enable_) mode_timing_.pixel_lines = 240;
if(this->master_system_.mode4_enable) {
this->mode_timing_.pixel_lines = 192;
if(this->mode2_enable_ && this->mode1_enable_) this->mode_timing_.pixel_lines = 224;
if(this->mode2_enable_ && this->mode3_enable_) this->mode_timing_.pixel_lines = 240;
mode_timing_.allow_sprite_terminator = mode_timing_.pixel_lines == 192;
mode_timing_.first_vsync_line = (mode_timing_.total_lines + mode_timing_.pixel_lines) >> 1;
this->mode_timing_.allow_sprite_terminator = this->mode_timing_.pixel_lines == 192;
this->mode_timing_.first_vsync_line = (this->mode_timing_.total_lines + this->mode_timing_.pixel_lines) >> 1;
mode_timing_.end_of_frame_interrupt_position.row = mode_timing_.pixel_lines + 1;
this->mode_timing_.end_of_frame_interrupt_position.row = this->mode_timing_.pixel_lines + 1;
}
}
line_buffer.latched_horizontal_scroll = master_system_.horizontal_scroll;
line_buffer.latched_horizontal_scroll = this->master_system_.horizontal_scroll;
}
}
@ -273,14 +275,14 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// column_ and end_column are in 342-per-line cycles;
// adjust them to a count of windows.
const int first_window = write_pointer_.column >> 1;
const int first_window = this->write_pointer_.column >> 1;
const int final_window = end_column >> 1;
if(first_window != final_window) {
switch(line_buffer.line_mode) {
case LineMode::Text: fetch(fetch_tms_text); break;
case LineMode::Character: fetch(fetch_tms_character); break;
case LineMode::SMS: fetch(fetch_sms); break;
case LineMode::Refresh: fetch(fetch_tms_refresh); break;
case LineMode::Text: fetch(this->template fetch_tms_text); break;
case LineMode::Character: fetch(this->template fetch_tms_character); break;
case LineMode::SMS: fetch(this->template fetch_sms); break;
case LineMode::Refresh: fetch(this->template fetch_tms_refresh); break;
}
}
@ -291,19 +293,19 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// -------------------------------
// Check for interrupt conditions.
// -------------------------------
if(write_pointer_.column < mode_timing_.line_interrupt_position && end_column >= mode_timing_.line_interrupt_position) {
if(this->write_pointer_.column < this->mode_timing_.line_interrupt_position && end_column >= this->mode_timing_.line_interrupt_position) {
// The Sega VDP offers a decrementing counter for triggering line interrupts;
// it is reloaded either when it overflows or upon every non-pixel line after the first.
// It is otherwise decremented.
if(is_sega_vdp(personality_)) {
if(write_pointer_.row >= 0 && write_pointer_.row <= mode_timing_.pixel_lines) {
--line_interrupt_counter;
if(line_interrupt_counter == 0xff) {
line_interrupt_pending_ = true;
line_interrupt_counter = line_interrupt_target;
if constexpr (is_sega_vdp(personality)) {
if(this->write_pointer_.row >= 0 && this->write_pointer_.row <= this->mode_timing_.pixel_lines) {
--this->line_interrupt_counter;
if(this->line_interrupt_counter == 0xff) {
this->line_interrupt_pending_ = true;
this->line_interrupt_counter = this->line_interrupt_target;
}
} else {
line_interrupt_counter = line_interrupt_target;
this->line_interrupt_counter = this->line_interrupt_target;
}
}
@ -312,11 +314,11 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
}
if(
write_pointer_.row == mode_timing_.end_of_frame_interrupt_position.row &&
write_pointer_.column < mode_timing_.end_of_frame_interrupt_position.column &&
end_column >= mode_timing_.end_of_frame_interrupt_position.column
this->write_pointer_.row == this->mode_timing_.end_of_frame_interrupt_position.row &&
this->write_pointer_.column < this->mode_timing_.end_of_frame_interrupt_position.column &&
end_column >= this->mode_timing_.end_of_frame_interrupt_position.column
) {
status_ |= StatusInterrupt;
this->status_ |= StatusInterrupt;
}
@ -324,22 +326,22 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// -------------
// Advance time.
