1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-25 18:30:21 +00:00

Merge branch 'master' into EnchantedWoods

This commit is contained in:
Thomas Harte 2019-12-30 23:32:45 -05:00
commit c11fe25537
14 changed files with 1775 additions and 280 deletions

View File

@ -16,6 +16,7 @@
#include "../../../Outputs/Log.hpp"
#include <algorithm>
#include <cstring>
#include <sstream>
using namespace Analyser::Static::Commodore;
@ -78,7 +79,7 @@ Analyser::Static::TargetList Analyser::Static::Commodore::GetTargets(const Media
}
if(!files.empty()) {
target->memory_model = Target::MemoryModel::Unexpanded;
auto memory_model = Target::MemoryModel::Unexpanded;
std::ostringstream string_stream;
string_stream << "LOAD\"" << (is_disk ? "*" : "") << "\"," << device << ",";
if(files.front().is_basic()) {
@ -94,16 +95,18 @@ Analyser::Static::TargetList Analyser::Static::Commodore::GetTargets(const Media
default:
LOG("Unrecognised loading address for Commodore program: " << PADHEX(4) << files.front().starting_address);
case 0x1001:
target->memory_model = Target::MemoryModel::Unexpanded;
memory_model = Target::MemoryModel::Unexpanded;
break;
case 0x1201:
target->memory_model = Target::MemoryModel::ThirtyTwoKB;
memory_model = Target::MemoryModel::ThirtyTwoKB;
break;
case 0x0401:
target->memory_model = Target::MemoryModel::EightKB;
memory_model = Target::MemoryModel::EightKB;
break;
}
target->set_memory_model(memory_model);
// General approach: increase memory size conservatively such that the largest file found will fit.
// for(File &file : files) {
// std::size_t file_size = file.data.size();
@ -145,13 +148,52 @@ Analyser::Static::TargetList Analyser::Static::Commodore::GetTargets(const Media
}
if(!target->media.empty()) {
// Inspect filename for a region hint.
// Inspect filename for configuration hints.
std::string lowercase_name = file_name;
std::transform(lowercase_name.begin(), lowercase_name.end(), lowercase_name.begin(), ::tolower);
// Hint 1: 'ntsc' anywhere in the name implies America.
if(lowercase_name.find("ntsc") != std::string::npos) {
target->region = Analyser::Static::Commodore::Target::Region::American;
}
// Potential additional hints: check for TheC64 tags.
auto final_underscore = lowercase_name.find_last_of('_');
if(final_underscore != std::string::npos) {
auto iterator = lowercase_name.begin() + ssize_t(final_underscore) + 1;
while(iterator != lowercase_name.end()) {
// Grab the next tag.
char next_tag[3] = {0, 0, 0};
next_tag[0] = *iterator++;
if(iterator == lowercase_name.end()) break;
next_tag[1] = *iterator++;
// Exit early if attempting to read another tag has run over the file extension.
if(next_tag[0] == '.' || next_tag[1] == '.') break;
// Check whether it's anything.
target->enabled_ram.bank0 |= !strcmp(next_tag, "b0");
target->enabled_ram.bank1 |= !strcmp(next_tag, "b1");
target->enabled_ram.bank2 |= !strcmp(next_tag, "b2");
target->enabled_ram.bank3 |= !strcmp(next_tag, "b3");
target->enabled_ram.bank5 |= !strcmp(next_tag, "b5");
if(!strcmp(next_tag, "tn")) { // i.e. NTSC.
target->region = Analyser::Static::Commodore::Target::Region::American;
}
if(!strcmp(next_tag, "tp")) { // i.e. PAL.
target->region = Analyser::Static::Commodore::Target::Region::European;
}
// Unhandled:
//
// M6: this is a C64 file.
// MV: this is a Vic-20 file.
// J1/J2: this C64 file should have the primary joystick in slot 1/2.
// RO: this disk image should be treated as read-only.
}
}
// Attach a 1540 if there are any disks here.
target->has_c1540 = !target->media.disks.empty();

View File

@ -31,7 +31,26 @@ struct Target: public ::Analyser::Static::Target {
Swedish
};
MemoryModel memory_model = MemoryModel::Unexpanded;
/// Maps from a named memory model to a bank enabled/disabled set.
void set_memory_model(MemoryModel memory_model) {
// This is correct for unexpanded and 32kb memory models.
enabled_ram.bank0 = enabled_ram.bank1 =
enabled_ram.bank2 = enabled_ram.bank3 =
enabled_ram.bank5 = memory_model == MemoryModel::ThirtyTwoKB;
// Bank 0 will need to be enabled if this is an 8kb machine.
enabled_ram.bank0 |= memory_model == MemoryModel::EightKB;
}
struct {
bool bank0 = false;
bool bank1 = false;
bool bank2 = false;
bool bank3 = false;
bool bank5 = false;
// Sic. There is no bank 4; this is because the area that logically would be
// bank 4 is occupied by the character ROM, colour RAM, hardware registers, etc.
} enabled_ram;
Region region = Region::European;
bool has_c1540 = false;
std::string loading_command;

View File

@ -29,7 +29,7 @@ template <class T, int multiplier = 1, int divider = 1, class LocalTimeScale = H
/// Adds time to the actor.
forceinline void operator += (const LocalTimeScale &rhs) {
if(multiplier != 1) {
if constexpr (multiplier != 1) {
time_since_update_ += rhs * multiplier;
} else {
time_since_update_ += rhs;
@ -52,7 +52,7 @@ template <class T, int multiplier = 1, int divider = 1, class LocalTimeScale = H
forceinline void flush() {
if(!is_flushed_) {
is_flushed_ = true;
if(divider == 1) {
if constexpr (divider == 1) {
object_.run_for(time_since_update_.template flush<TargetTimeScale>());
} else {
const auto duration = time_since_update_.template divide<TargetTimeScale>(LocalTimeScale(divider));

