1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-10-02 19:54:35 +00:00

Started factoring video out of the Electron.

This commit is contained in:
Thomas Harte 2016-12-10 21:07:52 -05:00
parent 0653770c63
commit c43e481a33
5 changed files with 581 additions and 466 deletions

View File

@ -12,8 +12,6 @@
#include <algorithm>
#include <cassert>
using namespace Electron;
namespace {
static const unsigned int cycles_per_line = 128;
static const unsigned int lines_per_frame = 625;
@ -33,6 +31,8 @@ namespace {
static const unsigned int real_time_clock_interrupt_2 = 56704;
}
using namespace Electron;
#define graphics_line(v) ((((v) >> 7) - first_graphics_line + field_divider_line) % field_divider_line)
#define graphics_column(v) ((((v) & 127) - first_graphics_cycle + 128) & 127)
@ -42,11 +42,9 @@ Machine::Machine() :
frame_cycles_(0),
display_output_position_(0),
audio_output_position_(0),
current_pixel_line_(-1),
use_fast_tape_hack_(false)
{
memset(key_states_, 0, sizeof(key_states_));
memset(palette_, 0xf, sizeof(palette_));
for(int c = 0; c < 16; c++)
memset(roms_[c], 0xff, 16384);
@ -56,28 +54,18 @@ Machine::Machine() :
void Machine::setup_output(float aspect_ratio)
{
speaker_.reset(new Speaker);
crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue >>= 4 - (int(icoordinate.x * 8) & 4);"
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
"}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
video_output_.reset(new VideoOutput(ram_));
// The maximum output frequency is 62500Hz and all other permitted output frequencies are integral divisions of that;
// however setting the speaker on or off can happen on any 2Mhz cycle, and probably (?) takes effect immediately. So
// run the speaker at a 2000000Hz input rate, at least for the time being.
speaker_.reset(new Speaker);
speaker_->set_input_rate(2000000 / Speaker::clock_rate_divider);
}
void Machine::close_output()
{
crt_ = nullptr;
video_output_.reset();
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
@ -106,13 +94,13 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions
cycles += 1 + (frame_cycles_&1);
if(screen_mode_ < 4)
{
const int current_line = graphics_line(frame_cycles_ + (frame_cycles_&1));
const int current_column = graphics_column(frame_cycles_ + (frame_cycles_&1));
if(current_line < 256 && current_column < 80 && !is_blank_line_)
cycles += (unsigned int)(80 - current_column);
}
// if(screen_mode_ < 4)
// {
// const int current_line = graphics_line(frame_cycles_ + (frame_cycles_&1));
// const int current_column = graphics_column(frame_cycles_ + (frame_cycles_&1));
// if(current_line < 256 && current_column < 80 && !is_blank_line_)
// cycles += (unsigned int)(80 - current_column);
// }
}
else
{
@ -134,18 +122,13 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
evaluate_interrupts();
}
break;
case 0xfe02:
case 0xfe02: case 0xfe03:
case 0xfe08: case 0xfe09: case 0xfe0a: case 0xfe0b:
case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f:
if(!isReadOperation(operation))
{
start_screen_address_ = (start_screen_address_ & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
}
break;
case 0xfe03:
if(!isReadOperation(operation))
{
start_screen_address_ = (start_screen_address_ & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
update_display();
video_output_->set_register(address, *value);
}
break;
case 0xfe04:
@ -204,21 +187,8 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
case 0xfe07:
if(!isReadOperation(operation))
{
// update screen mode
uint8_t new_screen_mode = ((*value) >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != screen_mode_)
{
update_display();
screen_mode_ = new_screen_mode;
switch(screen_mode_)
{
case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break;
case 3: screen_mode_base_address_ = 0x4000; break;
case 4: case 5: screen_mode_base_address_ = 0x5800; break;
case 6: screen_mode_base_address_ = 0x6000; break;
}
}
update_display();
video_output_->set_register(address, *value);
// update speaker mode
bool new_speaker_is_enabled = (*value & 6) == 2;
@ -236,67 +206,6 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
// TODO: caps lock LED
}
break;
case 0xfe08: case 0xfe09: case 0xfe0a: case 0xfe0b: case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f:
{
if(!isReadOperation(operation))
{
update_display();
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~(*value);
if(address&1)
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4);
palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4);
palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2);
palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1);
palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1);
palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1);
palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1);
palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2);
palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2);
}
// regenerate all palette tables for now
#define pack(a, b) (uint8_t)((a << 4) | (b))
for(int byte = 0; byte < 256; byte++)
{
uint8_t *target = (uint8_t *)&palette_tables_.forty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target = (uint8_t *)&palette_tables_.eighty2bpp[byte];
target[0] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&palette_tables_.eighty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target[2] = pack(palette_[(byte&0x08) >> 0], palette_[(byte&0x04) << 1]);
target[3] = pack(palette_[(byte&0x02) << 2], palette_[(byte&0x01) << 3]);
palette_tables_.forty2bpp[byte] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
palette_tables_.eighty4bpp[byte] = pack( palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
}
#undef pack
}
}
break;
case 0xfc04: case 0xfc05: case 0xfc06: case 0xfc07:
if(plus3_ && (address&0x00f0) == 0x00c0)
@ -573,6 +482,12 @@ inline void Machine::evaluate_interrupts()
set_irq_line(interrupt_status_ & 1);
}
inline void Machine::update_display()
{
video_output_->run_for_cycles(frame_cycles_ - display_output_position_);
display_output_position_ = frame_cycles_;
}
inline void Machine::update_audio()
{
unsigned int difference = frame_cycles_ - audio_output_position_ + audio_output_position_error_;
@ -581,331 +496,6 @@ inline void Machine::update_audio()
audio_output_position_error_ = difference % Speaker::clock_rate_divider;
}
inline void Machine::start_pixel_line()
{
current_pixel_line_ = (current_pixel_line_+1)&255;
if(!current_pixel_line_)
{
start_line_address_ = start_screen_address_;
current_character_row_ = 0;
is_blank_line_ = false;
}
else
{
bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3);
is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249)));
if(!is_blank_line_)
{
start_line_address_++;
if(current_character_row_ > 7)
{
start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8;
current_character_row_ = 0;
}
}
}
current_screen_address_ = start_line_address_;
current_pixel_column_ = 0;
initial_output_target_ = current_output_target_ = nullptr;
}
inline void Machine::end_pixel_line()
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_character_row_++;
}
inline void Machine::output_pixels(unsigned int number_of_cycles)
{
if(!number_of_cycles) return;
if(is_blank_line_)
{
crt_->output_blank(number_of_cycles * crt_cycles_multiplier);
}
else
{
unsigned int divider = 0;
switch(screen_mode_)
{
case 0: case 3: divider = 2; break;
case 1: case 4: case 6: divider = 4; break;
case 2: case 5: divider = 8; break;
}
if(!initial_output_target_ || divider != current_output_divider_)
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_output_divider_ = divider;
initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_);
}
#define get_pixel() \
if(current_screen_address_&32768)\
{\
current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\
}\
last_pixel_byte_ = ram_[current_screen_address_];\
current_screen_address_ = current_screen_address_+8
switch(screen_mode_)
{
case 0: case 3:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint32_t *)current_output_target_ = palette_tables_.eighty1bpp[last_pixel_byte_];
current_output_target_ += 4;
current_pixel_column_++;
}
} else current_output_target_ += 4*number_of_cycles;
break;
case 1:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.eighty2bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2*number_of_cycles;
break;
case 2:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*current_output_target_ = palette_tables_.eighty4bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
case 4: case 6:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2 * number_of_cycles;
break;
case 5:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
}
#undef get_pixel
}
}
inline void Machine::update_display()
{
/*
Odd field: Even field:
|--S--| -S-|
|--S--| |--S--|
|-S-B-| = 3 |--S--| = 2.5
|--B--| |--B--|
|--P--| |--P--|
|--B--| = 312 |--B--| = 312.5
|-B-
*/
int final_line = frame_cycles_ >> 7;
while(display_output_position_ < frame_cycles_)
{
int line = display_output_position_ >> 7;
// Priority one: sync.
