mirror of
https://github.com/TomHarte/CLK.git
synced 2025-04-06 10:38:16 +00:00
Merge pull request #581 from TomHarte/ScanTarget
Decouples output of raster scans from their generation
This commit is contained in:
commit
c8c24f81c8
@ -48,27 +48,16 @@ void MultiCRTMachine::perform_parallel(const std::function<void(::CRTMachine::Ma
|
||||
void MultiCRTMachine::perform_serial(const std::function<void (::CRTMachine::Machine *)> &function) {
|
||||
std::lock_guard<std::mutex> machines_lock(machines_mutex_);
|
||||
for(const auto &machine: machines_) {
|
||||
CRTMachine::Machine *crt_machine = machine->crt_machine();
|
||||
CRTMachine::Machine *const crt_machine = machine->crt_machine();
|
||||
if(crt_machine) function(crt_machine);
|
||||
}
|
||||
}
|
||||
|
||||
void MultiCRTMachine::setup_output(float aspect_ratio) {
|
||||
perform_serial([=](::CRTMachine::Machine *machine) {
|
||||
machine->setup_output(aspect_ratio);
|
||||
});
|
||||
}
|
||||
void MultiCRTMachine::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
scan_target_ = scan_target;
|
||||
|
||||
void MultiCRTMachine::close_output() {
|
||||
perform_serial([=](::CRTMachine::Machine *machine) {
|
||||
machine->close_output();
|
||||
});
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *MultiCRTMachine::get_crt() {
|
||||
std::lock_guard<std::mutex> machines_lock(machines_mutex_);
|
||||
CRTMachine::Machine *crt_machine = machines_.front()->crt_machine();
|
||||
return crt_machine ? crt_machine->get_crt() : nullptr;
|
||||
CRTMachine::Machine *const crt_machine = machines_.front()->crt_machine();
|
||||
if(crt_machine) crt_machine->set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *MultiCRTMachine::get_speaker() {
|
||||
@ -84,6 +73,14 @@ void MultiCRTMachine::run_for(Time::Seconds duration) {
|
||||
}
|
||||
|
||||
void MultiCRTMachine::did_change_machine_order() {
|
||||
if(scan_target_) scan_target_->will_change_owner();
|
||||
|
||||
perform_serial([=](::CRTMachine::Machine *machine) {
|
||||
machine->set_scan_target(nullptr);
|
||||
});
|
||||
CRTMachine::Machine *const crt_machine = machines_.front()->crt_machine();
|
||||
if(crt_machine) crt_machine->set_scan_target(scan_target_);
|
||||
|
||||
if(speaker_) {
|
||||
speaker_->set_new_front_machine(machines_.front().get());
|
||||
}
|
||||
|
@ -53,9 +53,7 @@ class MultiCRTMachine: public CRTMachine::Machine {
|
||||
}
|
||||
|
||||
// Below is the standard CRTMachine::Machine interface; see there for documentation.
|
||||
void setup_output(float aspect_ratio) override;
|
||||
void close_output() override;
|
||||
Outputs::CRT::CRT *get_crt() override;
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override;
|
||||
Outputs::Speaker::Speaker *get_speaker() override;
|
||||
void run_for(Time::Seconds duration) override;
|
||||
|
||||
@ -66,6 +64,7 @@ class MultiCRTMachine: public CRTMachine::Machine {
|
||||
std::vector<Concurrency::AsyncTaskQueue> queues_;
|
||||
MultiSpeaker *speaker_ = nullptr;
|
||||
Delegate *delegate_ = nullptr;
|
||||
Outputs::Display::ScanTarget *scan_target_ = nullptr;
|
||||
|
||||
/*!
|
||||
Performs a parallel for operation across all machines, performing the supplied
|
||||
|
@ -11,7 +11,7 @@
|
||||
using namespace Analyser::Dynamic;
|
||||
|
||||
MultiKeyboardMachine::MultiKeyboardMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) :
|
||||
keyboard_(machines_) {
|
||||
keyboard_(machines_) {
|
||||
for(const auto &machine: machines) {
|
||||
KeyboardMachine::Machine *keyboard_machine = machine->keyboard_machine();
|
||||
if(keyboard_machine) machines_.push_back(keyboard_machine);
|
||||
|
@ -80,7 +80,7 @@ Analyser::Static::TargetList Analyser::Static::Commodore::GetTargets(const Media
|
||||
target->memory_model = Target::MemoryModel::Unexpanded;
|
||||
std::ostringstream string_stream;
|
||||
string_stream << "LOAD\"" << (is_disk ? "*" : "") << "\"," << device << ",";
|
||||
if(files.front().is_basic()) {
|
||||
if(files.front().is_basic()) {
|
||||
string_stream << "0";
|
||||
} else {
|
||||
string_stream << "1";
|
||||
|
@ -63,9 +63,9 @@ class Accessor {
|
||||
#define z(v) (v & 7)
|
||||
|
||||
Instruction::Condition condition_table[] = {
|
||||
Instruction::Condition::NZ, Instruction::Condition::Z,
|
||||
Instruction::Condition::NC, Instruction::Condition::C,
|
||||
Instruction::Condition::PO, Instruction::Condition::PE,
|
||||
Instruction::Condition::NZ, Instruction::Condition::Z,
|
||||
Instruction::Condition::NC, Instruction::Condition::C,
|
||||
Instruction::Condition::PO, Instruction::Condition::PE,
|
||||
Instruction::Condition::P, Instruction::Condition::M
|
||||
};
|
||||
|
||||
|
@ -9,6 +9,7 @@
|
||||
#ifndef ClockDeferrer_h
|
||||
#define ClockDeferrer_h
|
||||
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
|
||||
/*!
|
||||
|
@ -189,7 +189,6 @@ void WD1770::posit_event(int new_event_type) {
|
||||
interesting_event_mask_ &= ~new_event_type;
|
||||
}
|
||||
|
||||
Status new_status;
|
||||
BEGIN_SECTION()
|
||||
|
||||
// Wait for a new command, branch to the appropriate handler.
|
||||
@ -211,7 +210,7 @@ void WD1770::posit_event(int new_event_type) {
|
||||
status.interrupt_request = false;
|
||||
});
|
||||
|
||||
LOG("Starting " << std::hex << command_ << std::endl);
|
||||
LOG("Starting " << PADHEX(2) << int(command_));
|
||||
|
||||
if(!(command_ & 0x80)) goto begin_type_1;
|
||||
if(!(command_ & 0x40)) goto begin_type_2;
|
||||
@ -329,7 +328,7 @@ void WD1770::posit_event(int new_event_type) {
|
||||
}
|
||||
|
||||
if(header_[0] == track_) {
|
||||
LOG("Reached track " << std::dec << track_);
|
||||
LOG("Reached track " << std::dec << int(track_));
|
||||
update_status([] (Status &status) {
|
||||
status.crc_error = false;
|
||||
});
|
||||
@ -398,18 +397,18 @@ void WD1770::posit_event(int new_event_type) {
|
||||
READ_ID();
|
||||
|
||||
if(index_hole_count_ == 5) {
|
||||
LOG("Failed to find sector " << std::dec << sector_);
|
||||
LOG("Failed to find sector " << std::dec << int(sector_));
|
||||
update_status([] (Status &status) {
|
||||
status.record_not_found = true;
|
||||
});
|
||||
goto wait_for_command;
|
||||
}
|
||||
if(distance_into_section_ == 7) {
|
||||
LOG("Considering " << std::dec << header_[0] << "/" << header_[2]);
|
||||
LOG("Considering " << std::dec << int(header_[0]) << "/" << int(header_[2]));
|
||||
set_data_mode(DataMode::Scanning);
|
||||
if( header_[0] == track_ && header_[2] == sector_ &&
|
||||
(has_motor_on_line() || !(command_&0x02) || ((command_&0x08) >> 3) == header_[1])) {
|
||||
LOG("Found " << std::dec << header_[0] << "/" << header_[2]);
|
||||
LOG("Found " << std::dec << int(header_[0]) << "/" << int(header_[2]));
|
||||
if(get_crc_generator().get_value()) {
|
||||
LOG("CRC error; back to searching");
|
||||
update_status([] (Status &status) {
|
||||
@ -478,7 +477,7 @@ void WD1770::posit_event(int new_event_type) {
|
||||
sector_++;
|
||||
goto test_type2_write_protection;
|
||||
}
|
||||
LOG("Finished reading sector " << std::dec << sector_);
|
||||
LOG("Finished reading sector " << std::dec << int(sector_));
|
||||
goto wait_for_command;
|
||||
}
|
||||
goto type2_check_crc;
|
||||
@ -560,7 +559,7 @@ void WD1770::posit_event(int new_event_type) {
|
||||
sector_++;
|
||||
goto test_type2_write_protection;
|
||||
}
|
||||
LOG("Wrote sector " << std::dec << sector_);
|
||||
LOG("Wrote sector " << std::dec << int(sector_));
|
||||
goto wait_for_command;
|
||||
|
||||
|
||||
|
@ -34,7 +34,7 @@ class AudioGenerator: public ::Outputs::Speaker::SampleSource {
|
||||
private:
|
||||
Concurrency::DeferringAsyncTaskQueue &audio_queue_;
|
||||
|
||||
unsigned int counters_[4] = {2, 1, 0, 0}; // create a slight phase offset for the three channels
|
||||
unsigned int counters_[4] = {2, 1, 0, 0}; // create a slight phase offset for the three channels
|
||||
unsigned int shift_registers_[4] = {0, 0, 0, 0};
|
||||
uint8_t control_registers_[4] = {0, 0, 0, 0};
|
||||
int16_t volume_ = 0;
|
||||
@ -64,23 +64,12 @@ template <class BusHandler> class MOS6560 {
|
||||
public:
|
||||
MOS6560(BusHandler &bus_handler) :
|
||||
bus_handler_(bus_handler),
|
||||
crt_(new Outputs::CRT::CRT(65*4, 4, Outputs::CRT::DisplayType::NTSC60, 2)),
|
||||
crt_(65*4, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance8Phase8),
|
||||
audio_generator_(audio_queue_),
|
||||
speaker_(audio_generator_)
|
||||
{
|
||||
crt_->set_svideo_sampling_function(
|
||||
"vec2 svideo_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"vec2 yc = texture(texID, coordinate).rg / vec2(255.0);"
|
||||
|
||||
"float phaseOffset = 6.283185308 * 2.0 * yc.y;"
|
||||
"float chroma = step(yc.y, 0.75) * cos(phase + phaseOffset);"
|
||||
|
||||
"return vec2(yc.x, chroma);"
|
||||
"}");
|
||||
|
||||
// default to s-video output
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::SVideo);
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::SVideo);
|
||||
|
||||
// default to NTSC
|
||||
set_output_mode(OutputMode::NTSC);
|
||||
@ -94,7 +83,8 @@ template <class BusHandler> class MOS6560 {
|
||||
speaker_.set_input_rate(static_cast<float>(clock_rate / 4.0));
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() { return crt_.get(); }
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); }
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); }
|
||||
Outputs::Speaker::Speaker *get_speaker() { return &speaker_; }
|
||||
|
||||
void set_high_frequency_cutoff(float cutoff) {
|
||||
@ -117,12 +107,12 @@ template <class BusHandler> class MOS6560 {
|
||||
|
||||
// Chrominances are encoded such that 0-128 is a complete revolution of phase;
|
||||
// anything above 191 disables the colour subcarrier. Phase is relative to the
|
||||
// colour burst, so 0 is green.