// -------------
write_pointer_.column = end_column;
this->write_pointer_.column = end_column;
write_cycles_pool -= write_cycles;
if(write_pointer_.column == 342) {
write_pointer_.column = 0;
write_pointer_.row = (write_pointer_.row + 1) % mode_timing_.total_lines;
LineBuffer &next_line_buffer = line_buffers_[write_pointer_.row];
if(this->write_pointer_.column == 342) {
this->write_pointer_.column = 0;
this->write_pointer_.row = (this->write_pointer_.row + 1) % this->mode_timing_.total_lines;
LineBuffer &next_line_buffer = this->line_buffers_[this->write_pointer_.row];
// Establish the output mode for the next line.
set_current_screen_mode();
this->set_current_screen_mode();
// Based on the output mode, pick a line mode.
next_line_buffer.first_pixel_output_column = 86;
next_line_buffer.next_border_column = 342;
mode_timing_.maximum_visible_sprites = 4;
switch(screen_mode_) {
this->mode_timing_.maximum_visible_sprites = 4;
switch(this->screen_mode_) {
case ScreenMode::Text:
next_line_buffer.line_mode = LineMode::Text;
next_line_buffer.first_pixel_output_column = 94;
@ -347,7 +349,7 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
break;
case ScreenMode::SMSMode4:
next_line_buffer.line_mode = LineMode::SMS;
mode_timing_.maximum_visible_sprites = 8;
this->mode_timing_.maximum_visible_sprites = 8;
break;
default:
next_line_buffer.line_mode = LineMode::Character;
@ -355,22 +357,22 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
}
if(
(screen_mode_ == ScreenMode::Blank) ||
(write_pointer_.row >= mode_timing_.pixel_lines && write_pointer_.row != mode_timing_.total_lines-1))
(this->screen_mode_ == ScreenMode::Blank) ||
(this->write_pointer_.row >= this->mode_timing_.pixel_lines && this->write_pointer_.row != this->mode_timing_.total_lines-1))
next_line_buffer.line_mode = LineMode::Refresh;
}
}
#ifndef NDEBUG
assert(backup.row == read_pointer_.row && backup.column == read_pointer_.column);
backup = write_pointer_;
assert(backup.row == this->read_pointer_.row && backup.column == this->read_pointer_.column);
backup = this->write_pointer_;
#endif
if(read_cycles_pool) {
// Determine how much time has passed in the remainder of this line, and proceed.
const int target_read_cycles = std::min(342 - read_pointer_.column, read_cycles_pool);
const int target_read_cycles = std::min(342 - this->read_pointer_.column, read_cycles_pool);
int read_cycles_performed = 0;
uint32_t next_cram_value = 0;
@ -378,21 +380,21 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
const uint32_t cram_value = next_cram_value;
next_cram_value = 0;
int read_cycles = target_read_cycles - read_cycles_performed;
if(!upcoming_cram_dots_.empty() && upcoming_cram_dots_.front().location.row == read_pointer_.row) {
int time_until_dot = upcoming_cram_dots_.front().location.column - read_pointer_.column;
if(!this->upcoming_cram_dots_.empty() && this->upcoming_cram_dots_.front().location.row == this->read_pointer_.row) {
int time_until_dot = this->upcoming_cram_dots_.front().location.column - this->read_pointer_.column;
if(time_until_dot < read_cycles) {
read_cycles = time_until_dot;
next_cram_value = upcoming_cram_dots_.front().value;
upcoming_cram_dots_.erase(upcoming_cram_dots_.begin());
next_cram_value = this->upcoming_cram_dots_.front().value;
this->upcoming_cram_dots_.erase(this->upcoming_cram_dots_.begin());
}
}
if(!read_cycles) continue;
read_cycles_performed += read_cycles;
const int end_column = read_pointer_.column + read_cycles;
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
const int end_column = this->read_pointer_.column + read_cycles;
LineBuffer &line_buffer = this->line_buffers_[this->read_pointer_.row];
// --------------------
@ -400,20 +402,20 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// --------------------
#define intersect(left, right, code) { \
const int start = std::max(read_pointer_.column, left); \
const int start = std::max(this->read_pointer_.column, left); \
const int end = std::min(end_column, right); \
if(end > start) {\
code;\
}\
}
#define border(left, right) intersect(left, right, output_border(end - start, cram_value))
#define border(left, right) intersect(left, right, this->output_border(end - start, cram_value))
if(line_buffer.line_mode == LineMode::Refresh || read_pointer_.row > mode_timing_.pixel_lines) {
if(read_pointer_.row >= mode_timing_.first_vsync_line && read_pointer_.row < mode_timing_.first_vsync_line+4) {
if(line_buffer.line_mode == LineMode::Refresh || this->read_pointer_.row > this->mode_timing_.pixel_lines) {
if(this->read_pointer_.row >= this->mode_timing_.first_vsync_line && this->read_pointer_.row < this->mode_timing_.first_vsync_line+4) {
// Vertical sync.
if(end_column == 342) {
crt_.output_sync(342 * 4);
this->crt_.output_sync(342 * 4);
}
} else {
// Right border.