// ===================
// full sync lines are 0, 1, field_divider_line+1 and field_divider_line+2
if(line == 0 || line == 1 || line == field_divider_line+1 || line == field_divider_line+2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(128 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// line 2 is a left-sync line
if(line == 2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(64 * crt_cycles_multiplier);
crt_->output_blank(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// line field_divider_line is a right-sync line
if(line == field_divider_line)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(55 * crt_cycles_multiplier);
crt_->output_sync(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// Priority two: blank lines.
// ==========================
//
// Given that it is not a sync line, this is a blank line if it is less than first_graphics_line, or greater
// than first_graphics_line+255 and less than first_graphics_line+field_divider_line, or greater than
// first_graphics_line+field_divider_line+255 (TODO: or this is Mode 3 or 6 and this should be blank)
if(
line < first_graphics_line ||
(line > first_graphics_line+255 && line < first_graphics_line+field_divider_line) ||
line > first_graphics_line+field_divider_line+255)
{
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(119 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
// Final possibility: this is a pixel line.
// ========================================
// determine how far we're going from left to right
unsigned int this_cycle = display_output_position_&127;
unsigned int final_cycle = frame_cycles_&127;
if(final_line > line)
{
final_cycle = 128;
}
// output format is:
// 9 cycles: sync
// ... to 24 cycles: colour burst
// ... to first_graphics_cycle: blank
// ... for 80 cycles: pixels
// ... until end of line: blank
while(this_cycle < final_cycle)
{
if(this_cycle < 9)
{
if(final_cycle < 9) return;
crt_->output_sync(9 * crt_cycles_multiplier);
display_output_position_ += 9;
this_cycle = 9;
}
if(this_cycle < 24)
{
if(final_cycle < 24) return;
crt_->output_default_colour_burst((24-9) * crt_cycles_multiplier);
display_output_position_ += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line
}
if(this_cycle < first_graphics_cycle)
{
if(final_cycle < first_graphics_cycle) return;
crt_->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
display_output_position_ += first_graphics_cycle - 24;
this_cycle = first_graphics_cycle;
start_pixel_line();
}
if(this_cycle < first_graphics_cycle + 80)
{
unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle;
output_pixels(length_to_output);
display_output_position_ += length_to_output;
this_cycle += length_to_output;
}
if(this_cycle >= first_graphics_cycle + 80)
{
if(final_cycle < 128) return;
end_pixel_line();
crt_->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
display_output_position_ += 128 - (first_graphics_cycle + 80);
this_cycle = 128;
}
}
}
}
void Machine::clear_all_keys()
{
memset(key_states_, 0, sizeof(key_states_));
@ -925,3 +515,13 @@ void Machine::set_key_state(uint16_t key, bool isPressed)
key_states_[key >> 4] &= ~(key&0xf);
}
}
std::shared_ptr<Outputs::CRT::CRT> Machine::get_crt()
{
return video_output_->get_crt();
}
std::shared_ptr<Outputs::Speaker> Machine::get_speaker()
{
return speaker_;
}

View File

@ -15,10 +15,12 @@
#include "../ConfigurationTarget.hpp"
#include "../CRTMachine.hpp"
#include "../Typer.hpp"
#include "Interrupts.hpp"
#include "Plus3.hpp"
#include "Speaker.hpp"
#include "Tape.hpp"
#include "Interrupts.hpp"
#include "Video.hpp"
#include <cstdint>
#include <vector>
@ -92,8 +94,8 @@ class Machine:
// to satisfy CRTMachine::Machine
virtual void setup_output(float aspect_ratio);
virtual void close_output();
virtual std::shared_ptr<Outputs::CRT::CRT> get_crt() { return crt_; }
virtual std::shared_ptr<Outputs::Speaker> get_speaker() { return speaker_; }
virtual std::shared_ptr<Outputs::CRT::CRT> get_crt();
virtual std::shared_ptr<Outputs::Speaker> get_speaker();
virtual void run_for_cycles(int number_of_cycles) { CPU6502::Processor<Machine>::run_for_cycles(number_of_cycles); }
// to satisfy Tape::Delegate
@ -105,13 +107,9 @@ class Machine:
uint16_t *sequence_for_character(Utility::Typer *typer, char character);
private:
inline void update_display();
inline void start_pixel_line();
inline void end_pixel_line();
inline void output_pixels(unsigned int number_of_cycles);
inline void update_audio();
inline void signal_interrupt(Interrupt interrupt);
inline void clear_interrupt(Interrupt interrupt);
inline void evaluate_interrupts();
@ -124,36 +122,14 @@ class Machine:
// Things affected by registers, explicitly or otherwise.