View File

@ -176,7 +176,10 @@ class ConcreteMachine:
// An interrupt acknowledge, perhaps?
if(cycle.operation & Microcycle::InterruptAcknowledge) {
// Current implementation: everything other than 6 (i.e. the MFP is autovectored.
if((cycle.word_address()&7) != 6) {
const int interrupt_level = cycle.word_address()&7;
if(interrupt_level != 6) {
video_interrupts_pending_ &= ~interrupt_level;
update_interrupt_input();
mc68000_.set_is_peripheral_address(true);
return HalfCycles(0);
} else {
@ -552,12 +555,27 @@ class ConcreteMachine:
update_interrupt_input();
}
int video_interrupts_pending_ = 0;
bool previous_hsync_ = false, previous_vsync_ = false;
void update_interrupt_input() {
// Complete guess: set video interrupts pending if/when hsync of vsync
// go inactive. Reset upon IACK.
const bool hsync = video_.last_valid()->hsync();
const bool vsync = video_.last_valid()->vsync();
if(previous_hsync_ != hsync && previous_hsync_) {
video_interrupts_pending_ |= 2;
}
if(previous_vsync_ != vsync && previous_vsync_) {
video_interrupts_pending_ |= 4;
}
previous_vsync_ = vsync;
previous_hsync_ = hsync;
if(mfp_->get_interrupt_line()) {
mc68000_.set_interrupt_level(6);
} else if(video_->vsync()) {
} else if(video_interrupts_pending_ & 4) {
mc68000_.set_interrupt_level(4);
} else if(video_->hsync()) {
} else if(video_interrupts_pending_ & 2) {
mc68000_.set_interrupt_level(2);
} else {
mc68000_.set_interrupt_level(0);