@ -422,12 +424,12 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// Blanking region; total length is 58 cycles,
// and 58+15 = 73. So output the lot when the
// cursor passes 73.
if(read_pointer_.column < 73 && end_column >= 73) {
crt_.output_blank(8*4);
crt_.output_sync(26*4);
crt_.output_blank(2*4);
crt_.output_default_colour_burst(14*4);
crt_.output_blank(8*4);
if(this->read_pointer_.column < 73 && end_column >= 73) {
this->crt_.output_blank(8*4);
this->crt_.output_sync(26*4);
this->crt_.output_blank(2*4);
this->crt_.output_default_colour_burst(14*4);
this->crt_.output_blank(8*4);
}
// Border colour for the rest of the line.
@ -438,12 +440,12 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
border(0, 15);
// Blanking region.
if(read_pointer_.column < 73 && end_column >= 73) {
crt_.output_blank(8*4);
crt_.output_sync(26*4);
crt_.output_blank(2*4);
crt_.output_default_colour_burst(14*4);
crt_.output_blank(8*4);
if(this->read_pointer_.column < 73 && end_column >= 73) {
this->crt_.output_blank(8*4);
this->crt_.output_sync(26*4);
this->crt_.output_blank(2*4);
this->crt_.output_default_colour_burst(14*4);
this->crt_.output_blank(8*4);
}
// Left border.
@ -453,20 +455,20 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
intersect(
line_buffer.first_pixel_output_column,
line_buffer.next_border_column,
if(!asked_for_write_area_) {
asked_for_write_area_ = true;
pixel_origin_ = pixel_target_ = reinterpret_cast<uint32_t *>(
crt_.begin_data(size_t(line_buffer.next_border_column - line_buffer.first_pixel_output_column))
if(!this->asked_for_write_area_) {
this->asked_for_write_area_ = true;
this->pixel_origin_ = this->pixel_target_ = reinterpret_cast<uint32_t *>(
this->crt_.begin_data(size_t(line_buffer.next_border_column - line_buffer.first_pixel_output_column))
);
}
if(pixel_target_) {
if(this->pixel_target_) {
const int relative_start = start - line_buffer.first_pixel_output_column;
const int relative_end = end - line_buffer.first_pixel_output_column;
switch(line_buffer.line_mode) {
case LineMode::SMS: draw_sms(relative_start, relative_end, cram_value); break;
case LineMode::Character: draw_tms_character(relative_start, relative_end); break;
case LineMode::Text: draw_tms_text(relative_start, relative_end); break;
case LineMode::SMS: this->draw_sms(relative_start, relative_end, cram_value); break;
case LineMode::Character: this->draw_tms_character(relative_start, relative_end); break;
case LineMode::Text: this->draw_tms_text(relative_start, relative_end); break;
case LineMode::Refresh: break; /* Dealt with elsewhere. */
}
@ -474,9 +476,9 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
if(end == line_buffer.next_border_column) {
const int length = line_buffer.next_border_column - line_buffer.first_pixel_output_column;
crt_.output_data(length * 4, size_t(length));
pixel_origin_ = pixel_target_ = nullptr;
asked_for_write_area_ = false;
this->crt_.output_data(length * 4, size_t(length));
this->pixel_origin_ = this->pixel_target_ = nullptr;
this->asked_for_write_area_ = false;
}
);
@ -494,21 +496,22 @@ void TMS9918<personality>::run_for(const HalfCycles cycles) {
// -------------
// Advance time.
// -------------
read_pointer_.column = end_column;
this->read_pointer_.column = end_column;
}
read_cycles_pool -= target_read_cycles;
if(read_pointer_.column == 342) {
read_pointer_.column = 0;
read_pointer_.row = (read_pointer_.row + 1) % mode_timing_.total_lines;
if(this->read_pointer_.column == 342) {
this->read_pointer_.column = 0;
this->read_pointer_.row = (this->read_pointer_.row + 1) % this->mode_timing_.total_lines;
}
}
assert(backup.row == write_pointer_.row && backup.column == write_pointer_.column);
assert(backup.row == this->write_pointer_.row && backup.column == this->write_pointer_.column);
}
}
void Base::output_border(int cycles, uint32_t cram_dot) {
template <Personality personality>
void Base<personality>::output_border(int cycles, uint32_t cram_dot) {
cycles *= 4;
const uint32_t border_colour =
is_sega_vdp(personality_) ?