uint8_t interrupt_status_, interrupt_control_;
uint8_t palette_[16];
uint8_t key_states_[14];
ROMSlot active_rom_;
bool keyboard_is_active_, basic_is_active_;
uint8_t screen_mode_;
uint16_t screen_mode_base_address_;
uint16_t start_screen_address_;
// Counters related to simultaneous subsystems
unsigned int frame_cycles_, display_output_position_;
unsigned int audio_output_position_, audio_output_position_error_;
struct {
uint16_t forty1bpp[256];
uint8_t forty2bpp[256];
uint32_t eighty1bpp[256];
uint16_t eighty2bpp[256];
uint8_t eighty4bpp[256];
} palette_tables_;
// Display generation.
uint16_t start_line_address_, current_screen_address_;
int current_pixel_line_, current_pixel_column_, current_character_row_;
uint8_t last_pixel_byte_;
bool is_blank_line_;
// CRT output
uint8_t *current_output_target_, *initial_output_target_;
unsigned int current_output_divider_;
// Tape
Tape tape_;
bool use_fast_tape_hack_;
@ -164,7 +140,7 @@ class Machine:
bool is_holding_shift_;
// Outputs
std::shared_ptr<Outputs::CRT::CRT> crt_;
std::unique_ptr<VideoOutput> video_output_;
std::shared_ptr<Speaker> speaker_;
bool speaker_is_enabled_;
};

469
Machines/Electron/Video.cpp Normal file
View File

@ -0,0 +1,469 @@
//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 10/12/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
using namespace Electron;
namespace {
static const unsigned int cycles_per_line = 128;
static const unsigned int lines_per_frame = 625;
static const unsigned int cycles_per_frame = lines_per_frame * cycles_per_line;
static const unsigned int crt_cycles_multiplier = 8;
static const unsigned int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line;
static const unsigned int field_divider_line = 312; // i.e. the line, simultaneous with which, the first field's sync ends. So if
// the first line with pixels in field 1 is the 20th in the frame, the first line
// with pixels in field 2 will be 20+field_divider_line
static const unsigned int first_graphics_line = 31;
static const unsigned int first_graphics_cycle = 33;
static const unsigned int display_end_interrupt_line = 256;
static const unsigned int real_time_clock_interrupt_1 = 16704;
static const unsigned int real_time_clock_interrupt_2 = 56704;
}
VideoOutput::VideoOutput(uint8_t *memory) :
ram_(memory),
current_pixel_line_(-1)
{
memset(palette_, 0xf, sizeof(palette_));
crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue >>= 4 - (int(icoordinate.x * 8) & 4);"
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
"}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
}
std::shared_ptr<Outputs::CRT::CRT> VideoOutput::get_crt()
{
return crt_;
}
void VideoOutput::start_pixel_line()
{
current_pixel_line_ = (current_pixel_line_+1)&255;
if(!current_pixel_line_)
{
start_line_address_ = start_screen_address_;
current_character_row_ = 0;
is_blank_line_ = false;
}
else
{
bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3);
is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249)));
if(!is_blank_line_)
{
start_line_address_++;
if(current_character_row_ > 7)
{
start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8;
current_character_row_ = 0;
}
}
}
current_screen_address_ = start_line_address_;
current_pixel_column_ = 0;
initial_output_target_ = current_output_target_ = nullptr;
}
void VideoOutput::end_pixel_line()
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_character_row_++;
}
void VideoOutput::output_pixels(unsigned int number_of_cycles)
{
if(!number_of_cycles) return;
if(is_blank_line_)
{
crt_->output_blank(number_of_cycles * crt_cycles_multiplier);
}
else
{