View File

@ -94,20 +94,25 @@ struct Checker {
} checker;
#endif
const int de_delay_period = CYCLE(28); // Number of half cycles after DE that observed DE changes.
const int vsync_x_position = CYCLE(54); // Horizontal cycle on which vertical sync changes happen.
const int hsync_start = CYCLE(48); // Cycles before end of line when hsync starts.
const int hsync_end = CYCLE(8); // Cycles before end of line when hsync ends.
const int de_delay_period = CYCLE(28); // Number of half cycles after DE that observed DE changes.
const int vsync_x_position = CYCLE(56); // Horizontal cycle on which vertical sync changes happen.
const int hsync_start = CYCLE(48); // Cycles before end of line when hsync starts.
const int hsync_end = CYCLE(8); // Cycles before end of line when hsync ends.
const int hsync_delay_period = hsync_end; // Signal hsync at the end of the line.
const int vsync_delay_period = hsync_delay_period; // Signal vsync with the same delay as hsync.
// "VSYNC starts 104 cycles after the start of the previous line's HSYNC, so that's 4 cycles before DE would be activated. ";
// hsync is at -50, so that's +54
// that's an inconsistent statement since it would imply VSYNC at +54, which is 2 cycles before DE in 60Hz mode and 6 before
// in 50Hz mode. I've gone with 56, to be four cycles ahead of DE in 50Hz mode.
}
Video::Video() :
deferrer_([=] (HalfCycles duration) { advance(duration); }),
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4),
shifter_(crt_, palette_) {
video_stream_(crt_, palette_) {
// Show a total of 260 lines; a little short for PAL but a compromise between that and the ST's
// usual output height of 200 lines.
@ -177,6 +182,8 @@ void Video::advance(HalfCycles duration) {
// Determine current output mode and number of cycles to output for.
const int run_length = std::min(integer_duration, next_event - x_);
const bool display_enable = vertical_.enable && horizontal_.enable;
const bool hsync = horizontal_.sync;
const bool vsync = vertical_.sync;
// Ensure proper fetching irrespective of the output.
if(load_) {
@ -196,16 +203,12 @@ void Video::advance(HalfCycles duration) {
}
}
// TODO: if I'm asserting that sync and blank override the shifter (but, presumably,
// the shifter keeps shifting), then output_sync and output_blank need to have an effect
// inside the shifter on the temporary register values.
if(horizontal_.sync || vertical_.sync) {
shifter_.output_sync(run_length);
video_stream_.output(run_length, VideoStream::OutputMode::Sync);
} else if(horizontal_.blank || vertical_.blank) {
shifter_.output_blank(run_length);
video_stream_.output(run_length, VideoStream::OutputMode::Blank);
} else if(!load_) {
shifter_.output_border(run_length, output_bpp_);
video_stream_.output(run_length, VideoStream::OutputMode::Pixels);
} else {
const int since_load = x_ - load_base_;
@ -222,12 +225,12 @@ void Video::advance(HalfCycles duration) {
// was reloaded by the fetch depends on the FIFO.
if(start_column == end_column) {
shifter_.output_pixels(run_length, output_bpp_);
video_stream_.output(run_length, VideoStream::OutputMode::Pixels);
} else {
// Continue the current column if partway across.
if(since_load&7) {
// If at least one column boundary is crossed, complete this column.
shifter_.output_pixels(8 - (since_load & 7), output_bpp_);
video_stream_.output(8 - (since_load & 7), VideoStream::OutputMode::Pixels);
++start_column; // This starts a new column, so latch a new word.
push_latched_data();
}
@ -235,13 +238,13 @@ void Video::advance(HalfCycles duration) {
// Run for all columns that have their starts in this time period.
int complete_columns = end_column - start_column;
while(complete_columns--) {
shifter_.output_pixels(8, output_bpp_);
video_stream_.output(8, VideoStream::OutputMode::Pixels);
push_latched_data();
}
// Output the start of the next column, if necessary.
if((since_load + run_length) & 7) {
shifter_.output_pixels((since_load + run_length) & 7, output_bpp_);
video_stream_.output((since_load + run_length) & 7, VideoStream::OutputMode::Pixels);
}
}
}
@ -265,22 +268,10 @@ void Video::advance(HalfCycles duration) {
} else if(y_ == vertical_timings.reset_enable) {
next_vertical_.enable = false;
} else if(next_y_ == vertical_timings.height) {
next_y_ = 0;
} else if(y_ == 0) {
next_vertical_.sync_schedule = VerticalState::SyncSchedule::Begin;
} else if(y_ == 3) {
next_y_ = 0;
} else if(next_y_ == 2) {
next_vertical_.sync_schedule = VerticalState::SyncSchedule::End;
current_address_ = base_address_ >> 1;
reset_fifo(); // TODO: remove this, I think, once otherwise stable.
// Consider a shout out to the range observer.
if(previous_base_address_ != base_address_) {
previous_base_address_ = base_address_;
if(range_observer_) {
range_observer_->video_did_change_access_range(this);
}
}
}
}
@ -288,14 +279,17 @@ void Video::advance(HalfCycles duration) {
x_ += run_length;
integer_duration -= run_length;
// Check horizontal events.
// Check horizontal events; the first six are guaranteed to occur separately.
if(horizontal_timings.reset_blank == x_) horizontal_.blank = false;
else if(horizontal_timings.set_blank == x_) horizontal_.blank = true;
else if(horizontal_timings.reset_enable == x_) horizontal_.enable = false;
else if(horizontal_timings.set_enable == x_) horizontal_.enable = true;
else if(line_length_ - hsync_start == x_) { horizontal_.sync = true; horizontal_.enable = false; }
else if(line_length_ - hsync_end == x_) horizontal_.sync = false;
else if(next_load_toggle_ == x_) {
// next_load_toggle_ is less predictable; test separately because it may coincide
// with one of the above tests.
if(next_load_toggle_ == x_) {
next_load_toggle_ = -1;
load_ ^= true;
load_base_ = x_;
@ -305,6 +299,8 @@ void Video::advance(HalfCycles duration) {
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && x_ == vsync_x_position) {
vertical_.sync = vertical_.sync_schedule == VerticalState::SyncSchedule::Begin;
vertical_.enable &= !vertical_.sync;
reset_fifo(); // TODO: remove this, probably, once otherwise stable?
}
// Check whether the terminating event was end-of-line; if so then advance
@ -315,6 +311,20 @@ void Video::advance(HalfCycles duration) {
y_ = next_y_;
}
// The address is reloaded during the entire period of vertical sync.
// Cf. http://www.atari-forum.com/viewtopic.php?t=31954&start=50#p324730
if(vertical_.sync) {
current_address_ = base_address_ >> 1;
// Consider a shout out to the range observer.
if(previous_base_address_ != base_address_) {
previous_base_address_ = base_address_;
if(range_observer_) {
range_observer_->video_did_change_access_range(this);
}
}
}