@ -544,36 +547,36 @@ void TMS9918<personality>::write(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store
// the value and return.
if(!(address & 1)) {
write_phase_ = false;
this->write_phase_ = false;
// Enqueue the write to occur at the next available slot.
read_ahead_buffer_ = value;
queued_access_ = MemoryAccess::Write;
cycles_until_access_ = vram_access_delay();
this->read_ahead_buffer_ = value;
this->queued_access_ = MemoryAccess::Write;
this->cycles_until_access_ = this->vram_access_delay();
return;
}
// Writes to address 1 are performed in pairs; if this is the
// low byte of a value, store it and wait for the high byte.
if(!write_phase_) {
low_write_ = value;
write_phase_ = true;
if(!this->write_phase_) {
this->low_write_ = value;
this->write_phase_ = true;
// The initial write should half update the access pointer.
ram_pointer_ = (ram_pointer_ & 0xff00) | low_write_;
this->ram_pointer_ = (this->ram_pointer_ & 0xff00) | this->low_write_;
return;
}
// The RAM pointer is always set on a second write, regardless of
// whether the caller is intending to enqueue a VDP operation.
ram_pointer_ = (ram_pointer_ & 0x00ff) | uint16_t(value << 8);
this->ram_pointer_ = (this->ram_pointer_ & 0x00ff) | uint16_t(value << 8);
write_phase_ = false;
this->write_phase_ = false;
if(value & 0x80) {
if(is_sega_vdp(personality_)) {
if constexpr (is_sega_vdp(personality)) {
if(value & 0x40) {
master_system_.cram_is_selected = true;
this->master_system_.cram_is_selected = true;
return;
}
value &= 0xf;
@ -584,78 +587,78 @@ void TMS9918<personality>::write(int address, uint8_t value) {
// This is a write to a register.
switch(value) {
case 0:
if(is_sega_vdp(personality_)) {
master_system_.vertical_scroll_lock = low_write_ & 0x80;
master_system_.horizontal_scroll_lock = low_write_ & 0x40;
master_system_.hide_left_column = low_write_ & 0x20;
enable_line_interrupts_ = low_write_ & 0x10;
master_system_.shift_sprites_8px_left = low_write_ & 0x08;
master_system_.mode4_enable = low_write_ & 0x04;
if constexpr (is_sega_vdp(personality)) {
this->master_system_.vertical_scroll_lock = this->low_write_ & 0x80;
this->master_system_.horizontal_scroll_lock = this->low_write_ & 0x40;
this->master_system_.hide_left_column = this->low_write_ & 0x20;
this->enable_line_interrupts_ = this->low_write_ & 0x10;
this->master_system_.shift_sprites_8px_left = this->low_write_ & 0x08;
this->master_system_.mode4_enable = this->low_write_ & 0x04;
}
mode2_enable_ = low_write_ & 0x02;
this->mode2_enable_ = this->low_write_ & 0x02;
break;
case 1:
blank_display_ = !(low_write_ & 0x40);
generate_interrupts_ = low_write_ & 0x20;
mode1_enable_ = low_write_ & 0x10;
mode3_enable_ = low_write_ & 0x08;
sprites_16x16_ = low_write_ & 0x02;
sprites_magnified_ = low_write_ & 0x01;
this->blank_display_ = !(this->low_write_ & 0x40);
this->generate_interrupts_ = this->low_write_ & 0x20;
this->mode1_enable_ = this->low_write_ & 0x10;
this->mode3_enable_ = this->low_write_ & 0x08;
this->sprites_16x16_ = this->low_write_ & 0x02;
this->sprites_magnified_ = this->low_write_ & 0x01;
sprite_height_ = 8;
if(sprites_16x16_) sprite_height_ <<= 1;
if(sprites_magnified_) sprite_height_ <<= 1;
this->sprite_height_ = 8;
if(this->sprites_16x16_) this->sprite_height_ <<= 1;
if(this->sprites_magnified_) this->sprite_height_ <<= 1;
break;
case 2:
pattern_name_address_ = size_t((low_write_ & 0xf) << 10) | 0x3ff;
master_system_.pattern_name_address = pattern_name_address_ | ((personality_ == TMS::SMSVDP) ? 0x000 : 0x400);
this->pattern_name_address_ = size_t((this->low_write_ & 0xf) << 10) | 0x3ff;
this->master_system_.pattern_name_address = this->pattern_name_address_ | ((personality == TMS::SMSVDP) ? 0x000 : 0x400);
break;
case 3:
colour_table_address_ = size_t(low_write_ << 6) | 0x3f;
this->colour_table_address_ = size_t(this->low_write_ << 6) | 0x3f;
break;
case 4:
pattern_generator_table_address_ = size_t((low_write_ & 0x07) << 11) | 0x7ff;
this->pattern_generator_table_address_ = size_t((this->low_write_ & 0x07) << 11) | 0x7ff;
break;
case 5:
sprite_attribute_table_address_ = size_t((low_write_ & 0x7f) << 7) | 0x7f;
master_system_.sprite_attribute_table_address = sprite_attribute_table_address_ | ((personality_ == TMS::SMSVDP) ? 0x00 : 0x80);
this->sprite_attribute_table_address_ = size_t((this->low_write_ & 0x7f) << 7) | 0x7f;
this->master_system_.sprite_attribute_table_address = this->sprite_attribute_table_address_ | ((personality == TMS::SMSVDP) ? 0x00 : 0x80);
break;
case 6:
sprite_generator_table_address_ = size_t((low_write_ & 0x07) << 11) | 0x7ff;
master_system_.sprite_generator_table_address = sprite_generator_table_address_ | ((personality_ == TMS::SMSVDP) ? 0x0000 : 0x1800);
this->sprite_generator_table_address_ = size_t((this->low_write_ & 0x07) << 11) | 0x7ff;
this->master_system_.sprite_generator_table_address = this->sprite_generator_table_address_ | ((personality == TMS::SMSVDP) ? 0x0000 : 0x1800);
break;
case 7:
text_colour_ = low_write_ >> 4;
background_colour_ = low_write_ & 0xf;
this->text_colour_ = this->low_write_ >> 4;
this->background_colour_ = this->low_write_ & 0xf;
break;
case 8:
if(is_sega_vdp(personality_)) {
master_system_.horizontal_scroll = low_write_;
if constexpr (is_sega_vdp(personality)) {
this->master_system_.horizontal_scroll = this->low_write_;
}
break;
case 9:
if(is_sega_vdp(personality_)) {
master_system_.vertical_scroll = low_write_;
if constexpr (is_sega_vdp(personality)) {
this->master_system_.vertical_scroll = this->low_write_;
}
break;
case 10:
if(is_sega_vdp(personality_)) {
line_interrupt_target = low_write_;
if constexpr (is_sega_vdp(personality)) {
this->line_interrupt_target = this->low_write_;
}
break;
default:
LOG("Unknown TMS write: " << int(low_write_) << " to " << int(value));
LOG("Unknown TMS write: " << int(this->low_write_) << " to " << int(value));
break;
}
} else {
@ -663,10 +666,10 @@ void TMS9918<personality>::write(int address, uint8_t value) {
if(!(value & 0x40)) {
// A read request is enqueued upon setting the address; conversely a write
// won't be enqueued unless and until some actual data is supplied.
queued_access_ = MemoryAccess::Read;
cycles_until_access_ = vram_access_delay();
this->queued_access_ = MemoryAccess::Read;
this->cycles_until_access_ = this->vram_access_delay();
}
master_system_.cram_is_selected = false;
this->master_system_.cram_is_selected = false;
}
}
@ -675,14 +678,14 @@ uint8_t TMS9918<personality>::get_current_line() {
// Determine the row to return.
constexpr int row_change_position = 63; // This is the proper Master System value; substitute if any other VDPs turn out to have this functionality.
int source_row =
(write_pointer_.column < row_change_position)
? (write_pointer_.row + mode_timing_.total_lines - 1)%mode_timing_.total_lines
: write_pointer_.row;
(this->write_pointer_.column < row_change_position)
? (this->write_pointer_.row + this->mode_timing_.total_lines - 1) % this->mode_timing_.total_lines
: this->write_pointer_.row;
if(tv_standard_ == TVStandard::NTSC) {
if(mode_timing_.pixel_lines == 240) {
if(this->tv_standard_ == TVStandard::NTSC) {
if(this->mode_timing_.pixel_lines == 240) {
// NTSC 256x240: 00-FF, 00-06
} else if(mode_timing_.pixel_lines == 224) {
} else if(this->mode_timing_.pixel_lines == 224) {
// NTSC 256x224: 00-EA, E5-FF
if(source_row >= 0xeb) source_row -= 6;
} else {
@ -690,10 +693,10 @@ uint8_t TMS9918<personality>::get_current_line() {
if(source_row >= 0xdb) source_row -= 6;
}
} else {
if(mode_timing_.pixel_lines == 240) {
if(this->mode_timing_.pixel_lines == 240) {
// PAL 256x240: 00-FF, 00-0A, D2-FF
if(source_row >= 267) source_row -= 0x39;
} else if(mode_timing_.pixel_lines == 224) {
} else if(this->mode_timing_.pixel_lines == 224) {
// PAL 256x224: 00-FF, 00-02, CA-FF
if(source_row >= 259) source_row -= 0x39;
} else {
@ -711,125 +714,129 @@ uint8_t TMS9918<personality>::get_latched_horizontal_counter() {
// in the final 256 pixels of 342, to the public numbering,
// which makes the 256 pixels the first 256 spots, but starts
// counting at -48, and returns only the top 8 bits of the number.