unsigned int divider = 0;
switch(screen_mode_)
{
case 0: case 3: divider = 2; break;
case 1: case 4: case 6: divider = 4; break;
case 2: case 5: divider = 8; break;
}
if(!initial_output_target_ || divider != current_output_divider_)
{
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_output_divider_ = divider;
initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_);
}
#define get_pixel() \
if(current_screen_address_&32768)\
{\
current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\
}\
last_pixel_byte_ = ram_[current_screen_address_];\
current_screen_address_ = current_screen_address_+8
switch(screen_mode_)
{
case 0: case 3:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint32_t *)current_output_target_ = palette_tables_.eighty1bpp[last_pixel_byte_];
current_output_target_ += 4;
current_pixel_column_++;
}
} else current_output_target_ += 4*number_of_cycles;
break;
case 1:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.eighty2bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2*number_of_cycles;
break;
case 2:
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*current_output_target_ = palette_tables_.eighty4bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
case 4: case 6:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else current_output_target_ += 2 * number_of_cycles;
break;
case 5:
if(initial_output_target_)
{
if(current_pixel_column_&1)
{
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles--;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles -= 2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else current_output_target_ += number_of_cycles;
break;
}
#undef get_pixel
}
}
void VideoOutput::run_for_cycles(int number_of_cycles)
{
/*
Odd field: Even field:
|--S--| -S-|
|--S--| |--S--|
|-S-B-| = 3 |--S--| = 2.5
|--B--| |--B--|
|--P--| |--P--|
|--B--| = 312 |--B--| = 312.5
|-B-
*/
int final_position = output_position_ + number_of_cycles;
int final_line = final_position >> 7;
while(output_position_ < final_position)
{
int line = output_position_ >> 7;
// Priority one: sync.
// ===================
// full sync lines are 0, 1, field_divider_line+1 and field_divider_line+2
if(line == 0 || line == 1 || line == field_divider_line+1 || line == field_divider_line+2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(128 * crt_cycles_multiplier);
output_position_ += 128;
continue;
}
// line 2 is a left-sync line
if(line == 2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(64 * crt_cycles_multiplier);
crt_->output_blank(64 * crt_cycles_multiplier);
output_position_ += 128;
continue;
}
// line field_divider_line is a right-sync line
if(line == field_divider_line)
{
// wait for the line to complete before signalling
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(55 * crt_cycles_multiplier);
crt_->output_sync(64 * crt_cycles_multiplier);
output_position_ += 128;
continue;
}
// Priority two: blank lines.
// ==========================
//
// Given that it is not a sync line, this is a blank line if it is less than first_graphics_line, or greater
// than first_graphics_line+255 and less than first_graphics_line+field_divider_line, or greater than
// first_graphics_line+field_divider_line+255 (TODO: or this is Mode 3 or 6 and this should be blank)
if(
line < first_graphics_line ||
(line > first_graphics_line+255 && line < first_graphics_line+field_divider_line) ||
line > first_graphics_line+field_divider_line+255)
{
if(final_line == line) return;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(119 * crt_cycles_multiplier);
output_position_ += 128;
continue;
}
// Final possibility: this is a pixel line.
