1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-26 10:29:31 +00:00

Now gives something a lot like the proper character output.

This commit is contained in:
Thomas Harte 2018-04-15 20:31:04 -04:00
parent 9bc470027e
commit be05d51e07
2 changed files with 142 additions and 13 deletions

View File

@ -88,10 +88,14 @@ class ConcreteMachine:
*value = rom_[address - rom_start_address_];
} else {
switch(address) {
default: *value = 0xff; break;
default:
// printf("Unknown access to %04x\n", address);
*value = 0xff;
break;
case 0xc000:
// TODO: read keyboard.
*value = 0;
// printf("Keyboard poll\n");
*value = 0x00;//0x80 | 'A';
break;
}
}
@ -99,6 +103,7 @@ class ConcreteMachine:
if(address < sizeof(ram_)) {
update_video(); // TODO: be more selective.
ram_[address] = *value;
// printf("%04x <- %02x\n", address, *value);
}
}
break;

View File

@ -12,38 +12,162 @@
#include "../../Outputs/CRT/CRT.hpp"
#include "../../ClockReceiver/ClockReceiver.hpp"
namespace AppleII {
#include <vector>
class Video {
namespace AppleII {
namespace Video {
class BusHandler {
public:
uint8_t perform_read(uint16_t address) {
return 0xff;
}
};
template <class BusHandler> class Video {
public:
/// Constructs an instance of the video feed; a CRT is also created.
Video();
Video(BusHandler &bus_handler) :
bus_handler_(bus_handler),
crt_(new Outputs::CRT::CRT(455, 1, Outputs::CRT::DisplayType::NTSC60, 1)) {
// Set a composite sampling function that assumes 1bpp input, and uses just 7 bits per byte.
crt_->set_composite_sampling_function(
"float composite_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate, float phase, float amplitude)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue <<= int(icoordinate.x * 8) & 7;"
"return float(texValue & 128u);"
// "uint texValue = texture(sampler, coordinate).r;"
// "texValue <<= uint(icoordinate.x * 7.0) % 7u;"
// "return float(texValue & 128u);"
"}");
// Show only the centre 75% of the TV frame.
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
crt_->set_visible_area(Outputs::CRT::Rect(0.115f, 0.115f, 0.77f, 0.77f));
}
/// @returns The CRT this video feed is feeding.
Outputs::CRT::CRT *get_crt();
Outputs::CRT::CRT *get_crt() {
return crt_.get();
}
/*!
Advances time by @c cycles; expects to be fed by the CPU clock.
Implicitly adds an extra half a colour clock at the end of every
line.
*/
void run_for(const Cycles);
void run_for(const Cycles cycles) {
/*
Addressing scheme used throughout is that column 0 is the first column with pixels in it;
row 0 is the first row with pixels in it.
A frame is oriented around 65 cycles across, 262 lines down.
*/
const int first_sync_line = 220; // A complete guess. Information needed.
const int first_sync_column = 49; // Also a guess.
int int_cycles = cycles.as_int();
while(int_cycles) {
const int cycles_this_line = std::min(65 - column_, int_cycles);
if(row_ >= first_sync_line && row_ < first_sync_line + 3) {
crt_->output_sync(static_cast<unsigned int>(cycles_this_line) * 7);
} else {
const int ending_column = column_ + cycles_this_line;
// The first 40 columns are submitted to the CRT only upon completion;
// they'll be either graphics or blank, depending on which side we are
// of line 192.
if(column_ < 40) {
if(row_ < 192) {
if(!column_) {
pixel_pointer_ = crt_->allocate_write_area(40);
}
const int pixel_end = std::min(40, ending_column);
const int character_row = row_ >> 3;
const int pixel_row = row_ & 7;
const uint16_t line_address = static_cast<uint16_t>(0x400 + (character_row >> 3) * 40 + ((character_row&7) << 7));
for(int c = column_; c < pixel_end; ++c) {
// TODO: proper address calculation.
const uint16_t address = static_cast<uint16_t>(line_address + c);
const uint8_t character = bus_handler_.perform_read(address);
pixel_pointer_[c] = character_rom_[(static_cast<int>(character) << 3) + pixel_row];
}
if(ending_column >= 40) {
crt_->output_data(280, 7);
}
} else {
if(ending_column >= 40) {
crt_->output_blank(280);
}
}
}
/*
The left border, sync, right border pattern doesn't depend on whether
there were pixels this row and is output as soon as it is known.
*/
const int first_blank_start = std::max(40, column_);
const int first_blank_end = std::min(first_sync_column, ending_column);
if(first_blank_end > first_blank_start) {
crt_->output_blank(static_cast<unsigned int>(first_blank_end - first_blank_start) * 7);
}
// TODO: colour burst.
const int sync_start = std::max(first_sync_column, column_);
const int sync_end = std::min(first_sync_column + 4, ending_column);
if(sync_end > sync_start) {
crt_->output_sync(static_cast<unsigned int>(sync_end - sync_start) * 7);
}
const int second_blank_start = std::max(first_sync_column + 4, column_);
if(ending_column > second_blank_start) {
crt_->output_blank(static_cast<unsigned int>(ending_column - second_blank_start) * 7);
}
}
int_cycles -= cycles_this_line;
column_ = (column_ + cycles_this_line) % 65;
if(!column_) {
row_ = (row_ + 1) % 262;
// Add an extra half a colour cycle of blank; this isn't counted in the run_for
// count explicitly but is promised.
crt_->output_blank(1);
}
}
}
// Inputs for the various soft switches.
void set_graphics_mode();
void set_text_mode();
void set_mixed_mode(bool);
void set_video_page(int);
void set_low_resolution();
void set_high_resolution();
void set_graphics_mode() {}
void set_text_mode() {}
void set_mixed_mode(bool) {}
void set_video_page(int) {}
void set_low_resolution() {}
void set_high_resolution() {}
void set_character_rom(const std::vector<uint8_t> &character_rom) {
character_rom_ = character_rom;
}
private:
BusHandler &bus_handler_;
std::unique_ptr<Outputs::CRT::CRT> crt_;
int video_page_ = 0;
int row_ = 0, column_ = 0;
uint8_t *pixel_pointer_ = nullptr;
std::vector<uint8_t> character_rom_;
};
}
}
#endif /* Video_hpp */