|
||||
// colour burst, so 0 is green (NTSC) or blue/violet (PAL).
|
||||
const uint8_t pal_chrominances[16] = {
|
||||
255, 255, 37, 101,
|
||||
19, 86, 123, 59,
|
||||
46, 53, 37, 101,
|
||||
19, 86, 123, 59,
|
||||
255, 255, 90, 20,
|
||||
96, 42, 8, 72,
|
||||
84, 90, 90, 20,
|
||||
96, 42, 8, 72,
|
||||
};
|
||||
const uint8_t ntsc_chrominances[16] = {
|
||||
255, 255, 121, 57,
|
||||
@ -131,12 +121,12 @@ template <class BusHandler> class MOS6560 {
|
||||
103, 42, 80, 16,
|
||||
};
|
||||
const uint8_t *chrominances;
|
||||
Outputs::CRT::DisplayType display_type;
|
||||
Outputs::Display::Type display_type;
|
||||
|
||||
switch(output_mode) {
|
||||
default:
|
||||
chrominances = pal_chrominances;
|
||||
display_type = Outputs::CRT::DisplayType::PAL50;
|
||||
display_type = Outputs::Display::Type::PAL50;
|
||||
timing_.cycles_per_line = 71;
|
||||
timing_.line_counter_increment_offset = 4;
|
||||
timing_.final_line_increment_position = timing_.cycles_per_line - timing_.line_counter_increment_offset;
|
||||
@ -146,7 +136,7 @@ template <class BusHandler> class MOS6560 {
|
||||
|
||||
case OutputMode::NTSC:
|
||||
chrominances = ntsc_chrominances;
|
||||
display_type = Outputs::CRT::DisplayType::NTSC60;
|
||||
display_type = Outputs::Display::Type::NTSC60;
|
||||
timing_.cycles_per_line = 65;
|
||||
timing_.line_counter_increment_offset = 40;
|
||||
timing_.final_line_increment_position = 58;
|
||||
@ -155,14 +145,14 @@ template <class BusHandler> class MOS6560 {
|
||||
break;
|
||||
}
|
||||
|
||||
crt_->set_new_display_type(static_cast<unsigned int>(timing_.cycles_per_line*4), display_type);
|
||||
crt_.set_new_display_type(timing_.cycles_per_line*4, display_type);
|
||||
|
||||
switch(output_mode) {
|
||||
case OutputMode::PAL:
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.1f, 0.07f, 0.9f, 0.9f));
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.07f, 0.9f, 0.9f));
|
||||
break;
|
||||
case OutputMode::NTSC:
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.05f, 0.05f, 0.9f, 0.9f));
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.05f, 0.05f, 0.9f, 0.9f));
|
||||
break;
|
||||
}
|
||||
|
||||
@ -284,17 +274,17 @@ template <class BusHandler> class MOS6560 {
|
||||
// update the CRT
|
||||
if(this_state_ != output_state_) {
|
||||
switch(output_state_) {
|
||||
case State::Sync: crt_->output_sync(cycles_in_state_ * 4); break;
|
||||
case State::ColourBurst: crt_->output_colour_burst(cycles_in_state_ * 4, (is_odd_frame_ || is_odd_line_) ? 128 : 0); break;
|
||||
case State::Border: output_border(cycles_in_state_ * 4); break;
|
||||
case State::Pixels: crt_->output_data(cycles_in_state_ * 4); break;
|
||||
case State::Sync: crt_.output_sync(cycles_in_state_ * 4); break;
|
||||
case State::ColourBurst: crt_.output_colour_burst(cycles_in_state_ * 4, (is_odd_frame_ || is_odd_line_) ? 128 : 0); break;
|
||||
case State::Border: output_border(cycles_in_state_ * 4); break;
|
||||
case State::Pixels: crt_.output_data(cycles_in_state_ * 4); break;
|
||||
}
|
||||
output_state_ = this_state_;
|
||||
cycles_in_state_ = 0;
|
||||
|
||||
pixel_pointer = nullptr;
|
||||
if(output_state_ == State::Pixels) {
|
||||
pixel_pointer = reinterpret_cast<uint16_t *>(crt_->allocate_write_area(260));
|
||||
pixel_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(260));
|
||||
}
|
||||
}
|
||||
cycles_in_state_++;
|
||||
@ -438,7 +428,7 @@ template <class BusHandler> class MOS6560 {
|
||||
|
||||
private:
|
||||
BusHandler &bus_handler_;
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
AudioGenerator audio_generator_;
|
||||
@ -465,7 +455,7 @@ template <class BusHandler> class MOS6560 {
|
||||
enum State {
|
||||
Sync, ColourBurst, Border, Pixels
|
||||
} this_state_, output_state_;
|
||||
unsigned int cycles_in_state_;
|
||||
int cycles_in_state_;
|
||||
|
||||
// counters that cover an entire field
|
||||
int horizontal_counter_ = 0, vertical_counter_ = 0;
|
||||
@ -511,10 +501,10 @@ template <class BusHandler> class MOS6560 {
|
||||
uint16_t colours_[16];
|
||||
|
||||
uint16_t *pixel_pointer;
|
||||
void output_border(unsigned int number_of_cycles) {
|
||||
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_->allocate_write_area(1));
|
||||
void output_border(int number_of_cycles) {
|
||||
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
|
||||
if(colour_pointer) *colour_pointer = registers_.borderColour;
|
||||
crt_->output_level(number_of_cycles);
|
||||
crt_.output_level(number_of_cycles);
|
||||
}
|
||||
|
||||
struct {
|
||||
|
@ -50,7 +50,9 @@ struct ReverseTable {
|
||||
|
||||
Base::Base(Personality p) :
|
||||
personality_(p),
|
||||
crt_(new Outputs::CRT::CRT(CRTCyclesPerLine, CRTCyclesDivider, Outputs::CRT::DisplayType::NTSC60, 4)) {
|
||||
crt_(CRTCyclesPerLine, CRTCyclesDivider, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Red8Green8Blue8) {
|
||||
// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
|
||||
// into whether there's a more natural form. It feels unlikely given the diversity of chips modelled.
|
||||
|
||||
switch(p) {
|
||||
case TI::TMS::TMS9918A:
|
||||
@ -83,22 +85,15 @@ Base::Base(Personality p) :
|
||||
}
|
||||
|
||||
TMS9918::TMS9918(Personality p):
|
||||
Base(p) {
|
||||
// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
|
||||
// into whether there's a more natural form.
|
||||
crt_->set_rgb_sampling_function(
|
||||
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate)"
|
||||
"{"
|
||||
"return texture(sampler, coordinate).rgb / vec3(255.0);"
|
||||
"}");
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::RGB);
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.055f, 0.025f, 0.9f, 0.9f));
|
||||
Base(p) {
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::RGB);
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.07f, 0.0375f, 0.875f, 0.875f));
|
||||
|
||||
// The TMS remains in-phase with the NTSC colour clock; this is an empirical measurement
|
||||
// intended to produce the correct relationship between the hard edges between pixels and
|
||||
// the colour clock. It was eyeballed rather than derived from any knowledge of the TMS
|
||||
// colour burst generator because I've yet to find any.
|
||||
crt_->set_immediate_default_phase(0.85f);
|
||||
crt_.set_immediate_default_phase(0.85f);
|
||||
}
|
||||
|
||||
void TMS9918::set_tv_standard(TVStandard standard) {
|
||||
@ -107,18 +102,22 @@ void TMS9918::set_tv_standard(TVStandard standard) {
|
||||
case TVStandard::PAL:
|
||||
mode_timing_.total_lines = 313;
|
||||
mode_timing_.first_vsync_line = 253;
|
||||
crt_->set_new_display_type(CRTCyclesPerLine, Outputs::CRT::DisplayType::PAL50);
|
||||
crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::PAL50);
|
||||
break;
|
||||
default:
|
||||
mode_timing_.total_lines = 262;
|
||||
mode_timing_.first_vsync_line = 227;
|
||||
crt_->set_new_display_type(CRTCyclesPerLine, Outputs::CRT::DisplayType::NTSC60);
|
||||
crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::NTSC60);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *TMS9918::get_crt() {
|
||||
return crt_.get();
|
||||
void TMS9918::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void TMS9918::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
void Base::LineBuffer::reset_sprite_collection() {
|
||||
@ -367,7 +366,7 @@ void TMS9918::run_for(const HalfCycles cycles) {
|
||||
if(read_pointer_.row >= mode_timing_.first_vsync_line && read_pointer_.row < mode_timing_.first_vsync_line+4) {
|
||||
// Vertical sync.