// ========================================
// determine how far we're going from left to right
unsigned int this_cycle = output_position_&127;
unsigned int final_cycle = output_position_&127;
if(final_line > line)
{
final_cycle = 128;
}
// output format is:
// 9 cycles: sync
// ... to 24 cycles: colour burst
// ... to first_graphics_cycle: blank
// ... for 80 cycles: pixels
// ... until end of line: blank
while(this_cycle < final_cycle)
{
if(this_cycle < 9)
{
if(final_cycle < 9) return;
crt_->output_sync(9 * crt_cycles_multiplier);
output_position_ += 9;
this_cycle = 9;
}
if(this_cycle < 24)
{
if(final_cycle < 24) return;
crt_->output_default_colour_burst((24-9) * crt_cycles_multiplier);
output_position_ += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line
}
if(this_cycle < first_graphics_cycle)
{
if(final_cycle < first_graphics_cycle) return;
crt_->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
output_position_ += first_graphics_cycle - 24;
this_cycle = first_graphics_cycle;
start_pixel_line();
}
if(this_cycle < first_graphics_cycle + 80)
{
unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle;
output_pixels(length_to_output);
output_position_ += length_to_output;
this_cycle += length_to_output;
}
if(this_cycle >= first_graphics_cycle + 80)
{
if(final_cycle < 128) return;
end_pixel_line();
crt_->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
output_position_ += 128 - (first_graphics_cycle + 80);
this_cycle = 128;
}
}
}
}
void VideoOutput::set_register(int address, uint8_t value)
{
switch(address & 0xf)
{
case 0x02:
start_screen_address_ = (start_screen_address_ & 0xfe00) | (uint16_t)((value & 0xe0) << 1);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
break;
case 0x03:
start_screen_address_ = (start_screen_address_ & 0x01ff) | (uint16_t)((value & 0x3f) << 9);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
break;
case 0x07:
{
// update screen mode
uint8_t new_screen_mode = (value >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != screen_mode_)
{
screen_mode_ = new_screen_mode;
switch(screen_mode_)
{
case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break;
case 3: screen_mode_base_address_ = 0x4000; break;
case 4: case 5: screen_mode_base_address_ = 0x5800; break;
case 6: screen_mode_base_address_ = 0x6000; break;
}
}
}
break;
case 0x08: case 0x09: case 0x0a: case 0x0b:
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
{
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~value;
if(address&1)
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4);
palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4);
palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2);
palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1);
palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1);
palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1);
palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1);
palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2);
palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2);
}
// regenerate all palette tables for now
#define pack(a, b) (uint8_t)((a << 4) | (b))
for(int byte = 0; byte < 256; byte++)
{
uint8_t *target = (uint8_t *)&palette_tables_.forty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target = (uint8_t *)&palette_tables_.eighty2bpp[byte];
target[0] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&palette_tables_.eighty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target[2] = pack(palette_[(byte&0x08) >> 0], palette_[(byte&0x04) << 1]);
target[3] = pack(palette_[(byte&0x02) << 2], palette_[(byte&0x01) << 3]);
palette_tables_.forty2bpp[byte] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
palette_tables_.eighty4bpp[byte] = pack( palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
}
#undef pack
}
break;
}
}

View File

@ -0,0 +1,64 @@
//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 10/12/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef Machines_Electron_Video_hpp
#define Machines_Electron_Video_hpp
#include "../../Outputs/CRT/CRT.hpp"
#include "Interrupts.hpp"
namespace Electron {
class VideoOutput {
public:
VideoOutput(uint8_t *memory);
std::shared_ptr<Outputs::CRT::CRT> get_crt();
void run_for_cycles(int number_of_cycles);
int get_cycles_until_next_interrupt();
Interrupt get_next_interrupt();
void set_register(int address, uint8_t value);
private:
inline void start_pixel_line();
inline void end_pixel_line();
inline void output_pixels(unsigned int number_of_cycles);
int output_position_;
uint8_t palette_[16];
uint8_t screen_mode_;
uint16_t screen_mode_base_address_;
uint16_t start_screen_address_;
uint8_t *ram_;
struct {
uint16_t forty1bpp[256];
uint8_t forty2bpp[256];
uint32_t eighty1bpp[256];
uint16_t eighty2bpp[256];
uint8_t eighty4bpp[256];
} palette_tables_;
// Display generation.