// Chuck any deferred output changes into the queue.
const bool next_display_enable = vertical_.enable && horizontal_.enable;
if(display_enable != next_display_enable) {
@ -324,6 +334,16 @@ void Video::advance(HalfCycles duration) {
// Schedule change in inwardly-visible effect.
next_load_toggle_ = x_ + 8; // 4 cycles = 8 half-cycles
}
if(horizontal_.sync != hsync) {
// Schedule change in outwardly-visible hsync line.
add_event(hsync_delay_period - integer_duration, horizontal_.sync ? Event::Type::SetHsync : Event::Type::ResetHsync);
}
if(vertical_.sync != vsync) {
// Schedule change in outwardly-visible hsync line.
add_event(vsync_delay_period - integer_duration, vertical_.sync ? Event::Type::SetVsync : Event::Type::ResetVsync);
}
}
}
@ -331,7 +351,7 @@ void Video::push_latched_data() {
data_latch_read_position_ = (data_latch_read_position_ + 1) & 127;
if(!(data_latch_read_position_ & 3)) {
shifter_.load(
video_stream_.load(
(uint64_t(data_latch_[(data_latch_read_position_ - 4) & 127]) << 48) |
(uint64_t(data_latch_[(data_latch_read_position_ - 3) & 127]) << 32) |
(uint64_t(data_latch_[(data_latch_read_position_ - 2) & 127]) << 16) |
@ -345,11 +365,11 @@ void Video::reset_fifo() {
}
bool Video::hsync() {
return horizontal_.sync;
return public_state_.hsync;
}
bool Video::vsync() {
return vertical_.sync;
return public_state_.vsync;
}
bool Video::display_enabled() {
@ -379,7 +399,7 @@ HalfCycles Video::get_next_sequence_point() {
// If any events are pending, give the first of those the chance to be next.
if(!pending_events_.empty()) {
event_time = std::min(event_time, x_ + event_time);
event_time = std::min(event_time, x_ + pending_events_.front().delay);
}
// If this is a vertically-enabled line, check for the display enable boundaries, + the standard delay.
@ -398,10 +418,13 @@ HalfCycles Video::get_next_sequence_point() {
}
// Test for beginning and end of horizontal sync.
if(x_ < line_length_ - hsync_start) event_time = std::min(line_length_ - hsync_start, event_time);
else if(x_ < line_length_ - hsync_end) event_time = std::min(line_length_ - hsync_end, event_time);
if(x_ < line_length_ - hsync_start + hsync_delay_period) {
event_time = std::min(line_length_ - hsync_start + hsync_delay_period, event_time);
}
/* Hereby assumed: hsync end will be communicated at end of line: */
static_assert(hsync_end == hsync_delay_period);
// It wasn't any of those, so as a temporary expedient, just supply end of line.
// It wasn't any of those, just supply end of line. That's when the static_assert above assumes a visible hsync transition.
return HalfCycles(event_time - x_);
}
@ -456,6 +479,8 @@ void Video::write(int address, uint16_t value) {
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: {
if(address == 0x20) video_stream_.will_change_border_colour();
raw_palette_[address - 0x20] = value;
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[address - 0x20]);
entry[0] = uint8_t((value & 0x700) >> 7);
@ -484,154 +509,176 @@ void Video::update_output_mode() {
if(output_bpp_ != old_bpp_) {
// "the 71-Hz-switch does something like a shifter-reset." (and some people use a high-low resolutions switch instead)
reset_fifo();
video_stream_.set_bpp(output_bpp_);
}
// const int freqs[] = {50, 60, 72};
// printf("%d, %d -> %d [%d %d]\n", x_ / 2, y_, freqs[int(field_frequency_)], horizontal_.enable, vertical_.enable);
}
// MARK: - The shifter
void Video::Shifter::flush_output(OutputMode next_mode) {
switch(output_mode_) {
case OutputMode::Sync: crt_.output_sync(duration_); break;
case OutputMode::Blank: crt_.output_blank(duration_); break;
case OutputMode::ColourBurst: crt_.output_default_colour_burst(duration_); break;
case OutputMode::Border: {
// if(!border_colour_) {
// crt_.output_blank(duration_);
// } else {
uint16_t *const colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = border_colour_;
crt_.output_level(duration_);
// }
} break;
case OutputMode::Pixels: {
crt_.output_data(duration_, pixel_pointer_);
pixel_buffer_ = nullptr;
pixel_pointer_ = 0;
} break;
}
duration_ = 0;
output_mode_ = next_mode;
}
void Video::Shifter::output_colour_burst(int duration) {
// More hackery afoot here; if and when duration_ crosses a threshold of 40,
// output 40 cycles of colour burst and then redirect to blank.
if(output_mode_ != OutputMode::ColourBurst) {
flush_output(OutputMode::ColourBurst);
}
duration_ += duration;
if(duration_ >= 40) {
const int blank_duration = duration_ - 40;
duration_ = 40;
flush_output(OutputMode::Blank);
output_blank(blank_duration);
}
}
void Video::Shifter::output_blank(int duration) {
if(output_mode_ != OutputMode::Blank) {
// Bit of a hack: if this is a transition from sync or we're really in
// colour burst, divert into that.
if(output_mode_ == OutputMode::Sync || output_mode_ == OutputMode::ColourBurst) {
output_colour_burst(duration);
return;
}
flush_output(OutputMode::Blank);
}
duration_ += duration;
}
void Video::Shifter::output_sync(int duration) {
if(output_mode_ != OutputMode::Sync) {
flush_output(OutputMode::Sync);
}
duration_ += duration;
}
void Video::Shifter::output_border(int duration, OutputBpp bpp) {
// If there's still anything in the shifter, redirect this to an output_pixels call.
if(output_shifter_) {
// This doesn't take an opinion on how much of the shifter remains populated;
// it assumes the worst case.
const int pixel_length = std::min(32, duration);
output_pixels(pixel_length, bpp);
duration -= pixel_length;
if(!duration) {
return;
}
void Video::VideoStream::output(int duration, OutputMode mode) {
// If this is a transition from sync to blank, actually transition to colour burst.
if(output_mode_ == OutputMode::Sync && mode == OutputMode::Blank) {
mode = OutputMode::ColourBurst;
}
// Flush anything that isn't level output *in the current border colour*.
if(output_mode_ != OutputMode::Border || border_colour_ != palette_[0]) {
flush_output(OutputMode::Border);
border_colour_ = palette_[0];
}
duration_ += duration;
}
// If this is seeming a transition from blank to colour burst, obey it only if/when
// sufficient colour burst has been output.
if(output_mode_ == OutputMode::Blank && mode == OutputMode::ColourBurst) {
if(duration_ + duration >= 40) {
const int overage = duration + duration_ - 40;
duration_ = 40;
void Video::Shifter::output_pixels(int duration, OutputBpp bpp) {
// If the shifter is empty and there's no pixel buffer at present,
// redirect this to an output_level call. Otherwise, do a quick
// memset-type fill, since the special case has been detected anyway.
if(!output_shifter_) {
if(!pixel_buffer_) {
output_border(duration, bpp);
generate(overage, OutputMode::ColourBurst, true);