|
||||
if(end_column == 342) {
|
||||
crt_->output_sync(342 * 4);
|
||||
crt_.output_sync(342 * 4);
|
||||
}
|
||||
} else {
|
||||
// Right border.
|
||||
@ -377,11 +376,11 @@ void TMS9918::run_for(const HalfCycles cycles) {
|
||||
// and 58+15 = 73. So output the lot when the
|
||||
// cursor passes 73.
|
||||
if(read_pointer_.column < 73 && end_column >= 73) {
|
||||
crt_->output_blank(8*4);
|
||||
crt_->output_sync(26*4);
|
||||
crt_->output_blank(2*4);
|
||||
crt_->output_default_colour_burst(14*4);
|
||||
crt_->output_blank(8*4);
|
||||
crt_.output_blank(8*4);
|
||||
crt_.output_sync(26*4);
|
||||
crt_.output_blank(2*4);
|
||||
crt_.output_default_colour_burst(14*4);
|
||||
crt_.output_blank(8*4);
|
||||
}
|
||||
|
||||
// Border colour for the rest of the line.
|
||||
@ -393,11 +392,11 @@ void TMS9918::run_for(const HalfCycles cycles) {
|
||||
|
||||
// Blanking region.
|
||||
if(read_pointer_.column < 73 && end_column >= 73) {
|
||||
crt_->output_blank(8*4);
|
||||
crt_->output_sync(26*4);
|
||||
crt_->output_blank(2*4);
|
||||
crt_->output_default_colour_burst(14*4);
|
||||
crt_->output_blank(8*4);
|
||||
crt_.output_blank(8*4);
|
||||
crt_.output_sync(26*4);
|
||||
crt_.output_blank(2*4);
|
||||
crt_.output_default_colour_burst(14*4);
|
||||
crt_.output_blank(8*4);
|
||||
}
|
||||
|
||||
// Left border.
|
||||
@ -410,7 +409,7 @@ void TMS9918::run_for(const HalfCycles cycles) {
|
||||
if(!asked_for_write_area_) {
|
||||
asked_for_write_area_ = true;
|
||||
pixel_origin_ = pixel_target_ = reinterpret_cast<uint32_t *>(
|
||||
crt_->allocate_write_area(static_cast<unsigned int>(line_buffer.next_border_column - line_buffer.first_pixel_output_column))
|
||||
crt_.begin_data(size_t(line_buffer.next_border_column - line_buffer.first_pixel_output_column))
|
||||
);
|
||||
}
|
||||
|
||||
@ -427,8 +426,8 @@ void TMS9918::run_for(const HalfCycles cycles) {
|
||||
}
|
||||
|
||||
if(end == line_buffer.next_border_column) {
|
||||
const unsigned int length = static_cast<unsigned int>(line_buffer.next_border_column - line_buffer.first_pixel_output_column);
|
||||
crt_->output_data(length * 4, length);
|
||||
const int length = line_buffer.next_border_column - line_buffer.first_pixel_output_column;
|
||||
crt_.output_data(length * 4, size_t(length));
|
||||
pixel_origin_ = pixel_target_ = nullptr;
|
||||
asked_for_write_area_ = false;
|
||||
}
|
||||
@ -470,16 +469,26 @@ void Base::output_border(int cycles, uint32_t cram_dot) {
|
||||
palette[background_colour_];
|
||||
|
||||
if(cram_dot) {
|
||||
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
|
||||
*pixel_target = border_colour | cram_dot;
|
||||
crt_->output_level(4);
|
||||
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_.begin_data(1));
|
||||
if(pixel_target) {
|
||||
*pixel_target = border_colour | cram_dot;
|
||||
}
|
||||
crt_.output_level(4);
|
||||
cycles -= 4;
|
||||
}
|
||||
|
||||
if(cycles) {
|
||||
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
|
||||
*pixel_target = border_colour;
|
||||
crt_->output_level(static_cast<unsigned int>(cycles));
|
||||
// If the border colour is 0, that can be communicated
|
||||
// more efficiently as an explicit blank.
|
||||
if(border_colour) {
|
||||
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_.begin_data(1));
|
||||
if(pixel_target) {
|
||||
*pixel_target = border_colour;
|
||||
}
|
||||
crt_.output_level(cycles);
|
||||
} else {
|
||||
crt_.output_blank(cycles);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -41,8 +41,11 @@ class TMS9918: public Base {
|
||||
/*! Sets the TV standard for this TMS, if that is hard-coded in hardware. */
|
||||
void set_tv_standard(TVStandard standard);
|
||||
|
||||
/*! Provides the CRT this TMS is connected to. */
|
||||
Outputs::CRT::CRT *get_crt();
|
||||
/*! Sets the scan target this TMS will post content to. */
|
||||
void set_scan_target(Outputs::Display::ScanTarget *);
|
||||
|
||||
/*! Sets the type of display the CRT will request. */
|
||||
void set_display_type(Outputs::Display::DisplayType);
|
||||
|
||||
/*!
|
||||
Runs the VCP for the number of cycles indicate; it is an implicit assumption of the code
|
||||
|
@ -78,8 +78,8 @@ class Base {
|
||||
|
||||
Base(Personality p);
|
||||
|
||||
Personality personality_;
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
const Personality personality_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
TVStandard tv_standard_ = TVStandard::NTSC;
|
||||
|
||||
// Holds the contents of this VDP's connected DRAM.
|
||||
@ -391,7 +391,7 @@ class Base {
|
||||
/*
|
||||
Fetching routines follow below; they obey the following rules:
|
||||
|
||||
1) input is a start position and an end position; they should perform the proper
|
||||
1) input is a start position and an end position; they should perform the proper
|
||||
operations for the period: start <= time < end.
|
||||
2) times are measured relative to a 172-cycles-per-line clock (so: they directly
|
||||
count access windows on the TMS and Master System).
|
||||
@ -411,7 +411,7 @@ class Base {
|
||||
|
||||
Provided for the benefit of the methods below:
|
||||
|
||||
* the function external_slot(), which will perform any pending VRAM read/write.
|
||||
* the function external_slot(), which will perform any pending VRAM read/write.
|
||||
* the macros slot(n) and external_slot(n) which can be used to schedule those things inside a
|
||||
switch(start)-based implementation.
|
||||
|
||||
@ -752,14 +752,14 @@ class Base {
|
||||
fetch_tile_name(column+1, row_info) \
|
||||
sprite_y_read(location+5, sprite); \
|
||||
slot(location+6): \
|
||||
slot(location+7): \
|
||||
slot(location+7): \
|
||||
slot(location+8): \
|
||||
fetch_tile(column+1) \
|
||||
fetch_tile_name(column+2, row_info) \
|
||||
sprite_y_read(location+9, sprite+2); \
|
||||
slot(location+10): \
|
||||
slot(location+11): \
|
||||
slot(location+12): \
|
||||
slot(location+12): \
|
||||
fetch_tile(column+2) \
|
||||
fetch_tile_name(column+3, row_info) \
|
||||
sprite_y_read(location+13, sprite+4); \
|
||||
|
@ -253,7 +253,7 @@ uint8_t AY38910::get_data_output() {
|
||||
const uint8_t mask = port_handler_ ? port_handler_->get_port_input(selected_register_ == 15) : 0xff;
|
||||
|
||||
switch(selected_register_) {
|
||||
default: break;
|
||||
default: break;
|
||||
case 14: return mask & ((registers_[0x7] & 0x40) ? registers_[14] : 0xff);
|
||||
case 15: return mask & ((registers_[0x7] & 0x80) ? registers_[15] : 0xff);
|
||||
}
|
||||
@ -280,7 +280,7 @@ void AY38910::update_bus() {
|
||||
// Assume no output, unless this turns out to be a read.
|
||||
data_output_ = 0xff;
|
||||
switch(control_state_) {
|
||||
default: break;
|
||||
default: break;
|
||||
case LatchAddress: select_register(data_input_); break;
|
||||
case Write: set_register_value(data_input_); break;
|
||||
case Read: data_output_ = get_register_value(); break;
|
||||
|
@ -54,7 +54,7 @@ class DiskII:
|
||||
void run_for(const Cycles cycles);
|
||||
|
||||
/*!
|
||||
Supplies the image of the state machine (i.e. P6) ROM,
|
||||
Supplies the image of the state machine (i.e. P6) ROM,
|
||||
which dictates how the Disk II will respond to input.