uint16_t start_line_address_, current_screen_address_;
int current_pixel_line_, current_pixel_column_, current_character_row_;
uint8_t last_pixel_byte_;
bool is_blank_line_;
// CRT output
uint8_t *current_output_target_, *initial_output_target_;
unsigned int current_output_divider_;
std::shared_ptr<Outputs::CRT::CRT> crt_;
};
}
#endif /* Video_hpp */

View File

@ -62,6 +62,7 @@
4B69FB441C4D941400B5F0AA /* TapeUEF.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B69FB421C4D941400B5F0AA /* TapeUEF.cpp */; };
4B69FB461C4D950F00B5F0AA /* libz.tbd in Frameworks */ = {isa = PBXBuildFile; fileRef = 4B69FB451C4D950F00B5F0AA /* libz.tbd */; };
4B6C73BD1D387AE500AFCFCA /* DiskController.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B6C73BB1D387AE500AFCFCA /* DiskController.cpp */; };
4B7913CC1DFCD80E00175A82 /* Video.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B7913CA1DFCD80E00175A82 /* Video.cpp */; };
4B8805F01DCFC99C003085B1 /* Acorn.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8805EE1DCFC99C003085B1 /* Acorn.cpp */; };
4B8805F41DCFD22A003085B1 /* Commodore.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8805F21DCFD22A003085B1 /* Commodore.cpp */; };
4B8805F71DCFF6C9003085B1 /* Commodore.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8805F51DCFF6C9003085B1 /* Commodore.cpp */; };
@ -522,6 +523,8 @@
4B69FB451C4D950F00B5F0AA /* libz.tbd */ = {isa = PBXFileReference; lastKnownFileType = "sourcecode.text-based-dylib-definition"; name = libz.tbd; path = usr/lib/libz.tbd; sourceTree = SDKROOT; };
4B6C73BB1D387AE500AFCFCA /* DiskController.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = DiskController.cpp; sourceTree = "<group>"; };
4B6C73BC1D387AE500AFCFCA /* DiskController.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = DiskController.hpp; sourceTree = "<group>"; };
4B7913CA1DFCD80E00175A82 /* Video.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Video.cpp; path = Electron/Video.cpp; sourceTree = "<group>"; };
4B7913CB1DFCD80E00175A82 /* Video.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = Video.hpp; path = Electron/Video.hpp; sourceTree = "<group>"; };
4B8805EE1DCFC99C003085B1 /* Acorn.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Acorn.cpp; path = Parsers/Acorn.cpp; sourceTree = "<group>"; };
4B8805EF1DCFC99C003085B1 /* Acorn.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = Acorn.hpp; path = Parsers/Acorn.hpp; sourceTree = "<group>"; };
4B8805F21DCFD22A003085B1 /* Commodore.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Commodore.cpp; path = Parsers/Commodore.cpp; sourceTree = "<group>"; };
@ -1070,11 +1073,13 @@
4BEA52611DF339D7007E74F2 /* Speaker.cpp */,
4BEA525D1DF33323007E74F2 /* Tape.cpp */,
4BC8A62B1DCE60E000DAC693 /* Typer.cpp */,
4B7913CA1DFCD80E00175A82 /* Video.cpp */,
4B2E2D9C1C3A070400138695 /* Electron.hpp */,
4BEA52601DF3343A007E74F2 /* Interrupts.hpp */,
4B30512F1D98ACC600B4FED8 /* Plus3.hpp */,
4BEA52621DF339D7007E74F2 /* Speaker.hpp */,
4BEA525F1DF333D8007E74F2 /* Tape.hpp */,
4B7913CB1DFCD80E00175A82 /* Video.hpp */,
);
name = Electron;
sourceTree = "<group>";
@ -2353,6 +2358,7 @@
4B2A332A1DB8544D002876E3 /* MemoryFuzzer.cpp in Sources */,
4B55CE5F1C3B7D960093A61B /* MachineDocument.swift in Sources */,
4B2A332F1DB86869002876E3 /* OricOptionsPanel.swift in Sources */,
4B7913CC1DFCD80E00175A82 /* Video.cpp in Sources */,
4B2A53A11D117D36003C6002 /* CSAtari2600.mm in Sources */,
4BF829661D8F732B001BAE39 /* Disk.cpp in Sources */,
4BEA52631DF339D7007E74F2 /* Speaker.cpp in Sources */,