} else {
duration_ += duration;
switch(bpp_) {
case OutputBpp::One: {
const size_t pixels = size_t(duration << 1);
memset(&pixel_buffer_[pixel_pointer_], 0, pixels * sizeof(uint16_t));
pixel_pointer_ += pixels;
} break;
default:
case OutputBpp::Four:
assert(!(duration & 1));
duration >>= 1;
case OutputBpp::Two: {
while(duration--) {
pixel_buffer_[pixel_pointer_] = palette_[0];
++pixel_pointer_;
}
} break;
}
mode = OutputMode::ColourBurst;
}
}
// If this is a transition, or if we're doing pixels, output whatever has been accumulated.
if(mode != output_mode_ || output_mode_ == OutputMode::Pixels) {
generate(duration, output_mode_, mode != output_mode_);
} else {
duration_ += duration;
}
// Accumulate time in the current mode.
output_mode_ = mode;
}
void Video::VideoStream::generate(int duration, OutputMode mode, bool is_terminal) {
// Three of these are trivial; deal with them upfront. They don't care about the duration of
// whatever is new, just about how much was accumulated prior to now.
if(mode != OutputMode::Pixels) {
switch(mode) {
default:
case OutputMode::Sync: crt_.output_sync(duration_); break;
case OutputMode::Blank: crt_.output_blank(duration_); break;
case OutputMode::ColourBurst: crt_.output_default_colour_burst(duration_); break;
}
// Reseed duration
duration_ = duration;
// The shifter should keep running, so throw away the proper amount of content.
shift(duration_);
return;
}
// Flush anything that isn't pixel output in the proper bpp; also flush if there's nowhere
// left to put pixels.
if(output_mode_ != OutputMode::Pixels || bpp_ != bpp || pixel_pointer_ >= 320) {
flush_output(OutputMode::Pixels);
bpp_ = bpp;
pixel_buffer_ = reinterpret_cast<uint16_t *>(crt_.begin_data(320 + 32));
}
duration_ += duration;
// If the shifter is empty, accumulate in duration_ a promise to draw border later.
if(!output_shifter_) {
if(pixel_pointer_) {
flush_pixels();
}
duration_ += duration;
// If this is terminal, we'll need to draw now. But if it isn't, job done.
if(is_terminal) {
flush_border();
}
return;
}
// There's definitely some pixels to convey, but perhaps there's some border first?
if(duration_) {
flush_border();
}
// Time to do some pixels!
output_pixels(duration);
// If was terminal, make sure any transient storage is output.
if(is_terminal) {
flush_pixels();
}
}
void Video::VideoStream::will_change_border_colour() {
// Flush the accumulated border if it'd be adversely affected.
if(duration_ && output_mode_ == OutputMode::Pixels) {
flush_border();
}
}
void Video::VideoStream::flush_border() {
// Output colour 0 for the entirety of duration_ (or black, if this is 1bpp mode).
uint16_t *const colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = (bpp_ != OutputBpp::One) ? palette_[0] : 0;
crt_.output_level(duration_);
duration_ = 0;
}
namespace {
#if TARGET_RT_BIG_ENDIAN
constexpr int upper = 0;
#else
constexpr int upper = 1;
#endif
}
void Video::VideoStream::shift(int duration) {
switch(bpp_) {
case OutputBpp::One: {
int pixels = duration << 1;
if(pixel_buffer_) {
while(pixels--) {
case OutputBpp::One:
output_shifter_ <<= (duration << 1);
break;
case OutputBpp::Two:
while(duration--) {
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
}
break;
case OutputBpp::Four:
while(duration) {
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
duration -= 2;
}
break;
}
}
// TODO: turn this into a template on current BPP, perhaps? Would avoid reevaluation of the conditional.
void Video::VideoStream::output_pixels(int duration) {
constexpr int allocation_size = 352; // i.e. 320 plus a spare 32.
// Convert from duration to pixels.
int pixels = duration;
switch(bpp_) {
case OutputBpp::One: pixels <<= 1; break;
default: break;
case OutputBpp::Four: pixels >>= 1; break;
}
while(pixels) {
// If no buffer is currently available, attempt to allocate one.
if(!pixel_buffer_) {
pixel_buffer_ = reinterpret_cast<uint16_t *>(crt_.begin_data(allocation_size, 2));
// Stop the loop if no buffer is available.
if(!pixel_buffer_) break;
}
int pixels_to_draw = std::min(allocation_size - pixel_pointer_, pixels);
pixels -= pixels_to_draw;
switch(bpp_) {
case OutputBpp::One:
while(pixels_to_draw--) {
pixel_buffer_[pixel_pointer_] = ((output_shifter_ >> 63) & 1) * 0xffff;
output_shifter_ <<= 1;
++pixel_pointer_;
}
} else {
pixel_pointer_ += size_t(pixels);
output_shifter_ <<= pixels;
}
} break;
case OutputBpp::Two: {
#if TARGET_RT_BIG_ENDIAN
constexpr int upper = 0;
#else
constexpr int upper = 1;
#endif
if(pixel_buffer_) {
while(duration--) {
break;
case OutputBpp::Two:
while(pixels_to_draw--) {
pixel_buffer_[pixel_pointer_] = palette_[
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2)
@ -645,20 +692,10 @@ void Video::Shifter::output_pixels(int duration, OutputBpp bpp) {
++pixel_pointer_;
}
} else {
pixel_pointer_ += size_t(duration);
while(duration--) {
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
}
}
} break;
default:
case OutputBpp::Four:
assert(!(duration & 1));
if(pixel_buffer_) {
while(duration) {
break;
case OutputBpp::Four:
while(pixels_to_draw--) {
pixel_buffer_[pixel_pointer_] = palette_[
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2) |
@ -666,21 +703,50 @@ void Video::Shifter::output_pixels(int duration, OutputBpp bpp) {
((output_shifter_ >> 12) & 8)
];
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
++pixel_pointer_;
duration -= 2;
}
} else {
pixel_pointer_ += size_t(duration >> 1);
while(duration) {
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
duration -= 2;
}
}
break;
break;
}
// Check whether the limit has been reached.
if(pixel_pointer_ == allocation_size) {
flush_pixels();
}
}
// If duration remains, that implies no buffer was available, so
// just do the corresponding shifting and provide proper timing to the CRT.
if(pixels) {
int leftover_duration = pixels;
switch(bpp_) {
case OutputBpp::One: leftover_duration >>= 1; break;
default: break;
case OutputBpp::Four: leftover_duration <<= 1; break;
}
shift(leftover_duration);
crt_.output_data(leftover_duration);
}
}
void Video::Shifter::load(uint64_t value) {
void Video::VideoStream::flush_pixels() {
switch(bpp_) {
case OutputBpp::One: crt_.output_data(pixel_pointer_ >> 1, size_t(pixel_pointer_)); break;
default: crt_.output_data(pixel_pointer_); break;
case OutputBpp::Four: crt_.output_data(pixel_pointer_ << 1, size_t(pixel_pointer_)); break;
}
pixel_pointer_ = 0;
pixel_buffer_ = nullptr;
}
void Video::VideoStream::set_bpp(OutputBpp bpp) {
// TODO: is flushing like this correct?
output_shifter_ = 0;
bpp_ = bpp;
}
void Video::VideoStream::load(uint64_t value) {
output_shifter_ = value;
}