|
||||
|
||||
To reduce processing costs, some assumptions are made by
|
||||
|
@ -33,11 +33,12 @@ bool get_bool(const Configurable::SelectionSet &selections_by_option, const std:
|
||||
std::vector<std::unique_ptr<Configurable::Option>> Configurable::standard_options(Configurable::StandardOptions mask) {
|
||||
std::vector<std::unique_ptr<Configurable::Option>> options;
|
||||
if(mask & QuickLoadTape) options.emplace_back(new Configurable::BooleanOption("Load Tapes Quickly", "quickload"));
|
||||
if(mask & (DisplayRGB | DisplayComposite | DisplaySVideo)) {
|
||||
if(mask & (DisplayRGB | DisplayCompositeColour | DisplayCompositeMonochrome | DisplaySVideo)) {
|
||||
std::vector<std::string> display_options;
|
||||
if(mask & DisplayComposite) display_options.emplace_back("composite");
|
||||
if(mask & DisplaySVideo) display_options.emplace_back("svideo");
|
||||
if(mask & DisplayRGB) display_options.emplace_back("rgb");
|
||||
if(mask & DisplayCompositeColour) display_options.emplace_back("composite");
|
||||
if(mask & DisplayCompositeMonochrome) display_options.emplace_back("composite-mono");
|
||||
if(mask & DisplaySVideo) display_options.emplace_back("svideo");
|
||||
if(mask & DisplayRGB) display_options.emplace_back("rgb");
|
||||
options.emplace_back(new Configurable::ListOption("Display", "display", display_options));
|
||||
}
|
||||
if(mask & AutomaticTapeMotorControl) options.emplace_back(new Configurable::BooleanOption("Automatic Tape Motor Control", "autotapemotor"));
|
||||
@ -57,9 +58,10 @@ void Configurable::append_display_selection(Configurable::SelectionSet &selectio
|
||||
std::string string_selection;
|
||||
switch(selection) {
|
||||
default:
|
||||
case Display::RGB: string_selection = "rgb"; break;
|
||||
case Display::SVideo: string_selection = "svideo"; break;
|
||||
case Display::Composite: string_selection = "composite"; break;
|
||||
case Display::RGB: string_selection = "rgb"; break;
|
||||
case Display::SVideo: string_selection = "svideo"; break;
|
||||
case Display::CompositeMonochrome: string_selection = "composite-mono"; break;
|
||||
case Display::CompositeColour: string_selection = "composite"; break;
|
||||
}
|
||||
selection_set["display"] = std::unique_ptr<Configurable::Selection>(new Configurable::ListSelection(string_selection));
|
||||
}
|
||||
@ -85,7 +87,11 @@ bool Configurable::get_display(const Configurable::SelectionSet &selections_by_o
|
||||
return true;
|
||||
}
|
||||
if(display->value == "composite") {
|
||||
result = Configurable::Display::Composite;
|
||||
result = Configurable::Display::CompositeColour;
|
||||
return true;
|
||||
}
|
||||
if(display->value == "composite-mono") {
|
||||
result = Configurable::Display::CompositeMonochrome;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -16,15 +16,17 @@ namespace Configurable {
|
||||
enum StandardOptions {
|
||||
DisplayRGB = (1 << 0),
|
||||
DisplaySVideo = (1 << 1),
|
||||
DisplayComposite = (1 << 2),
|
||||
QuickLoadTape = (1 << 3),
|
||||
AutomaticTapeMotorControl = (1 << 4)
|
||||
DisplayCompositeColour = (1 << 2),
|
||||
DisplayCompositeMonochrome = (1 << 3),
|
||||
QuickLoadTape = (1 << 4),
|
||||
AutomaticTapeMotorControl = (1 << 5)
|
||||
};
|
||||
|
||||
enum class Display {
|
||||
RGB,
|
||||
SVideo,
|
||||
Composite
|
||||
CompositeColour,
|
||||
CompositeMonochrome
|
||||
};
|
||||
|
||||
/*!
|
||||
|
@ -185,7 +185,7 @@ class ConcreteJoystick: public Joystick {
|
||||
// convenient hard-coded values. TODO: make these a function of time.
|
||||
using Type = Joystick::Input::Type;
|
||||
switch(input.type) {
|
||||
default: did_set_input(input, is_active ? 1.0f : 0.0f); break;
|
||||
default: did_set_input(input, is_active ? 1.0f : 0.0f); break;
|
||||
case Type::Left: did_set_input(Input(Type::Horizontal, input.info.control.index), is_active ? 0.1f : 0.5f); break;
|
||||
case Type::Right: did_set_input(Input(Type::Horizontal, input.info.control.index), is_active ? 0.9f : 0.5f); break;
|
||||
case Type::Up: did_set_input(Input(Type::Vertical, input.info.control.index), is_active ? 0.1f : 0.5f); break;
|
||||
@ -203,7 +203,7 @@ class ConcreteJoystick: public Joystick {
|
||||
// Otherwise apply a threshold test to convert to digital, with remapping from axes to digital inputs.
|
||||
using Type = Joystick::Input::Type;
|
||||
switch(input.type) {
|
||||
default: did_set_input(input, value > 0.5f); break;
|
||||
default: did_set_input(input, value > 0.5f); break;
|
||||
case Type::Horizontal:
|
||||
did_set_input(Input(Type::Left, input.info.control.index), value <= 0.25f);
|
||||
did_set_input(Input(Type::Right, input.info.control.index), value >= 0.75f);
|
||||
|
@ -30,6 +30,7 @@
|
||||
|
||||
#include "../../ClockReceiver/ForceInline.hpp"
|
||||
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
|
||||
#include "../../Outputs/CRT/CRT.hpp"
|
||||
|
||||
#include "../../Analyser/Static/AmstradCPC/Target.hpp"
|
||||
|
||||
@ -40,7 +41,7 @@ namespace AmstradCPC {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayComposite)
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayCompositeColour)
|
||||
);
|
||||
}
|
||||
|
||||
@ -171,10 +172,14 @@ class AYDeferrer {
|
||||
class CRTCBusHandler {
|
||||
public:
|
||||
CRTCBusHandler(uint8_t *ram, InterruptTimer &interrupt_timer) :
|
||||
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red2Green2Blue2),
|
||||
ram_(ram),
|
||||
interrupt_timer_(interrupt_timer) {
|
||||
establish_palette_hits();
|
||||
build_mode_table();
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.1072f, 0.1f, 0.842105263157895f, 0.842105263157895f));
|
||||
crt_.set_brightness(3.0f / 2.0f); // As only the values 0, 1 and 2 will be used in each channel,
|
||||
// whereas Red2Green2Blue2 defines a range of 0-3.
|
||||
}
|
||||
|
||||
/*!
|
||||
@ -217,12 +222,12 @@ class CRTCBusHandler {
|
||||
if(cycles_) {
|
||||
switch(previous_output_mode_) {
|
||||
default:
|
||||
case OutputMode::Blank: crt_->output_blank(cycles_ * 16); break;
|
||||
case OutputMode::Sync: crt_->output_sync(cycles_ * 16); break;
|
||||
case OutputMode::Blank: crt_.output_blank(cycles_ * 16); break;
|
||||
case OutputMode::Sync: crt_.output_sync(cycles_ * 16); break;
|
||||
case OutputMode::Border: output_border(cycles_); break;
|
||||
case OutputMode::ColourBurst: crt_->output_default_colour_burst(cycles_ * 16); break;
|
||||
case OutputMode::ColourBurst: crt_.output_default_colour_burst(cycles_ * 16); break;
|
||||
case OutputMode::Pixels:
|
||||
crt_->output_data(cycles_ * 16, cycles_ * 16 / pixel_divider_);
|
||||
crt_.output_data(cycles_ * 16, size_t(cycles_ * 16 / pixel_divider_));
|
||||
pixel_pointer_ = pixel_data_ = nullptr;
|
||||
break;
|
||||
}
|
||||
@ -238,7 +243,7 @@ class CRTCBusHandler {
|
||||
// collect some more pixels if output is ongoing
|
||||
if(previous_output_mode_ == OutputMode::Pixels) {
|
||||
if(!pixel_data_) {
|
||||
pixel_pointer_ = pixel_data_ = crt_->allocate_write_area(320, 8);
|
||||
pixel_pointer_ = pixel_data_ = crt_.begin_data(320, 8);
|
||||
}
|
||||
if(pixel_pointer_) {
|
||||
// the CPC shuffles output lines as:
|
||||
@ -283,7 +288,7 @@ class CRTCBusHandler {
|
||||
// widths so it's not necessarily possible to predict the correct number in advance
|
||||
// and using the upper bound could lead to inefficient behaviour
|
||||
if(pixel_pointer_ == pixel_data_ + 320) {
|
||||
crt_->output_data(cycles_ * 16, cycles_ * 16 / pixel_divider_);
|
||||
crt_.output_data(cycles_ * 16, size_t(cycles_ * 16 / pixel_divider_));
|
||||
pixel_pointer_ = pixel_data_ = nullptr;
|
||||
cycles_ = 0;
|
||||
}
|
||||
@ -323,27 +328,14 @@ class CRTCBusHandler {
|
||||
was_hsync_ = state.hsync;
|
||||
}
|
||||
|
||||
/// Constructs an appropriate CRT for video output.
|
||||
void setup_output(float aspect_ratio) {
|
||||
crt_.reset(new Outputs::CRT::CRT(1024, 16, Outputs::CRT::DisplayType::PAL50, 1));
|
||||
crt_->set_rgb_sampling_function(
|
||||
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate)"
|
||||
"{"
|
||||
"uint sample = texture(texID, coordinate).r;"
|
||||
"return vec3(float((sample >> 4) & 3u), float((sample >> 2) & 3u), float(sample & 3u)) / 2.0;"
|
||||
"}");
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.1072f, 0.1f, 0.842105263157895f, 0.842105263157895f));
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::RGB);
|
||||
/// Sets the destination for output.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
/// Destructs the CRT.
|
||||
void close_output() {
|
||||
crt_.reset();
|
||||
}
|
||||
|
||||
/// @returns the CRT.
|
||||
Outputs::CRT::CRT *get_crt() {
|
||||
return crt_.get();
|
||||
/// Sets the type of display.
