1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-11 08:30:55 +00:00

Completed flight of 'Outputs' to postfix underscores.

This commit is contained in:
Thomas Harte 2016-12-03 11:02:34 -05:00
parent 2003b514aa
commit c5016a3eaa

View File

@ -40,13 +40,13 @@ class Speaker {
float get_ideal_clock_rate_in_range(float minimum, float maximum)
{
// return twice the cut off, if applicable
if(_high_frequency_cut_off > 0.0f && _input_cycles_per_second >= _high_frequency_cut_off * 3.0f && _input_cycles_per_second <= _high_frequency_cut_off * 3.0f) return _high_frequency_cut_off * 3.0f;
if(high_frequency_cut_off_ > 0.0f && input_cycles_per_second_ >= high_frequency_cut_off_ * 3.0f && input_cycles_per_second_ <= high_frequency_cut_off_ * 3.0f) return high_frequency_cut_off_ * 3.0f;
// return exactly the input rate if possible
if(_input_cycles_per_second >= minimum && _input_cycles_per_second <= maximum) return _input_cycles_per_second;
if(input_cycles_per_second_ >= minimum && input_cycles_per_second_ <= maximum) return input_cycles_per_second_;
// if the input rate is lower, return the minimum
if(_input_cycles_per_second < minimum) return minimum;
if(input_cycles_per_second_ < minimum) return minimum;
// otherwise, return the maximum
return maximum;
@ -54,29 +54,29 @@ class Speaker {
void set_output_rate(float cycles_per_second, int buffer_size)
{
_output_cycles_per_second = cycles_per_second;
if(_buffer_size != buffer_size)
output_cycles_per_second_ = cycles_per_second;
if(buffer_size_ != buffer_size)
{
_buffer_in_progress.reset(new int16_t[buffer_size]);
_buffer_size = buffer_size;
buffer_in_progress_.reset(new int16_t[buffer_size]);
buffer_size_ = buffer_size;
}
set_needs_updated_filter_coefficients();
}
void set_output_quality(int number_of_taps)
{
_requested_number_of_taps = number_of_taps;
requested_number_of_taps_ = number_of_taps;
set_needs_updated_filter_coefficients();
}
void set_delegate(Delegate *delegate)
{
_delegate = delegate;
delegate_ = delegate;
}
void set_input_rate(float cycles_per_second)
{
_input_cycles_per_second = cycles_per_second;
input_cycles_per_second_ = cycles_per_second;
set_needs_updated_filter_coefficients();
}
@ -85,19 +85,19 @@ class Speaker {
*/
void set_high_frequency_cut_off(float high_frequency)
{
_high_frequency_cut_off = high_frequency;
high_frequency_cut_off_ = high_frequency;
set_needs_updated_filter_coefficients();
}
Speaker() : _buffer_in_progress_pointer(0), _requested_number_of_taps(0), _high_frequency_cut_off(-1.0), _queue(new Concurrency::AsyncTaskQueue) {}
Speaker() : buffer_in_progress_pointer_(0), requested_number_of_taps_(0), high_frequency_cut_off_(-1.0), _queue(new Concurrency::AsyncTaskQueue) {}
/*!
Ensures any deferred processing occurs now.