View File

@ -15,6 +15,9 @@
#include <vector>
// Testing hook; not for any other user.
class VideoTester;
namespace Atari {
namespace ST {
@ -166,47 +169,77 @@ class Video {
void reset_fifo();
class Shifter {
public:
Shifter(Outputs::CRT::CRT &crt, uint16_t *palette) : crt_(crt), palette_(palette) {}
void output_blank(int duration);
void output_sync(int duration);
void output_border(int duration, OutputBpp bpp);
void output_pixels(int duration, OutputBpp bpp);
void output_colour_burst(int duration);
/*!
Provides a target for control over the output video stream, which is considered to be
a permanently shifting shifter, that you need to reload when appropriate, which can be
overridden by the blank and sync levels.
This stream will automatically insert a colour burst.
*/
class VideoStream {
public:
VideoStream(Outputs::CRT::CRT &crt, uint16_t *palette) : crt_(crt), palette_(palette) {}
enum class OutputMode {
Sync, Blank, ColourBurst, Pixels,
};
/// Sets the current data format for the shifter. Changes in output BPP flush the shifter.
void set_bpp(OutputBpp bpp);
/// Outputs signal of type @c mode for @c duration.
void output(int duration, OutputMode mode);
/// Warns the video stream that the border colour, included in the palette that it holds a pointer to,
/// will change momentarily. This should be called after the relevant @c output() updates, and
/// is used to help elide border-regio output.
void will_change_border_colour();
/// Loads 64 bits into the Shifter. The shifter shifts continuously. If you also declare
/// a pixels region then whatever is being shifted will reach the display, in a form that
/// depends on the current output BPP.
void load(uint64_t value);
private:
// The target CRT and the palette to use.
Outputs::CRT::CRT &crt_;
uint16_t *palette_ = nullptr;
// Internal stateful processes.
void generate(int duration, OutputMode mode, bool is_terminal);
void flush_border();
void flush_pixels();
void shift(int duration);
void output_pixels(int duration);
// Internal state that is a function of output intent.
int duration_ = 0;
enum class OutputMode {
Sync, Blank, Border, Pixels, ColourBurst
} output_mode_ = OutputMode::Sync;
uint16_t border_colour_ = 0;
OutputMode output_mode_ = OutputMode::Sync;
OutputBpp bpp_ = OutputBpp::Four;
union {
uint64_t output_shifter_;
uint32_t shifter_halves_[2];
};
void flush_output(OutputMode next_mode);
// Internal state for handling output serialisation.
uint16_t *pixel_buffer_ = nullptr;
size_t pixel_pointer_ = 0;
Outputs::CRT::CRT &crt_;
uint16_t *palette_ = nullptr;
} shifter_;
int pixel_pointer_ = 0;
} video_stream_;
/// Contains copies of the various observeable fields, after the relevant propagation delay.
struct PublicState {
bool display_enable = false;
bool hsync = false;
bool vsync = false;
} public_state_;
struct Event {
int delay;
enum class Type {
SetDisplayEnable, ResetDisplayEnable
SetDisplayEnable, ResetDisplayEnable,
SetHsync, ResetHsync,
SetVsync, ResetVsync,
} type;
Event(Type type, int delay) : delay(delay), type(type) {}
@ -220,6 +253,10 @@ class Video {
default:
case Type::SetDisplayEnable: state.display_enable = true; break;
case Type::ResetDisplayEnable: state.display_enable = false; break;
case Type::SetHsync: state.hsync = true; break;
case Type::ResetHsync: state.hsync = false; break;
case Type::SetVsync: state.vsync = true; break;
case Type::ResetVsync: state.vsync = false; break;
}
}
};
@ -232,18 +269,25 @@ class Video {
return;
}
// Otherwise enqueue, having subtracted the delay for any preceding events,
// and subtracting from the subsequent, if any.
auto insertion_point = pending_events_.begin();
while(insertion_point != pending_events_.end() && insertion_point->delay > delay) {
delay -= insertion_point->delay;
++insertion_point;
if(!pending_events_.empty()) {
// Otherwise enqueue, having subtracted the delay for any preceding events,
// and subtracting from the subsequent, if any.
auto insertion_point = pending_events_.begin();
while(insertion_point != pending_events_.end() && insertion_point->delay < delay) {
delay -= insertion_point->delay;
++insertion_point;
}
if(insertion_point != pending_events_.end()) {
insertion_point->delay -= delay;
}
pending_events_.emplace(insertion_point, type, delay);
} else {
pending_events_.emplace_back(type, delay);
}
if(insertion_point != pending_events_.end()) {
insertion_point->delay -= delay;
}
pending_events_.emplace(insertion_point, type, delay);
}
friend class ::VideoTester;
};
}

View File

@ -320,7 +320,7 @@ class ConcreteMachine:
tape_->set_delegate(this);
tape_->set_clocking_hint_observer(this);
// install a joystick
// Install a joystick.
joysticks_.emplace_back(new Joystick(*user_port_via_port_handler_, *keyboard_via_port_handler_));
const std::string machine_name = "Vic20";
@ -401,22 +401,14 @@ class ConcreteMachine:
write_to_map(processor_read_memory_map_, &ram_[baseaddr], baseaddr, length); \
write_to_map(processor_write_memory_map_, &ram_[baseaddr], baseaddr, length);
// Add 6502-visible RAM as requested
switch(target.memory_model) {
case Analyser::Static::Commodore::Target::MemoryModel::Unexpanded:
// The default Vic-20 memory map has 1kb at address 0 and another 4kb at address 0x1000.
set_ram(0x0000, 0x0400);
set_ram(0x1000, 0x1000);
break;
case Analyser::Static::Commodore::Target::MemoryModel::EightKB:
// An 8kb Vic-20 fills in the gap between the two blocks of RAM on an unexpanded machine.
set_ram(0x0000, 0x2000);
break;
case Analyser::Static::Commodore::Target::MemoryModel::ThirtyTwoKB:
// A 32kb Vic-20 fills the entire lower 32kb with RAM.
set_ram(0x0000, 0x8000);
break;
}
// Add 6502-visible RAM as requested.
set_ram(0x0000, 0x0400);
set_ram(0x1000, 0x1000); // Built-in RAM.
if(target.enabled_ram.bank0) set_ram(0x0400, 0x0c00); // Bank 0: 0x0400 -> 0x1000.
if(target.enabled_ram.bank1) set_ram(0x2000, 0x2000); // Bank 1: 0x2000 -> 0x4000.
if(target.enabled_ram.bank2) set_ram(0x4000, 0x2000); // Bank 2: 0x4000 -> 0x6000.
if(target.enabled_ram.bank3) set_ram(0x6000, 0x2000); // Bank 3: 0x6000 -> 0x8000.
if(target.enabled_ram.bank5) set_ram(0xa000, 0x2000); // Bank 5: 0xa000 -> 0xc000.
#undef set_ram
@ -453,6 +445,8 @@ class ConcreteMachine:
write_to_map(mos6560_bus_handler_.video_memory_map, character_rom_.data(), 0x0000, static_cast<uint16_t>(character_rom_.size()));
write_to_map(processor_read_memory_map_, kernel_rom_.data(), 0xe000, static_cast<uint16_t>(kernel_rom_.size()));
// The insert_media occurs last, so if there's a conflict between cartridges and RAM,
// the cartridge wins.
insert_media(target.media);
if(!target.loading_command.empty()) {
type_string(target.loading_command);
@ -711,7 +705,7 @@ class ConcreteMachine:
std::vector<uint8_t> rom_;
uint16_t rom_address_, rom_length_;
uint8_t ram_[0x8000];
uint8_t ram_[0x10000];
uint8_t colour_ram_[0x0400];
uint8_t *processor_read_memory_map_[64];

View File

@ -23,9 +23,9 @@
</BuildActionEntries>
</BuildAction>
<TestAction
buildConfiguration = "Release"
selectedDebuggerIdentifier = ""
selectedLauncherIdentifier = "Xcode.IDEFoundation.Launcher.PosixSpawn"
buildConfiguration = "Debug"
selectedDebuggerIdentifier = "Xcode.DebuggerFoundation.Debugger.LLDB"
selectedLauncherIdentifier = "Xcode.DebuggerFoundation.Launcher.LLDB"
shouldUseLaunchSchemeArgsEnv = "YES"
disableMainThreadChecker = "YES"
codeCoverageEnabled = "YES">