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
/*!
|
||||
@ -376,10 +368,10 @@ class CRTCBusHandler {
|
||||
}
|
||||
|
||||
private:
|
||||
void output_border(unsigned int length) {
|
||||
uint8_t *colour_pointer = static_cast<uint8_t *>(crt_->allocate_write_area(1));
|
||||
void output_border(int length) {
|
||||
uint8_t *colour_pointer = static_cast<uint8_t *>(crt_.begin_data(1));
|
||||
if(colour_pointer) *colour_pointer = border_;
|
||||
crt_->output_level(length * 16);
|
||||
crt_.output_level(length * 16);
|
||||
}
|
||||
|
||||
#define Mode0Colour0(c) ((c & 0x80) >> 7) | ((c & 0x20) >> 3) | ((c & 0x08) >> 2) | ((c & 0x02) << 2)
|
||||
@ -528,19 +520,19 @@ class CRTCBusHandler {
|
||||
Border,
|
||||
Pixels
|
||||
} previous_output_mode_ = OutputMode::Sync;
|
||||
unsigned int cycles_ = 0;
|
||||
int cycles_ = 0;
|
||||
|
||||
bool was_hsync_ = false, was_vsync_ = false;
|
||||
int cycles_into_hsync_ = 0;
|
||||
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
uint8_t *pixel_data_ = nullptr, *pixel_pointer_ = nullptr;
|
||||
|
||||
uint8_t *ram_ = nullptr;
|
||||
|
||||
int next_mode_ = 2, mode_ = 2;
|
||||
|
||||
unsigned int pixel_divider_ = 1;
|
||||
int pixel_divider_ = 1;
|
||||
uint16_t mode0_output_[256];
|
||||
uint32_t mode1_output_[256];
|
||||
uint64_t mode2_output_[256];
|
||||
@ -981,19 +973,14 @@ template <bool has_fdc> class ConcreteMachine:
|
||||
flush_fdc();
|
||||
}
|
||||
|
||||
/// A CRTMachine function; indicates that outputs should be created now.
|
||||
void setup_output(float aspect_ratio) override final {
|
||||
crtc_bus_handler_.setup_output(aspect_ratio);
|
||||
/// A CRTMachine function; sets the destination for video.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override final {
|
||||
crtc_bus_handler_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
/// A CRTMachine function; indicates that outputs should be destroyed now.
|
||||
void close_output() override final {
|
||||
crtc_bus_handler_.close_output();
|
||||
}
|
||||
|
||||
/// @returns the CRT in use.
|
||||
Outputs::CRT::CRT *get_crt() override final {
|
||||
return crtc_bus_handler_.get_crt();
|
||||
/// A CRTMachine function; sets the output display type.
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override final {
|
||||
crtc_bus_handler_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
/// @returns the speaker in use.
|
||||
@ -1192,7 +1179,7 @@ Machine *Machine::AmstradCPC(const Analyser::Static::Target *target, const ROMMa
|
||||
using Target = Analyser::Static::AmstradCPC::Target;
|
||||
const Target *const cpc_target = dynamic_cast<const Target *>(target);
|
||||
switch(cpc_target->model) {
|
||||
default: return new AmstradCPC::ConcreteMachine<true>(*cpc_target, rom_fetcher);
|
||||
default: return new AmstradCPC::ConcreteMachine<true>(*cpc_target, rom_fetcher);
|
||||
case Target::Model::CPC464: return new AmstradCPC::ConcreteMachine<false>(*cpc_target, rom_fetcher);
|
||||
}
|
||||
}
|
||||
|
@ -28,12 +28,19 @@
|
||||
|
||||
#include "../../Analyser/Static/AppleII/Target.hpp"
|
||||
#include "../../ClockReceiver/ForceInline.hpp"
|
||||
#include "../../Configurable/StandardOptions.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <memory>
|
||||
|
||||
namespace {
|
||||
namespace AppleII {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayCompositeMonochrome | Configurable::DisplayCompositeColour)
|
||||
);
|
||||
}
|
||||
|
||||
#define is_iie() ((model == Analyser::Static::AppleII::Target::Model::IIe) || (model == Analyser::Static::AppleII::Target::Model::EnhancedIIe))
|
||||
|
||||
@ -43,6 +50,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
public KeyboardMachine::MappedMachine,
|
||||
public CPU::MOS6502::BusHandler,
|
||||
public Inputs::Keyboard,
|
||||
public Configurable::Device,
|
||||
public AppleII::Machine,
|
||||
public Activity::Source,
|
||||
public JoystickMachine::Machine,
|
||||
@ -63,12 +71,12 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
|
||||
CPU::MOS6502::Processor<(model == Analyser::Static::AppleII::Target::Model::EnhancedIIe) ? CPU::MOS6502::Personality::PSynertek65C02 : CPU::MOS6502::Personality::P6502, ConcreteMachine, false> m6502_;
|
||||
VideoBusHandler video_bus_handler_;
|
||||
std::unique_ptr<AppleII::Video::Video<VideoBusHandler, is_iie()>> video_;
|
||||
AppleII::Video::Video<VideoBusHandler, is_iie()> video_;
|
||||
int cycles_into_current_line_ = 0;
|
||||
Cycles cycles_since_video_update_;
|
||||
|
||||
void update_video() {
|
||||
video_->run_for(cycles_since_video_update_.flush());
|
||||
video_.run_for(cycles_since_video_update_.flush());
|
||||
}
|
||||
static const int audio_divider = 8;
|
||||
void update_audio() {
|
||||
@ -84,7 +92,6 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
|
||||
uint8_t ram_[65536], aux_ram_[65536];
|
||||
std::vector<uint8_t> rom_;
|
||||
std::vector<uint8_t> character_rom_;
|
||||
uint8_t keyboard_input_ = 0x00;
|
||||
bool key_is_down_ = false;
|
||||
|
||||
@ -123,7 +130,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
void pick_card_messaging_group(AppleII::Card *card) {
|
||||
const bool is_every_cycle = is_every_cycle_card(card);
|
||||
std::vector<AppleII::Card *> &intended = is_every_cycle ? every_cycle_cards_ : just_in_time_cards_;
|
||||
std::vector<AppleII::Card *> &undesired = is_every_cycle ? just_in_time_cards_ : every_cycle_cards_;
|
||||
std::vector<AppleII::Card *> &undesired = is_every_cycle ? just_in_time_cards_ : every_cycle_cards_;
|
||||
|
||||
if(std::find(intended.begin(), intended.end(), card) != intended.end()) return;
|
||||
auto old_membership = std::find(undesired.begin(), undesired.end(), card);
|
||||
@ -154,7 +161,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
|
||||
On a IIe with auxiliary memory the following orthogonal changes also need to be factored in:
|
||||
|
||||
0000 to 0200 : can be paged independently of the rest of RAM, other than part of the language card area which pages with it
|
||||
0000 to 0200 : can be paged independently of the rest of RAM, other than part of the language card area which pages with it
|
||||
0400 to 0800 : the text screen, can be configured to write to auxiliary RAM
|
||||
2000 to 4000 : the graphics screen, which can be configured to write to auxiliary RAM
|
||||
c100 to d000 : can be used to page an additional 3.75kb of ROM, replacing the IO area
|
||||
@ -234,13 +241,13 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
read_auxiliary_memory_ ? &aux_ram_[0x0200] : &ram_[0x0200],
|
||||
write_auxiliary_memory_ ? &aux_ram_[0x0200] : &ram_[0x0200]);
|
||||
|
||||
if(video_ && video_->get_80_store()) {
|
||||
bool use_aux_ram = video_->get_page2();
|
||||
if(video_.get_80_store()) {
|
||||
bool use_aux_ram = video_.get_page2();
|
||||
page(0x04, 0x08,
|
||||
use_aux_ram ? &aux_ram_[0x0400] : &ram_[0x0400],
|
||||
use_aux_ram ? &aux_ram_[0x0400] : &ram_[0x0400]);
|
||||
|
||||
if(video_->get_high_resolution()) {
|
||||
if(video_.get_high_resolution()) {
|
||||
page(0x20, 0x40,
|
||||
use_aux_ram ? &aux_ram_[0x2000] : &ram_[0x2000],
|
||||
use_aux_ram ? &aux_ram_[0x2000] : &ram_[0x2000]);
|
||||
@ -308,15 +315,16 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::AppleII::Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
|
||||
m6502_(*this),
|
||||
video_bus_handler_(ram_, aux_ram_),
|
||||
audio_toggle_(audio_queue_),
|
||||
speaker_(audio_toggle_) {
|
||||
// The system's master clock rate.
|
||||
const float master_clock = 14318180.0;
|
||||
video_bus_handler_(ram_, aux_ram_),
|
||||
video_(video_bus_handler_),
|
||||
audio_toggle_(audio_queue_),
|
||||
speaker_(audio_toggle_) {
|
||||
// The system's master clock rate.
|
||||
const float master_clock = 14318180.0;
|
||||
|
||||
// This is where things get slightly convoluted: establish the machine as having a clock rate
|
||||
// equal to the number of cycles of work the 6502 will actually achieve. Which is less than
|
||||
// the master clock rate divided by 14 because every 65th cycle is extended by one seventh.
|
||||
// This is where things get slightly convoluted: establish the machine as having a clock rate
|
||||
// equal to the number of cycles of work the 6502 will actually achieve. Which is less than
|
||||
// the master clock rate divided by 14 because every 65th cycle is extended by one seventh.
|
||||
set_clock_rate((master_clock / 14.0) * 65.0 / (65.0 + 1.0 / 7.0));
|
||||
|
||||
// The speaker, however, should think it is clocked at half the master clock, per a general
|
||||
@ -333,8 +341,8 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
Memory::Fuzz(aux_ram_, sizeof(aux_ram_));
|
||||
|
||||
// Add a couple of joysticks.
|
||||
joysticks_.emplace_back(new Joystick);
|
||||
joysticks_.emplace_back(new Joystick);
|
||||
joysticks_.emplace_back(new Joystick);
|
||||
joysticks_.emplace_back(new Joystick);
|
||||
|
||||
// Pick the required ROMs.
|
||||
using Target = Analyser::Static::AppleII::Target;
|
||||
@ -371,7 +379,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
rom_.erase(rom_.begin(), rom_.end() - static_cast<off_t>(rom_size));
|
||||
}
|
||||
|
||||
character_rom_ = std::move(*roms[0]);
|
||||
video_.set_character_rom(*roms[0]);
|
||||
|
||||
if(target.disk_controller != Target::DiskController::None) {
|
||||
// Apple recommended slot 6 for the (first) Disk II.
|
||||
@ -396,17 +404,13 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
audio_queue_.flush();
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override {
|
||||
video_.reset(new AppleII::Video::Video<VideoBusHandler, is_iie()>(video_bus_handler_));
|
||||
video_->set_character_rom(character_rom_);
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
|
||||
video_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override {
|
||||
video_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override {
|
||||
return video_->get_crt();
|
||||
/// Sets the type of display.