int public_counter = latched_column_ - 86;
int public_counter = this->latched_column_ - 86;
if(public_counter < -46) public_counter += 342;
return uint8_t(public_counter >> 1);
}
template <Personality personality>
void TMS9918<personality>::latch_horizontal_counter() {
latched_column_ = write_pointer_.column;
this->latched_column_ = this->write_pointer_.column;
}
template <Personality personality>
uint8_t TMS9918<personality>::read(int address) {
write_phase_ = false;
this->write_phase_ = false;
// Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) {
// Enqueue the write to occur at the next available slot.
const uint8_t result = read_ahead_buffer_;
queued_access_ = MemoryAccess::Read;
const uint8_t result = this->read_ahead_buffer_;
this->queued_access_ = MemoryAccess::Read;
return result;
}
// Reads from address 1 get the status register.
const uint8_t result = status_;
status_ &= ~(StatusInterrupt | StatusSpriteOverflow | StatusSpriteCollision);
line_interrupt_pending_ = false;
const uint8_t result = this->status_;
this->status_ &= ~(StatusInterrupt | StatusSpriteOverflow | StatusSpriteCollision);
this->line_interrupt_pending_ = false;
return result;
}
HalfCycles Base::half_cycles_before_internal_cycles(int internal_cycles) {
template <Personality personality>
HalfCycles Base<personality>::half_cycles_before_internal_cycles(int internal_cycles) {
return HalfCycles(((internal_cycles << 2) + (2 - cycles_error_)) / 3);
}
template <Personality personality>
HalfCycles TMS9918<personality>::get_next_sequence_point() {
if(!generate_interrupts_ && !enable_line_interrupts_) return HalfCycles::max();
if(!this->generate_interrupts_ && !this->enable_line_interrupts_) return HalfCycles::max();
if(get_interrupt_line()) return HalfCycles::max();
// Calculate the amount of time until the next end-of-frame interrupt.
const int frame_length = 342 * mode_timing_.total_lines;
const int frame_length = 342 * this->mode_timing_.total_lines;
int time_until_frame_interrupt =
(
((mode_timing_.end_of_frame_interrupt_position.row * 342) + mode_timing_.end_of_frame_interrupt_position.column + frame_length) -
((write_pointer_.row * 342) + write_pointer_.column)
((this->mode_timing_.end_of_frame_interrupt_position.row * 342) + this->mode_timing_.end_of_frame_interrupt_position.column + frame_length) -
((this->write_pointer_.row * 342) + this->write_pointer_.column)
) % frame_length;
if(!time_until_frame_interrupt) time_until_frame_interrupt = frame_length;
if(!enable_line_interrupts_) return half_cycles_before_internal_cycles(time_until_frame_interrupt);
if(!this->enable_line_interrupts_) return this->half_cycles_before_internal_cycles(time_until_frame_interrupt);
// Calculate when the next line interrupt will occur.
int next_line_interrupt_row = -1;
int cycles_to_next_interrupt_threshold = mode_timing_.line_interrupt_position - write_pointer_.column;
int line_of_next_interrupt_threshold = write_pointer_.row;
int cycles_to_next_interrupt_threshold = this->mode_timing_.line_interrupt_position - this->write_pointer_.column;
int line_of_next_interrupt_threshold = this->write_pointer_.row;
if(cycles_to_next_interrupt_threshold <= 0) {
cycles_to_next_interrupt_threshold += 342;
++line_of_next_interrupt_threshold;
}
if(is_sega_vdp(personality_)) {
if constexpr (is_sega_vdp(personality)) {
// If there is still time for a line interrupt this frame, that'll be it;
// otherwise it'll be on the next frame, supposing there's ever time for
// it at all.
if(line_of_next_interrupt_threshold + line_interrupt_counter <= mode_timing_.pixel_lines) {
next_line_interrupt_row = line_of_next_interrupt_threshold + line_interrupt_counter;
if(line_of_next_interrupt_threshold + this->line_interrupt_counter <= this->mode_timing_.pixel_lines) {
next_line_interrupt_row = line_of_next_interrupt_threshold + this->line_interrupt_counter;
} else {
if(line_interrupt_target <= mode_timing_.pixel_lines)
next_line_interrupt_row = mode_timing_.total_lines + line_interrupt_target;
if(this->line_interrupt_target <= this->mode_timing_.pixel_lines)
next_line_interrupt_row = this->mode_timing_.total_lines + this->line_interrupt_target;
}
}
// If there's actually no interrupt upcoming, despite being enabled, either return
// the frame end interrupt or no interrupt pending as appropriate.