View File

@ -121,11 +121,13 @@
case CSMachineVic20RegionEuropean: target->region = Target::Region::European; break;
case CSMachineVic20RegionJapanese: target->region = Target::Region::Japanese; break;
}
auto memory_model = Target::MemoryModel::Unexpanded;
switch(memorySize) {
default: target->memory_model = Target::MemoryModel::Unexpanded; break;
case 8: target->memory_model = Target::MemoryModel::EightKB; break;
case 32: target->memory_model = Target::MemoryModel::ThirtyTwoKB; break;
default: break;
case 8: memory_model = Target::MemoryModel::EightKB; break;
case 32: memory_model = Target::MemoryModel::ThirtyTwoKB; break;
}
target->set_memory_model(memory_model);
target->has_c1540 = !!hasC1540;
_targets.push_back(std::move(target));
}

File diff suppressed because it is too large Load Diff

View File

@ -27,7 +27,7 @@
- (void)setUp {
// To limit tests run to a subset of files and/or of tests, uncomment and fill in below.
// _fileSet = [NSSet setWithArray:@[@"eor.json"]];
// _fileSet = [NSSet setWithArray:@[@"rtr.json"]];
// _testSet = [NSSet setWithArray:@[@"EOR b0c0", @"EOR b0c2", @"EOR b0c3", @"EOR b0c5", @"EOR b0c6", @"EOR b0c7", @"OR b0c7"]];
}
@ -172,6 +172,7 @@
XCTAssertEqual(state.supervisor_stack_pointer, [finalState[@"a7"] integerValue], @"%@: A7 inconsistent", name);
XCTAssertEqual(state.user_stack_pointer, [finalState[@"usp"] integerValue], @"%@: USP inconsistent", name);
XCTAssertEqual(state.status, [finalState[@"sr"] integerValue], @"%@: Status inconsistent", name);
XCTAssertEqual(state.program_counter - 4, [finalState[@"pc"] integerValue], @"%@: Program counter inconsistent", name);
// Test final memory state.
NSArray<NSNumber *> *const finalMemory = test[@"final memory"];