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
video_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
@ -463,7 +467,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
// actor, but this will actually be the result most of the time so it's not
|
||||
// too terrible.
|
||||
if(isReadOperation(operation) && address != 0xc000) {
|
||||
*value = video_->get_last_read_value(cycles_since_video_update_);
|
||||
*value = video_.get_last_read_value(cycles_since_video_update_);
|
||||
}
|
||||
|
||||
switch(address) {
|
||||
@ -523,18 +527,18 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
case 0xc015: IIeSwitchRead(internal_CX_rom_); break;
|
||||
case 0xc016: IIeSwitchRead(alternative_zero_page_); break;
|
||||
case 0xc017: IIeSwitchRead(slot_C3_rom_); break;
|
||||
case 0xc018: IIeSwitchRead(video_->get_80_store()); break;
|
||||
case 0xc019: IIeSwitchRead(video_->get_is_vertical_blank(cycles_since_video_update_)); break;
|
||||
case 0xc01a: IIeSwitchRead(video_->get_text()); break;
|
||||
case 0xc01b: IIeSwitchRead(video_->get_mixed()); break;
|
||||
case 0xc01c: IIeSwitchRead(video_->get_page2()); break;
|
||||
case 0xc01d: IIeSwitchRead(video_->get_high_resolution()); break;
|
||||
case 0xc01e: IIeSwitchRead(video_->get_alternative_character_set()); break;
|
||||
case 0xc01f: IIeSwitchRead(video_->get_80_columns()); break;
|
||||
case 0xc018: IIeSwitchRead(video_.get_80_store()); break;
|
||||
case 0xc019: IIeSwitchRead(video_.get_is_vertical_blank(cycles_since_video_update_)); break;
|
||||
case 0xc01a: IIeSwitchRead(video_.get_text()); break;
|
||||
case 0xc01b: IIeSwitchRead(video_.get_mixed()); break;
|
||||
case 0xc01c: IIeSwitchRead(video_.get_page2()); break;
|
||||
case 0xc01d: IIeSwitchRead(video_.get_high_resolution()); break;
|
||||
case 0xc01e: IIeSwitchRead(video_.get_alternative_character_set()); break;
|
||||
case 0xc01f: IIeSwitchRead(video_.get_80_columns()); break;
|
||||
#undef IIeSwitchRead
|
||||
|
||||
case 0xc07f:
|
||||
if(is_iie()) *value = (*value & 0x7f) | (video_->get_annunciator_3() ? 0x80 : 0x00);
|
||||
if(is_iie()) *value = (*value & 0x7f) | (video_.get_annunciator_3() ? 0x80 : 0x00);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
@ -546,7 +550,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
case 0xc000:
|
||||
case 0xc001:
|
||||
update_video();
|
||||
video_->set_80_store(!!(address&1));
|
||||
video_.set_80_store(!!(address&1));
|
||||
set_main_paging();
|
||||
break;
|
||||
|
||||
@ -586,13 +590,13 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
case 0xc00c:
|
||||
case 0xc00d:
|
||||
update_video();
|
||||
video_->set_80_columns(!!(address&1));
|
||||
video_.set_80_columns(!!(address&1));
|
||||
break;
|
||||
|
||||
case 0xc00e:
|
||||
case 0xc00f:
|
||||
update_video();
|
||||
video_->set_alternative_character_set(!!(address&1));
|
||||
video_.set_alternative_character_set(!!(address&1));
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -615,20 +619,20 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
case 0xc050:
|
||||
case 0xc051:
|
||||
update_video();
|
||||
video_->set_text(!!(address&1));
|
||||
video_.set_text(!!(address&1));
|
||||
break;
|
||||
case 0xc052: update_video(); video_->set_mixed(false); break;
|
||||
case 0xc053: update_video(); video_->set_mixed(true); break;
|
||||
case 0xc052: update_video(); video_.set_mixed(false); break;
|
||||
case 0xc053: update_video(); video_.set_mixed(true); break;
|
||||
case 0xc054:
|
||||
case 0xc055:
|
||||
update_video();
|
||||
video_->set_page2(!!(address&1));
|
||||
video_.set_page2(!!(address&1));
|
||||
set_main_paging();
|
||||
break;
|
||||
case 0xc056:
|
||||
case 0xc057:
|
||||
update_video();
|
||||
video_->set_high_resolution(!!(address&1));
|
||||
video_.set_high_resolution(!!(address&1));
|
||||
set_main_paging();
|
||||
break;
|
||||
|
||||
@ -636,7 +640,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
case 0xc05f:
|
||||
if(is_iie()) {
|
||||
update_video();
|
||||
video_->set_annunciator_3(!(address&1));
|
||||
video_.set_annunciator_3(!(address&1));
|
||||
}
|
||||
break;
|
||||
|
||||
@ -812,6 +816,28 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
string_serialiser_.reset(new Utility::StringSerialiser(string, true));
|
||||
}
|
||||
|
||||
// MARK:: Configuration options.
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() override {
|
||||
return AppleII::get_options();
|
||||
}
|
||||
|
||||
void set_selections(const Configurable::SelectionSet &selections_by_option) override {
|
||||
Configurable::Display display;
|
||||
if(Configurable::get_display(selections_by_option, display)) {
|
||||
set_video_signal_configurable(display);
|
||||
}
|
||||
}
|
||||
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
Configurable::SelectionSet get_user_friendly_selections() override {
|
||||
return get_accurate_selections();
|
||||
}
|
||||
|
||||
// MARK: MediaTarget
|
||||
bool insert_media(const Analyser::Static::Media &media) override {
|
||||
if(!media.disks.empty()) {
|
||||
|
@ -18,6 +18,9 @@
|
||||
|
||||
namespace AppleII {
|
||||
|
||||
/// @returns The options available for an Apple II.
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options();
|
||||
|
||||
class Machine {
|
||||
public:
|
||||
virtual ~Machine();
|
||||
|
@ -39,6 +39,7 @@ namespace AppleII {
|
||||
*/
|
||||
class Card {
|
||||
public:
|
||||
virtual ~Card() {}
|
||||
enum Select: int {
|
||||
None = 0, // No select line is active
|
||||
IO = 1 << 0, // IO select is active
|
||||
|
@ -11,22 +11,19 @@
|
||||
using namespace AppleII::Video;
|
||||
|
||||
VideoBase::VideoBase(bool is_iie, std::function<void(Cycles)> &&target) :
|
||||
crt_(new Outputs::CRT::CRT(910, 1, Outputs::CRT::DisplayType::NTSC60, 1)),
|
||||
crt_(910, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance1),
|
||||
is_iie_(is_iie),
|
||||
deferrer_(std::move(target)) {
|
||||
|
||||
// Set a composite sampling function that assumes one byte per pixel input, and
|
||||
// accepts any non-zero value as being fully on, zero being fully off.
|
||||
crt_->set_composite_sampling_function(
|
||||
"float composite_sample(usampler2D sampler, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"return clamp(texture(sampler, coordinate).r, 0.0, 0.66);"
|
||||
"}");
|
||||
|
||||
// Show only the centre 75% of the TV frame.
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.118f, 0.122f, 0.77f, 0.77f));
|
||||
crt_->set_immediate_default_phase(0.0f);
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::CompositeColour);
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.118f, 0.122f, 0.77f, 0.77f));
|
||||
|
||||
// TODO: there seems to be some sort of bug whereby switching modes can cause
|
||||
// a signal discontinuity that knocks phase out of whack. So it isn't safe to
|
||||
// use default_colour_bursts elsewhere, though it otherwise should be. If/when
|
||||
// it is, start doing so and return to setting the immediate phase up here.
|
||||
// crt_.set_immediate_default_phase(0.5f);
|
||||
|
||||
character_zones[0].xor_mask = 0;
|
||||
character_zones[0].address_mask = 0x3f;
|
||||
@ -46,8 +43,12 @@ VideoBase::VideoBase(bool is_iie, std::function<void(Cycles)> &&target) :
|
||||
}
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *VideoBase::get_crt() {
|
||||
return crt_.get();
|
||||
void VideoBase::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void VideoBase::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -36,8 +36,11 @@ class VideoBase {
|
||||
public:
|
||||
VideoBase(bool is_iie, std::function<void(Cycles)> &&target);
|
||||
|
||||
/// @returns The CRT this video feed is feeding.
|
||||
Outputs::CRT::CRT *get_crt();
|
||||
/// Sets the scan target.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
|
||||
|
||||
/// Sets the type of output.
|
||||
void set_display_type(Outputs::Display::DisplayType);
|
||||
|
||||
/*
|
||||
Descriptions for the setters below are taken verbatim from
|
||||
@ -146,7 +149,7 @@ class VideoBase {
|
||||
void set_character_rom(const std::vector<uint8_t> &);
|
||||
|
||||
protected:
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
// State affecting output video stream generation.
|
||||
uint8_t *pixel_pointer_ = nullptr;
|
||||
@ -343,22 +346,23 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
while(int_cycles) {
|
||||
const int cycles_this_line = std::min(65 - column_, int_cycles);
|
||||
const int ending_column = column_ + cycles_this_line;
|
||||
const bool is_vertical_sync_line = (row_ >= first_sync_line && row_ < first_sync_line + 3);
|
||||
|
||||
if(row_ >= first_sync_line && row_ < first_sync_line + 3) {
|
||||
if(is_vertical_sync_line) {
|
||||
// In effect apply an XOR to HSYNC and VSYNC flags in order to include equalising
|
||||
// pulses (and hencce keep hsync approximately where it should be during vsync).