if(next_line_interrupt_row == -1) {
return generate_interrupts_ ?
half_cycles_before_internal_cycles(time_until_frame_interrupt) :
return this->generate_interrupts_ ?
this->half_cycles_before_internal_cycles(time_until_frame_interrupt) :
HalfCycles::max();
}
// Figure out the number of internal cycles until the next line interrupt, which is the amount
// of time to the next tick over and then next_line_interrupt_row - row_ lines further.
const int local_cycles_until_line_interrupt = cycles_to_next_interrupt_threshold + (next_line_interrupt_row - line_of_next_interrupt_threshold) * 342;
if(!generate_interrupts_) return half_cycles_before_internal_cycles(local_cycles_until_line_interrupt);
if(!this->generate_interrupts_) return this->half_cycles_before_internal_cycles(local_cycles_until_line_interrupt);
// Return whichever interrupt is closer.
return half_cycles_before_internal_cycles(std::min(local_cycles_until_line_interrupt, time_until_frame_interrupt));
return this->half_cycles_before_internal_cycles(std::min(local_cycles_until_line_interrupt, time_until_frame_interrupt));
}
template <Personality personality>
HalfCycles TMS9918<personality>::get_time_until_line(int line) {
if(line < 0) line += mode_timing_.total_lines;
if(line < 0) line += this->mode_timing_.total_lines;
int cycles_to_next_interrupt_threshold = mode_timing_.line_interrupt_position - write_pointer_.column;
int line_of_next_interrupt_threshold = write_pointer_.row;
int cycles_to_next_interrupt_threshold = this->mode_timing_.line_interrupt_position - this->write_pointer_.column;
int line_of_next_interrupt_threshold = this->write_pointer_.row;
if(cycles_to_next_interrupt_threshold <= 0) {
cycles_to_next_interrupt_threshold += 342;
++line_of_next_interrupt_threshold;
}
if(line_of_next_interrupt_threshold > line) {
line += mode_timing_.total_lines;
line += this->mode_timing_.total_lines;
}
return half_cycles_before_internal_cycles(cycles_to_next_interrupt_threshold + (line - line_of_next_interrupt_threshold)*342);
return this->half_cycles_before_internal_cycles(cycles_to_next_interrupt_threshold + (line - line_of_next_interrupt_threshold)*342);
}
template <Personality personality>
bool TMS9918<personality>::get_interrupt_line() {
return ((status_ & StatusInterrupt) && generate_interrupts_) || (enable_line_interrupts_ && line_interrupt_pending_);
return
((this->status_ & StatusInterrupt) && this->generate_interrupts_) ||
(this->enable_line_interrupts_ && this->line_interrupt_pending_);
}
// MARK: -
void Base::draw_tms_character(int start, int end) {
template <Personality personality>
void Base<personality>::draw_tms_character(int start, int end) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
// Paint the background tiles.
const int pixels_left = end - start;
if(screen_mode_ == ScreenMode::MultiColour) {
if(this->screen_mode_ == ScreenMode::MultiColour) {
for(int c = start; c < end; ++c) {
pixel_target_[c] = palette[
(line_buffer.patterns[c >> 3][0] >> (((c & 4)^4))) & 15
@ -916,7 +923,8 @@ void Base::draw_tms_character(int start, int end) {
}
}
void Base::draw_tms_text(int start, int end) {
template <Personality personality>
void Base<personality>::draw_tms_text(int start, int end) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
@ -940,7 +948,8 @@ void Base::draw_tms_text(int start, int end) {
}
}
void Base::draw_sms(int start, int end, uint32_t cram_dot) {
template <Personality personality>
void Base<personality>::draw_sms(int start, int end, uint32_t cram_dot) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
int colour_buffer[256];

View File

@ -29,6 +29,13 @@ enum Personality {
MDVDP,
};
enum class TVStandard {
/*! i.e. 50Hz output at around 312.5 lines/field */
PAL,
/*! i.e. 60Hz output at around 262.5 lines/field */
NTSC
};
}
}
@ -48,7 +55,7 @@ namespace TMS {
These chips have only one non-on-demand interaction with the outside world: an interrupt line.
See get_time_until_interrupt and get_interrupt_line for asynchronous operation options.
*/
template <Personality personality> class TMS9918: public Base {
template <Personality personality> class TMS9918: public Base<personality> {
public:
/*!
Constructs an instance of the drive controller that behaves according to personality @c p.

