1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-17 17:29:58 +00:00

Adds speed control into the SDL build.

If I can just figure out how to manipulate OpenGL from the timer thread to SDL's satisfaction, this'll be as good as it probably gets via SDL.
This commit is contained in:
Thomas Harte 2020-02-09 22:27:02 -05:00
parent 0b0a7e241b
commit bf6bc7c684

View File

@ -23,6 +23,7 @@
#include "../../Machines/Utility/MachineForTarget.hpp" #include "../../Machines/Utility/MachineForTarget.hpp"
#include "../../ClockReceiver/TimeTypes.hpp" #include "../../ClockReceiver/TimeTypes.hpp"
#include "../../ClockReceiver/ScanSynchroniser.hpp"
#include "../../Machines/MediaTarget.hpp" #include "../../Machines/MediaTarget.hpp"
#include "../../Machines/CRTMachine.hpp" #include "../../Machines/CRTMachine.hpp"
@ -52,7 +53,17 @@ struct MachineRunner {
} }
void signal_vsync() { void signal_vsync() {
vsync_time_.store(Time::nanos_now()); const auto now = Time::nanos_now();
const auto previous_vsync_time = vsync_time_.load();
vsync_time_.store(now);
// Update estimate of current frame time.
frame_time_average_ -= frame_times_[frame_time_pointer_];
frame_times_[frame_time_pointer_] = now - previous_vsync_time;
frame_time_average_ += frame_times_[frame_time_pointer_];
frame_time_pointer_ = (frame_time_pointer_ + 1) & (frame_times_.size() - 1);
_frame_period.store((1e9 * 32.0) / double(frame_time_average_));
} }
std::mutex *machine_mutex; std::mutex *machine_mutex;
@ -63,6 +74,17 @@ struct MachineRunner {
Time::Nanos last_time_ = 0; Time::Nanos last_time_ = 0;
std::atomic<Time::Nanos> vsync_time_; std::atomic<Time::Nanos> vsync_time_;
Time::ScanSynchroniser scan_synchroniser_;
// A slightly clumsy means of trying to derive frame rate from calls to
// signal_vsync(); SDL_DisplayMode provides only an integral quantity
// whereas, empirically, it's fairly common for monitors to run at the
// NTSC-esque frame rates of 59.94Hz.
std::array<Time::Nanos, 32> frame_times_;
Time::Nanos frame_time_average_ = 0;
size_t frame_time_pointer_ = 0;
std::atomic<double> _frame_period;
static constexpr Uint32 timer_period = 4; static constexpr Uint32 timer_period = 4;
static Uint32 sdl_callback(Uint32 interval, void *param) { static Uint32 sdl_callback(Uint32 interval, void *param) {
reinterpret_cast<MachineRunner *>(param)->update(); reinterpret_cast<MachineRunner *>(param)->update();
@ -70,10 +92,26 @@ struct MachineRunner {
} }
void update() { void update() {
const int64_t time_now = Time::nanos_now(); const auto time_now = Time::nanos_now();
const auto vsync_time = vsync_time_.load();
std::lock_guard<std::mutex> lock_guard(*machine_mutex); std::lock_guard<std::mutex> lock_guard(*machine_mutex);
machine->crt_machine()->run_for(double(time_now - last_time_) / 1e9); const auto crt_machine = machine->crt_machine();
bool split_and_sync = false;
if(last_time_ < vsync_time && time_now >= vsync_time) {
split_and_sync = scan_synchroniser_.can_synchronise(crt_machine->get_scan_status(), _frame_period);
}
if(split_and_sync) {
crt_machine->run_for(double(vsync_time - last_time_) / 1e9);
crt_machine->set_speed_multiplier(
scan_synchroniser_.next_speed_multiplier(crt_machine->get_scan_status())
);
crt_machine->run_for(double(time_now - vsync_time) / 1e9);
} else {
crt_machine->run_for(double(time_now - last_time_) / 1e9);
}
last_time_ = time_now; last_time_ = time_now;
} }
}; };