|
||||
const int blank_start = std::max(first_sync_column - sync_length, column_);
|
||||
const int blank_end = std::min(first_sync_column, ending_column);
|
||||
if(blank_end > blank_start) {
|
||||
if(blank_start > column_) {
|
||||
crt_->output_sync(static_cast<unsigned int>(blank_start - column_) * 14);
|
||||
crt_.output_sync((blank_start - column_) * 14);
|
||||
}
|
||||
crt_->output_blank(static_cast<unsigned int>(blank_end - blank_start) * 14);
|
||||
crt_.output_blank((blank_end - blank_start) * 14);
|
||||
if(blank_end < ending_column) {
|
||||
crt_->output_sync(static_cast<unsigned int>(ending_column - blank_end) * 14);
|
||||
crt_.output_sync((ending_column - blank_end) * 14);
|
||||
}
|
||||
} else {
|
||||
crt_->output_sync(static_cast<unsigned int>(cycles_this_line) * 14);
|
||||
crt_.output_sync(cycles_this_line * 14);
|
||||
}
|
||||
} else {
|
||||
const GraphicsMode line_mode = graphics_mode(row_);
|
||||
@ -394,7 +398,6 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
static_cast<size_t>(fetch_end - column_),
|
||||
&base_stream_[static_cast<size_t>(column_)],
|
||||
&auxiliary_stream_[static_cast<size_t>(column_)]);
|
||||
// TODO: should character modes be mapped to character pixel outputs here?
|
||||
}
|
||||
|
||||
if(row_ < 192) {
|
||||
@ -402,7 +405,7 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
// remain where they would naturally be but auxiliary
|
||||
// graphics appear to the left of that.
|
||||
if(!column_) {
|
||||
pixel_pointer_ = crt_->allocate_write_area(568);
|
||||
pixel_pointer_ = crt_.begin_data(568);
|
||||
graphics_carry_ = 0;
|
||||
was_double_ = true;
|
||||
}
|
||||
@ -413,7 +416,7 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
const int pixel_row = row_ & 7;
|
||||
|
||||
const bool is_double = Video::is_double_mode(line_mode);
|
||||
if(!is_double && was_double_) {
|
||||
if(!is_double && was_double_ && pixel_pointer_) {
|
||||
pixel_pointer_[pixel_start*14 + 0] =
|
||||
pixel_pointer_[pixel_start*14 + 1] =
|
||||
pixel_pointer_[pixel_start*14 + 2] =
|
||||
@ -424,88 +427,92 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
}
|
||||
was_double_ = is_double;
|
||||
|
||||
switch(line_mode) {
|
||||
case GraphicsMode::Text:
|
||||
output_text(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
static_cast<size_t>(pixel_row));
|
||||
break;
|
||||
if(pixel_pointer_) {
|
||||
switch(line_mode) {
|
||||
case GraphicsMode::Text:
|
||||
output_text(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
static_cast<size_t>(pixel_row));
|
||||
break;
|
||||
|
||||
case GraphicsMode::DoubleText:
|
||||
output_double_text(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
static_cast<size_t>(pixel_row));
|
||||
break;
|
||||
case GraphicsMode::DoubleText:
|
||||
output_double_text(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
static_cast<size_t>(pixel_row));
|
||||
break;
|
||||
|
||||
case GraphicsMode::LowRes:
|
||||
output_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
case GraphicsMode::LowRes:
|
||||
output_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
|
||||
case GraphicsMode::FatLowRes:
|
||||
output_fat_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
case GraphicsMode::FatLowRes:
|
||||
output_fat_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
|
||||
case GraphicsMode::DoubleLowRes:
|
||||
output_double_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
case GraphicsMode::DoubleLowRes:
|
||||
output_double_low_resolution(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start),
|
||||
pixel_start,
|
||||
pixel_row);
|
||||
break;
|
||||
|
||||
case GraphicsMode::HighRes:
|
||||
output_high_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start));
|
||||
break;
|
||||
case GraphicsMode::HighRes:
|
||||
output_high_resolution(
|
||||
&pixel_pointer_[pixel_start * 14 + 7],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start));
|
||||
break;
|
||||
|
||||
case GraphicsMode::DoubleHighRes:
|
||||
output_double_high_resolution(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start));
|
||||
break;
|
||||
case GraphicsMode::DoubleHighRes:
|
||||
output_double_high_resolution(
|
||||
&pixel_pointer_[pixel_start * 14],
|
||||
&base_stream_[static_cast<size_t>(pixel_start)],
|
||||
&auxiliary_stream_[static_cast<size_t>(pixel_start)],
|
||||
static_cast<size_t>(pixel_end - pixel_start));
|
||||
break;
|
||||
|
||||
default: break;
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
||||
if(pixel_end == 40) {
|
||||
if(was_double_) {
|
||||
pixel_pointer_[560] = pixel_pointer_[561] = pixel_pointer_[562] = pixel_pointer_[563] =
|
||||
pixel_pointer_[564] = pixel_pointer_[565] = pixel_pointer_[566] = pixel_pointer_[567] = 0;
|
||||
} else {
|
||||
if(line_mode == GraphicsMode::HighRes && base_stream_[39]&0x80)
|
||||
pixel_pointer_[567] = graphics_carry_;
|
||||
else
|
||||
pixel_pointer_[567] = 0;
|
||||
if(pixel_pointer_) {
|
||||
if(was_double_) {
|
||||
pixel_pointer_[560] = pixel_pointer_[561] = pixel_pointer_[562] = pixel_pointer_[563] =
|
||||
pixel_pointer_[564] = pixel_pointer_[565] = pixel_pointer_[566] = pixel_pointer_[567] = 0;
|
||||
} else {
|
||||
if(line_mode == GraphicsMode::HighRes && base_stream_[39]&0x80)
|
||||
pixel_pointer_[567] = graphics_carry_;
|
||||
else
|
||||
pixel_pointer_[567] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
crt_->output_data(568, 568);
|
||||
crt_.output_data(568, 568);
|
||||
pixel_pointer_ = nullptr;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(column_ < 40 && ending_column >= 40) {
|
||||
crt_->output_blank(568);
|
||||
crt_.output_blank(568);
|
||||
}
|
||||
}
|
||||
|
||||
@ -515,11 +522,11 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
*/
|
||||
|
||||
if(column_ < first_sync_column && ending_column >= first_sync_column) {
|
||||
crt_->output_blank((first_sync_column - 41)*14 - 1);
|
||||
crt_.output_blank(first_sync_column*14 - 568);
|
||||
}
|
||||
|
||||
if(column_ < (first_sync_column + sync_length) && ending_column >= (first_sync_column + sync_length)) {
|
||||
crt_->output_sync(sync_length*14);
|
||||
crt_.output_sync(sync_length*14);
|
||||
}
|
||||
|
||||
int second_blank_start;
|
||||
@ -527,7 +534,7 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
const int colour_burst_start = std::max(first_sync_column + sync_length + 1, column_);
|
||||
const int colour_burst_end = std::min(first_sync_column + sync_length + 4, ending_column);
|
||||
if(colour_burst_end > colour_burst_start) {
|
||||
crt_->output_colour_burst(static_cast<unsigned int>(colour_burst_end - colour_burst_start) * 14, 192);
|
||||
crt_.output_colour_burst((colour_burst_end - colour_burst_start) * 14, 0);
|
||||
}
|
||||
|
||||
second_blank_start = std::max(first_sync_column + sync_length + 3, column_);
|
||||
@ -536,7 +543,7 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
}
|
||||
|
||||
if(ending_column > second_blank_start) {
|
||||
crt_->output_blank(static_cast<unsigned int>(ending_column - second_blank_start) * 14);
|
||||
crt_.output_blank((ending_column - second_blank_start) * 14);
|
||||
}
|
||||
}
|
||||
|
||||
@ -550,8 +557,13 @@ template <class BusHandler, bool is_iie> class Video: public VideoBase {
|
||||
}
|
||||
|
||||
// Add an extra half a colour cycle of blank; this isn't counted in the run_for
|
||||
// count explicitly but is promised.
|
||||
crt_->output_blank(2);
|
||||
// count explicitly but is promised. If this is a vertical sync line, output sync
|
||||
// instead of blank, taking that to be the default level.