*/
void flush()
{
std::shared_ptr<std::list<std::function<void(void)>>> queued_functions = _queued_functions;
_queued_functions.reset();
std::shared_ptr<std::list<std::function<void(void)>>> queued_functions = queued_functions_;
queued_functions_.reset();
_queue->enqueue([queued_functions] {
for(auto function : *queued_functions)
{
@ -109,24 +109,24 @@ class Speaker {
protected:
void enqueue(std::function<void(void)> function)
{
if(!_queued_functions) _queued_functions.reset(new std::list<std::function<void(void)>>);
_queued_functions->push_back(function);
if(!queued_functions_) queued_functions_.reset(new std::list<std::function<void(void)>>);
queued_functions_->push_back(function);
}
std::shared_ptr<std::list<std::function<void(void)>>> _queued_functions;
std::shared_ptr<std::list<std::function<void(void)>>> queued_functions_;
std::unique_ptr<int16_t> _buffer_in_progress;
float _high_frequency_cut_off;
int _buffer_size;
int _buffer_in_progress_pointer;
int _number_of_taps, _requested_number_of_taps;
bool _coefficients_are_dirty;
Delegate *_delegate;
std::unique_ptr<int16_t> buffer_in_progress_;
float high_frequency_cut_off_;
int buffer_size_;
int buffer_in_progress_pointer_;
int number_of_taps_, requested_number_of_taps_;
bool coefficients_are_dirty_;
Delegate *delegate_;
float _input_cycles_per_second, _output_cycles_per_second;
float input_cycles_per_second_, output_cycles_per_second_;
void set_needs_updated_filter_coefficients()
{
_coefficients_are_dirty = true;
coefficients_are_dirty_ = true;
}
void get_samples(unsigned int quantity, int16_t *target) {}
@ -160,26 +160,26 @@ template <class T> class Filter: public Speaker {
{
enqueue([=]() {
unsigned int cycles_remaining = input_cycles;
if(_coefficients_are_dirty) update_filter_coefficients();
if(coefficients_are_dirty_) update_filter_coefficients();
// if input and output rates exactly match, just accumulate results and pass on
if(_input_cycles_per_second == _output_cycles_per_second && _high_frequency_cut_off < 0.0)
if(input_cycles_per_second_ == output_cycles_per_second_ && high_frequency_cut_off_ < 0.0)
{
while(cycles_remaining)
{
unsigned int cycles_to_read = (unsigned int)(_buffer_size - _buffer_in_progress_pointer);
unsigned int cycles_to_read = (unsigned int)(buffer_size_ - buffer_in_progress_pointer_);
if(cycles_to_read > cycles_remaining) cycles_to_read = cycles_remaining;
static_cast<T *>(this)->get_samples(cycles_to_read, &_buffer_in_progress.get()[_buffer_in_progress_pointer]);
_buffer_in_progress_pointer += cycles_to_read;
static_cast<T *>(this)->get_samples(cycles_to_read, &buffer_in_progress_.get()[buffer_in_progress_pointer_]);
buffer_in_progress_pointer_ += cycles_to_read;
// announce to delegate if full
if(_buffer_in_progress_pointer == _buffer_size)
if(buffer_in_progress_pointer_ == buffer_size_)
{
_buffer_in_progress_pointer = 0;
if(_delegate)
buffer_in_progress_pointer_ = 0;
if(delegate_)
{
_delegate->speaker_did_complete_samples(this, _buffer_in_progress.get(), _buffer_size);
delegate_->speaker_did_complete_samples(this, buffer_in_progress_.get(), buffer_size_);
}
}
@ -190,45 +190,45 @@ template <class T> class Filter: public Speaker {
}
// if the output rate is less than the input rate, use the filter
if(_input_cycles_per_second > _output_cycles_per_second)
if(input_cycles_per_second_ > output_cycles_per_second_)
{
while(cycles_remaining)
{
unsigned int cycles_to_read = (unsigned int)std::min((int)cycles_remaining, _number_of_taps - _input_buffer_depth);
static_cast<T *>(this)->get_samples(cycles_to_read, &_input_buffer.get()[_input_buffer_depth]);
unsigned int cycles_to_read = (unsigned int)std::min((int)cycles_remaining, number_of_taps_ - input_buffer_depth_);
static_cast<T *>(this)->get_samples(cycles_to_read, &input_buffer_.get()[input_buffer_depth_]);
cycles_remaining -= cycles_to_read;
_input_buffer_depth += cycles_to_read;
input_buffer_depth_ += cycles_to_read;
if(_input_buffer_depth == _number_of_taps)
if(input_buffer_depth_ == number_of_taps_)
{
_buffer_in_progress.get()[_buffer_in_progress_pointer] = _filter->apply(_input_buffer.get());
_buffer_in_progress_pointer++;
buffer_in_progress_.get()[buffer_in_progress_pointer_] = filter_->apply(input_buffer_.get());
buffer_in_progress_pointer_++;
// announce to delegate if full
if(_buffer_in_progress_pointer == _buffer_size)
if(buffer_in_progress_pointer_ == buffer_size_)
{
_buffer_in_progress_pointer = 0;
if(_delegate)
buffer_in_progress_pointer_ = 0;
if(delegate_)
{
_delegate->speaker_did_complete_samples(this, _buffer_in_progress.get(), _buffer_size);
delegate_->speaker_did_complete_samples(this, buffer_in_progress_.get(), buffer_size_);
}
}
// If the next loop around is going to reuse some of the samples just collected, use a memmove to
// preserve them in the correct locations (TODO: use a longer buffer to fix that) and don't skip
// anything. Otherwise skip as required to get to the next sample batch and don't expect to reuse.