View File

@ -36,14 +36,91 @@ constexpr size_t memory_size(Personality p) {
}
}
enum class TVStandard {
/*! i.e. 50Hz output at around 312.5 lines/field */
PAL,
/*! i.e. 60Hz output at around 262.5 lines/field */
NTSC
// The screen mode is a necessary predecessor to picking the line mode,
// which is the thing latched per line.
enum class ScreenMode {
Blank,
Text,
MultiColour,
ColouredText,
Graphics,
SMSMode4
};
class Base {
enum class LineMode {
Text,
Character,
Refresh,
SMS
};
enum class MemoryAccess {
Read, Write, None
};
// Temporary buffers collect a representation of each line prior to pixel serialisation.
struct LineBuffer {
// The line mode describes the proper timing diagram for this line.
LineMode line_mode = LineMode::Text;
// Holds the horizontal scroll position to apply to this line;
// of those VDPs currently implemented, affects the Master System only.
uint8_t latched_horizontal_scroll = 0;
// The names array holds pattern names, as an offset into memory, and
// potentially flags also.
struct {
size_t offset = 0;
uint8_t flags = 0;
} names[40];
// The patterns array holds tile patterns, corresponding 1:1 with names.
// Four bytes per pattern is the maximum required by any
// currently-implemented VDP.
uint8_t patterns[40][4];
/*
Horizontal layout (on a 342-cycle clock):
15 cycles right border
58 cycles blanking & sync
13 cycles left border
... i.e. to cycle 86, then:
border up to first_pixel_output_column;
pixels up to next_border_column;
border up to the end.
e.g. standard 256-pixel modes will want to set
first_pixel_output_column = 86, next_border_column = 342.
*/
int first_pixel_output_column = 94;
int next_border_column = 334;
// An active sprite is one that has been selected for composition onto
// this line.
struct ActiveSprite {
int index = 0; // The original in-table index of this sprite.
int row = 0; // The row of the sprite that should be drawn.
int x = 0; // The sprite's x position on screen.
uint8_t image[4]; // Up to four bytes of image information.
int shift_position = 0; // An offset representing how much of the image information has already been drawn.
} active_sprites[8];
int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required.
bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites
// being evaluated for display. This flag determines whether the sentinel has yet been reached.
void reset_sprite_collection();
};
struct LineBufferPointer {
int row, column;
};
template <Personality personality> class Base {
public:
static uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
@ -93,9 +170,7 @@ class Base {
// Holds the state of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
enum class MemoryAccess {
Read, Write, None
} queued_access_ = MemoryAccess::None;
MemoryAccess queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
int vram_access_delay() {
@ -186,81 +261,8 @@ class Base {
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
// The screen mode is a necessary predecessor to picking the line mode,
// which is the thing latched per line.
enum class ScreenMode {
Blank,
Text,
MultiColour,
ColouredText,
Graphics,
SMSMode4
} screen_mode_;
enum class LineMode {
Text,
Character,
Refresh,
SMS
};
// Temporary buffers collect a representation of this line prior to pixel serialisation.
struct LineBuffer {
// The line mode describes the proper timing diagram for this line.
LineMode line_mode = LineMode::Text;
// Holds the horizontal scroll position to apply to this line;
// of those VDPs currently implemented, affects the Master System only.
uint8_t latched_horizontal_scroll = 0;
// The names array holds pattern names, as an offset into memory, and
// potentially flags also.
struct {
size_t offset = 0;
uint8_t flags = 0;
} names[40];
// The patterns array holds tile patterns, corresponding 1:1 with names.
// Four bytes per pattern is the maximum required by any
// currently-implemented VDP.
uint8_t patterns[40][4];
/*
Horizontal layout (on a 342-cycle clock):
15 cycles right border
58 cycles blanking & sync
13 cycles left border
... i.e. to cycle 86, then:
border up to first_pixel_output_column;
pixels up to next_border_column;
border up to the end.
e.g. standard 256-pixel modes will want to set
first_pixel_output_column = 86, next_border_column = 342.
*/
int first_pixel_output_column = 94;
int next_border_column = 334;
// An active sprite is one that has been selected for composition onto
// this line.
struct ActiveSprite {
int index = 0; // The original in-table index of this sprite.
int row = 0; // The row of the sprite that should be drawn.
int x = 0; // The sprite's x position on screen.
uint8_t image[4]; // Up to four bytes of image information.
int shift_position = 0; // An offset representing how much of the image information has already been drawn.
} active_sprites[8];
int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required.
bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites
// being evaluated for display. This flag determines whether the sentinel has yet been reached.
void reset_sprite_collection();
} line_buffers_[313];
ScreenMode screen_mode_;
LineBuffer line_buffers_[313];
void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row);
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
@ -268,9 +270,7 @@ class Base {
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
struct LineBufferPointer {
int row, column;
} read_pointer_, write_pointer_;
LineBufferPointer read_pointer_, write_pointer_;
// The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly
// fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there