View File

@ -8,30 +8,97 @@
#import <XCTest/XCTest.h>
#include <memory>
#include "../../../Machines/Atari/ST/Video.hpp"
// Implement Atari::ST::Video's friend class, to expose some
// internal state.
struct VideoTester {
static bool vsync(Atari::ST::Video &video) {
return video.vertical_.sync;
}
};
@interface AtariSTVideoTests : XCTestCase
@end
@implementation AtariSTVideoTests
@implementation AtariSTVideoTests {
std::unique_ptr<Atari::ST::Video> _video;
uint16_t _ram[256*1024];
}
// MARK: - Setup and tear down.
- (void)setUp {
[super setUp];
// Establish an instance of video.
_video = std::make_unique<Atari::ST::Video>();
_video->set_ram(_ram, sizeof(_ram));
}
- (void)tearDown {
[super tearDown];
// Release the video instance.
_video = nullptr;
}
- (void)testSequencePoints {
// Establish an instance of video.
Atari::ST::Video video;
uint16_t ram[256*1024];
video.set_ram(ram, sizeof(ram));
// MARK: - Helpers
- (void)runVideoForCycles:(int)cycles {
while(cycles--) {
_video->run_for(Cycles(1));
}
}
- (void)syncToStartOfLine {
// Run until the visible fetch address changes, to get to the start of the pixel zone.
const uint32_t original_address = [self currentVideoAddress];
while(original_address == [self currentVideoAddress]) {
_video->run_for(Cycles(1));
}
// Run until start of hsync.
while(!_video->hsync()) {
_video->run_for(Cycles(1));
}
// Run until end of hsync.
while(_video->hsync()) {
_video->run_for(Cycles(1));
}
}
- (void)setFrequency:(int)frequency {
switch(frequency) {
default:
case 50: _video->write(0x05, 0x200); _video->write(0x30, 0x000); break;
case 60: _video->write(0x05, 0x000); _video->write(0x30, 0x000); break;
case 72: _video->write(0x30, 0x200); break;
}
}
- (uint32_t)currentVideoAddress {
return
(_video->read(0x04) & 0xff) |
((_video->read(0x03) & 0xff) << 8) |
((_video->read(0x02) & 0xff) << 16);
}
- (void)setVideoBaseAddress:(uint32_t)baseAddress {
_video->write(0x00, baseAddress >> 16);
_video->write(0x01, baseAddress >> 8);
}
// MARK: - Sequence Point Prediction Tests
/// Tests that no events occur outside of the sequence points the video predicts.
- (void)testSequencePoints {
// Set 4bpp, 50Hz.
video.write(0x05, 0x0200);
video.write(0x30, 0x0000);
_video->write(0x05, 0x0200);
_video->write(0x30, 0x0000);
// Run for [more than] a whole frame making sure that no observeable outputs
// change at any time other than a sequence point.
@ -43,18 +110,231 @@
const bool is_transition_point = next_event == HalfCycles(0);
if(is_transition_point) {
display_enable = video.display_enabled();
vsync = video.vsync();
hsync = video.hsync();
next_event = video.get_next_sequence_point();
display_enable = _video->display_enabled();
vsync = _video->vsync();
hsync = _video->hsync();
next_event = _video->get_next_sequence_point();
} else {
NSAssert(display_enable == video.display_enabled(), @"Unannounced change in display enabled at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
NSAssert(vsync == video.vsync(), @"Unannounced change in vsync at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
NSAssert(hsync == video.hsync(), @"Unannounced change in hsync at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
NSAssert(display_enable == _video->display_enabled(), @"Unannounced change in display enabled at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
NSAssert(vsync == _video->vsync(), @"Unannounced change in vsync at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
NSAssert(hsync == _video->hsync(), @"Unannounced change in hsync at cycle %zu [%d before next sequence point]", c, next_event.as<int>());
}
video.run_for(HalfCycles(2));
_video->run_for(HalfCycles(2));
next_event -= HalfCycles(2);
}
}
// MARK: - Sync Line Length Tests
struct RunLength {
int frequency;
int length;
};
- (void)testSequence:(const RunLength *)sequence targetLength:(int)duration {
[self syncToStartOfLine];
const uint32_t start_address = [self currentVideoAddress];
while(sequence->frequency != -1) {
[self setFrequency:sequence->frequency];
[self runVideoForCycles:sequence->length];
++sequence;
}
const uint32_t final_address = [self currentVideoAddress];
XCTAssertEqual(final_address - start_address, duration);
}
- (void)testLineLength54 {
// Run as though a regular 50Hz line at least until cycle 52;
// then switch to 72 Hz by 164, and allow the line to finish.
const RunLength test[] = {
{50, 60},
{72, 452},
{-1}
};
[self testSequence:test targetLength:54];
}
- (void)testLineLength56 {
// Run as though a regular 60Hz line at least until cycle 52;
// then switch to 72 Hz by 164, and allow the line to finish.
const RunLength test[] = {
{60, 60},
{72, 452},
{-1}
};
[self testSequence:test targetLength:56];
}
- (void)testLineLength80 {
// Run a standard 72Hz line.
const RunLength test[] = {
{72, 224},
{-1}
};
[self testSequence:test targetLength:80];
}
- (void)testLineLengthLong80 {
// Run a 72Hz line with a switch through 50Hz to extend the length to 512 cycles.
const RunLength test[] = {
{72, 50},
{50, 20},
{72, 442},
{-1}
};
[self testSequence:test targetLength:80];
}
- (void)testLineLength158 {
// Transition from 50Hz to 60Hz mid-line.
const RunLength test[] = {
{50, 60},
{60, 458},
{-1}
};
[self testSequence:test targetLength:158];
}
- (void)testLineLength160_60Hz {
const RunLength test[] = {
{60, 508},
{-1}
};
[self testSequence:test targetLength:160];
}
- (void)testLineLength160_50Hz {
const RunLength test[] = {
{50, 512},
{-1}
};
[self testSequence:test targetLength:160];
}
- (void)testLineLength162 {
// Transition from 60Hz to 50Hz mid-line.
const RunLength test[] = {
{60, 54},
{50, 458},
{-1}
};
[self testSequence:test targetLength:162];
}
- (void)testLineLength184 {
// Start off in 72Hz, switch to 60 during pixels.
const RunLength test[] = {
{72, 8},
{60, 500},
{-1}
};
[self testSequence:test targetLength:184];
}
- (void)testLineLength186 {
// Start off in 72Hz, switch to 50 during pixels.
const RunLength test[] = {
{72, 8},
{50, 504},
{-1}
};
[self testSequence:test targetLength:186];
}
- (void)testLineLength204 {
// Start in 50Hz, avoid DE disable.
const RunLength test[] = {
{50, 374},
{60, 138},
{-1}
};
[self testSequence:test targetLength:204];
}
- (void)testLineLength206 {
// Start in 60Hz, get a 50Hz line length, avoid DE disable.
const RunLength test[] = {
{60, 53},
{50, 3}, // To 56.
{60, 314}, // 370.
{50, 4}, // 374.
{60, 138}, // 512.
{-1}
};
[self testSequence:test targetLength:206];
}
- (void)testLineLength230 {
// Start in 72Hz, avoid DE disable.
const RunLength test[] = {
{72, 8},
{50, 366},
{60, 138},
{-1}
};
[self testSequence:test targetLength:230];
}
// MARK: - Address Reload Timing tests
/// Tests that the current video address is reloaded constantly throughout vsync (subject to caveat: observed .
- (void)testVsyncReload {
// Set an initial video address of 0.
[self setVideoBaseAddress:0];
// Find next area of non-vsync.
while(VideoTester::vsync(*_video)) {
_video->run_for(Cycles(1));
}
// Set a different base video address.
[self setVideoBaseAddress:0x800000];
// Find next area of vsync, checking that the address isn't
// reloaded before then.
while(!VideoTester::vsync(*_video)) {
XCTAssertNotEqual([self currentVideoAddress], 0x800000);
_video->run_for(Cycles(1));
}
// Vsync has now started, test that video address has been set.
XCTAssertEqual([self currentVideoAddress], 0x800000);
// Run a few cycles, set a different video base address,
// confirm that has been set.
[self runVideoForCycles:200];
XCTAssertEqual([self currentVideoAddress], 0x800000);
[self setVideoBaseAddress:0xc00000];
[self runVideoForCycles:1];
XCTAssertEqual([self currentVideoAddress], 0xc00000);
// Find end of vertical sync, set a different base address,
// check that it doesn't become current.
while(VideoTester::vsync(*_video)) {
_video->run_for(Cycles(1));
}
[self setVideoBaseAddress:0];
[self runVideoForCycles:1];
XCTAssertNotEqual([self currentVideoAddress], 0);
}
// MARK: - Tests Correlating To Exact Pieces of Software
- (void)testUnionDemoScroller {
const RunLength test[] = {
{72, 8},
{50, 365},
{60, 8},
{50, 59},
{72, 12},
{50, 60},
{-1}
};
[self testSequence:test targetLength:230];
}
@end

View File

@ -1854,11 +1854,11 @@ template <class T, bool dtack_is_implicit, bool signal_will_perform> void Proces
RTE and RTR share an implementation.
*/
case Operation::RTE_RTR:
// If this is RTR, patch out the is_supervisor bit.
// If this is RTR, patch out the supervisor half of the status register.
if(decoded_instruction_.full == 0x4e77) {
source_bus_data_[0].full =
(source_bus_data_[0].full & uint32_t(~(1 << 13))) |
uint32_t(is_supervisor_ << 13);
const auto current_status = get_status();
source_bus_data_[0].halves.low.halves.high =
uint8_t(current_status >> 8);
}
set_status(source_bus_data_[0].full);
break;

View File

@ -1013,7 +1013,11 @@ struct ProcessorStorageConstructor {
case Decoder::RTE_RTR: {
program.set_requires_supervisor(instruction == 0x4e73);
// TODO: something explicit to ensure the nR nr nr is exclusively linked.
// The targets of the nR nr nr below are reset to the program counter elsewhere;
// look for the comment "relink the RTE and RTR bus steps". It is currently not
// explicitly tested that these bus steps are not shared with a non-RTE/RTR operation,
// just assumed because the repetition of nr is fairly silly. A more explicit soution
// might be preferable in the future.
op(Action::PrepareRTE_RTR, seq("nR nr nr", { &storage_.precomputed_addresses_[0], &storage_.precomputed_addresses_[1], &storage_.precomputed_addresses_[2] } ));
op(Action::PerformOperation, seq("np np"));
op();