uint64_t steps = _stepper->step();
if(steps < _number_of_taps)
uint64_t steps = stepper_->step();
if(steps < number_of_taps_)
{
int16_t *input_buffer = _input_buffer.get();
memmove(input_buffer, &input_buffer[steps], sizeof(int16_t) * ((size_t)_number_of_taps - (size_t)steps));
_input_buffer_depth -= steps;
int16_t *input_buffer = input_buffer_.get();
memmove(input_buffer, &input_buffer[steps], sizeof(int16_t) * ((size_t)number_of_taps_ - (size_t)steps));
input_buffer_depth_ -= steps;
}
else
{
if(steps > _number_of_taps)
static_cast<T *>(this)->skip_samples((unsigned int)steps - (unsigned int)_number_of_taps);
_input_buffer_depth = 0;
if(steps > number_of_taps_)
static_cast<T *>(this)->skip_samples((unsigned int)steps - (unsigned int)number_of_taps_);
input_buffer_depth_ = 0;
}
}
}
@ -241,44 +241,44 @@ template <class T> class Filter: public Speaker {
}
private:
std::unique_ptr<SignalProcessing::Stepper> _stepper;
std::unique_ptr<SignalProcessing::FIRFilter> _filter;
std::unique_ptr<SignalProcessing::Stepper> stepper_;
std::unique_ptr<SignalProcessing::FIRFilter> filter_;
std::unique_ptr<int16_t> _input_buffer;
int _input_buffer_depth;
std::unique_ptr<int16_t> input_buffer_;
int input_buffer_depth_;
void update_filter_coefficients()
{
// make a guess at a good number of taps if this hasn't been provided explicitly
if(_requested_number_of_taps)
if(requested_number_of_taps_)
{
_number_of_taps = _requested_number_of_taps;
number_of_taps_ = requested_number_of_taps_;
}
else
{
_number_of_taps = (int)ceilf((_input_cycles_per_second + _output_cycles_per_second) / _output_cycles_per_second);
_number_of_taps *= 2;
_number_of_taps |= 1;
number_of_taps_ = (int)ceilf((input_cycles_per_second_ + output_cycles_per_second_) / output_cycles_per_second_);
number_of_taps_ *= 2;
number_of_taps_ |= 1;
}
_coefficients_are_dirty = false;
_buffer_in_progress_pointer = 0;
coefficients_are_dirty_ = false;
buffer_in_progress_pointer_ = 0;
_stepper.reset(new SignalProcessing::Stepper((uint64_t)_input_cycles_per_second, (uint64_t)_output_cycles_per_second));
stepper_.reset(new SignalProcessing::Stepper((uint64_t)input_cycles_per_second_, (uint64_t)output_cycles_per_second_));
float high_pass_frequency;
if(_high_frequency_cut_off > 0.0)
if(high_frequency_cut_off_ > 0.0)
{
high_pass_frequency = std::min((float)_output_cycles_per_second / 2.0f, _high_frequency_cut_off);
high_pass_frequency = std::min((float)output_cycles_per_second_ / 2.0f, high_frequency_cut_off_);
}
else
{
high_pass_frequency = (float)_output_cycles_per_second / 2.0f;
high_pass_frequency = (float)output_cycles_per_second_ / 2.0f;
}
_filter.reset(new SignalProcessing::FIRFilter((unsigned int)_number_of_taps, (float)_input_cycles_per_second, 0.0, high_pass_frequency, SignalProcessing::FIRFilter::DefaultAttenuation));
filter_.reset(new SignalProcessing::FIRFilter((unsigned int)number_of_taps_, (float)input_cycles_per_second_, 0.0, high_pass_frequency, SignalProcessing::FIRFilter::DefaultAttenuation));
_input_buffer.reset(new int16_t[_number_of_taps]);
_input_buffer_depth = 0;
input_buffer_.reset(new int16_t[number_of_taps_]);
input_buffer_depth_ = 0;
}
};