|
||||
if(is_vertical_sync_line) {
|
||||
crt_.output_sync(2);
|
||||
} else {
|
||||
crt_.output_blank(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -122,10 +122,6 @@ class ConcreteMachine:
|
||||
joysticks_.emplace_back(new Joystick(bus_.get(), 4, 1));
|
||||
}
|
||||
|
||||
~ConcreteMachine() {
|
||||
close_output();
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() override {
|
||||
return joysticks_;
|
||||
}
|
||||
@ -157,18 +153,10 @@ class ConcreteMachine:
|
||||
}
|
||||
|
||||
// to satisfy CRTMachine::Machine
|
||||
void setup_output(float aspect_ratio) override {
|
||||
bus_->tia_.reset(new TIA);
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
|
||||
bus_->speaker_.set_input_rate(static_cast<float>(get_clock_rate() / static_cast<double>(CPUTicksPerAudioTick)));
|
||||
bus_->tia_->get_crt()->set_delegate(this);
|
||||
}
|
||||
|
||||
void close_output() override {
|
||||
bus_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override {
|
||||
return bus_->tia_->get_crt();
|
||||
bus_->tia_.set_crt_delegate(this);
|
||||
bus_->tia_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
@ -181,15 +169,15 @@ class ConcreteMachine:
|
||||
}
|
||||
|
||||
// to satisfy Outputs::CRT::Delegate
|
||||
void crt_did_end_batch_of_frames(Outputs::CRT::CRT *crt, unsigned int number_of_frames, unsigned int number_of_unexpected_vertical_syncs) override {
|
||||
void crt_did_end_batch_of_frames(Outputs::CRT::CRT *crt, int number_of_frames, int number_of_unexpected_vertical_syncs) override {
|
||||
const std::size_t number_of_frame_records = sizeof(frame_records_) / sizeof(frame_records_[0]);
|
||||
frame_records_[frame_record_pointer_ % number_of_frame_records].number_of_frames = number_of_frames;
|
||||
frame_records_[frame_record_pointer_ % number_of_frame_records].number_of_unexpected_vertical_syncs = number_of_unexpected_vertical_syncs;
|
||||
frame_record_pointer_ ++;
|
||||
|
||||
if(frame_record_pointer_ >= 6) {
|
||||
unsigned int total_number_of_frames = 0;
|
||||
unsigned int total_number_of_unexpected_vertical_syncs = 0;
|
||||
int total_number_of_frames = 0;
|
||||
int total_number_of_unexpected_vertical_syncs = 0;
|
||||
for(std::size_t c = 0; c < number_of_frame_records; c++) {
|
||||
total_number_of_frames += frame_records_[c].number_of_frames;
|
||||
total_number_of_unexpected_vertical_syncs += frame_records_[c].number_of_unexpected_vertical_syncs;
|
||||
@ -205,10 +193,10 @@ class ConcreteMachine:
|
||||
double clock_rate;
|
||||
if(is_ntsc_) {
|
||||
clock_rate = NTSC_clock_rate;
|
||||
bus_->tia_->set_output_mode(TIA::OutputMode::NTSC);
|
||||
bus_->tia_.set_output_mode(TIA::OutputMode::NTSC);
|
||||
} else {
|
||||
clock_rate = PAL_clock_rate;
|
||||
bus_->tia_->set_output_mode(TIA::OutputMode::PAL);
|
||||
bus_->tia_.set_output_mode(TIA::OutputMode::PAL);
|
||||
}
|
||||
|
||||
bus_->speaker_.set_input_rate(static_cast<float>(clock_rate / static_cast<double>(CPUTicksPerAudioTick)));
|
||||
@ -228,10 +216,8 @@ class ConcreteMachine:
|
||||
|
||||
// output frame rate tracker
|
||||
struct FrameRecord {
|
||||
unsigned int number_of_frames;
|
||||
unsigned int number_of_unexpected_vertical_syncs;
|
||||
|
||||
FrameRecord() : number_of_frames(0), number_of_unexpected_vertical_syncs(0) {}
|
||||
int number_of_frames = 0;
|
||||
int number_of_unexpected_vertical_syncs = 0;
|
||||
} frame_records_[4];
|
||||
unsigned int frame_record_pointer_ = 0;
|
||||
bool is_ntsc_ = true;
|
||||
|
@ -36,7 +36,7 @@ class Bus {
|
||||
|
||||
// the RIOT, TIA and speaker
|
||||
PIA mos6532_;
|
||||
std::shared_ptr<TIA> tia_;
|
||||
TIA tia_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
TIASound tia_sound_;
|
||||
@ -55,7 +55,7 @@ class Bus {
|
||||
// video backlog accumulation counter
|
||||
Cycles cycles_since_video_update_;
|
||||
inline void update_video() {
|
||||
tia_->run_for(cycles_since_video_update_.flush());
|
||||
tia_.run_for(cycles_since_video_update_.flush());
|
||||
}
|
||||
|
||||
// RIOT backlog accumulation counter
|
||||
|
@ -68,7 +68,7 @@ template<class T> class Cartridge:
|
||||
// effect until the next read; therefore it isn't safe to assume that signalling ready immediately
|
||||
// skips to the end of the line.
|
||||
if(operation == CPU::MOS6502::BusOperation::Ready)
|
||||
cycles_run_for = tia_->get_cycles_until_horizontal_blank(cycles_since_video_update_);
|
||||
cycles_run_for = tia_.get_cycles_until_horizontal_blank(cycles_since_video_update_);
|
||||
|
||||
cycles_since_speaker_update_ += Cycles(cycles_run_for);
|
||||
cycles_since_video_update_ += Cycles(cycles_run_for);
|
||||
@ -101,7 +101,7 @@ template<class T> class Cartridge:
|
||||
case 0x05: // missile 1 / playfield / ball collisions
|
||||
case 0x06: // ball / playfield collisions
|
||||
case 0x07: // player / player, missile / missile collisions
|
||||
returnValue &= tia_->get_collision_flags(decodedAddress);
|
||||
returnValue &= tia_.get_collision_flags(decodedAddress);
|
||||
break;
|
||||
|
||||
case 0x08:
|
||||
@ -120,52 +120,52 @@ template<class T> class Cartridge:
|
||||
} else {
|
||||
const uint16_t decodedAddress = address & 0x3f;
|
||||
switch(decodedAddress) {
|
||||
case 0x00: update_video(); tia_->set_sync(*value & 0x02); break;
|
||||
case 0x01: update_video(); tia_->set_blank(*value & 0x02); break;
|
||||
case 0x00: update_video(); tia_.set_sync(*value & 0x02); break;
|
||||
case 0x01: update_video(); tia_.set_blank(*value & 0x02); break;
|
||||
|
||||
case 0x02: m6502_.set_ready_line(true); break;
|
||||
case 0x03:
|
||||
update_video();
|
||||
tia_->reset_horizontal_counter();
|
||||
tia_.reset_horizontal_counter();
|
||||
horizontal_counter_resets_++;
|
||||
break;
|
||||
// TODO: audio will now be out of synchronisation. Fix.
|
||||
|
||||
case 0x04:
|
||||
case 0x05: update_video(); tia_->set_player_number_and_size(decodedAddress - 0x04, *value); break;
|
||||
case 0x05: update_video(); tia_.set_player_number_and_size(decodedAddress - 0x04, *value); break;
|
||||
case 0x06:
|
||||
case 0x07: update_video(); tia_->set_player_missile_colour(decodedAddress - 0x06, *value); break;
|
||||
case 0x08: update_video(); tia_->set_playfield_ball_colour(*value); break;
|
||||
case 0x09: update_video(); tia_->set_background_colour(*value); break;
|
||||
case 0x0a: update_video(); tia_->set_playfield_control_and_ball_size(*value); break;
|
||||
case 0x07: update_video(); tia_.set_player_missile_colour(decodedAddress - 0x06, *value); break;
|
||||
case 0x08: update_video(); tia_.set_playfield_ball_colour(*value); break;
|
||||
case 0x09: update_video(); tia_.set_background_colour(*value); break;
|
||||
case 0x0a: update_video(); tia_.set_playfield_control_and_ball_size(*value); break;
|
||||
case 0x0b:
|
||||
case 0x0c: update_video(); tia_->set_player_reflected(decodedAddress - 0x0b, !((*value)&8)); break;
|
||||
case 0x0c: update_video(); tia_.set_player_reflected(decodedAddress - 0x0b, !((*value)&8)); break;
|
||||
case 0x0d:
|
||||
case 0x0e:
|
||||
case 0x0f: update_video(); tia_->set_playfield(decodedAddress - 0x0d, *value); break;
|
||||
case 0x0f: update_video(); tia_.set_playfield(decodedAddress - 0x0d, *value); break;
|
||||
case 0x10:
|
||||
case 0x11: update_video(); tia_->set_player_position(decodedAddress - 0x10); break;
|
||||
case 0x11: update_video(); tia_.set_player_position(decodedAddress - 0x10); break;
|
||||
case 0x12:
|
||||
case 0x13: update_video(); tia_->set_missile_position(decodedAddress - 0x12); break;
|
||||
case 0x14: update_video(); tia_->set_ball_position(); break;
|
||||
case 0x13: update_video(); tia_.set_missile_position(decodedAddress - 0x12); break;
|
||||
case 0x14: update_video(); tia_.set_ball_position(); break;
|
||||
case 0x1b:
|
||||
case 0x1c: update_video(); tia_->set_player_graphic(decodedAddress - 0x1b, *value); break;
|
||||
case 0x1c: update_video(); tia_.set_player_graphic(decodedAddress - 0x1b, *value); break;
|
||||
case 0x1d:
|
||||
case 0x1e: update_video(); tia_->set_missile_enable(decodedAddress - 0x1d, (*value)&2); break;
|
||||
case 0x1f: update_video(); tia_->set_ball_enable((*value)&2); break;
|
||||
case 0x1e: update_video(); tia_.set_missile_enable(decodedAddress - 0x1d, (*value)&2); break;
|
||||
case 0x1f: update_video(); tia_.set_ball_enable((*value)&2); break;
|
||||
case 0x20:
|
||||
case 0x21: update_video(); tia_->set_player_motion(decodedAddress - 0x20, *value); break;
|
||||
case 0x21: update_video(); tia_.set_player_motion(decodedAddress - 0x20, *value); break;
|
||||
case 0x22:
|
||||
case 0x23: update_video(); tia_->set_missile_motion(decodedAddress - 0x22, *value); break;
|
||||
case 0x24: update_video(); tia_->set_ball_motion(*value); break;
|
||||
case 0x23: update_video(); tia_.set_missile_motion(decodedAddress - 0x22, *value); break;
|
||||
case 0x24: update_video(); tia_.set_ball_motion(*value); break;
|
||||
case 0x25:
|
||||
case 0x26: tia_->set_player_delay(decodedAddress - 0x25, (*value)&1); break;
|
||||
case 0x27: tia_->set_ball_delay((*value)&1); break;
|
||||
case 0x26: tia_.set_player_delay(decodedAddress - 0x25, (*value)&1); break;
|
||||
case 0x27: tia_.set_ball_delay((*value)&1); break;
|
||||
case 0x28:
|
||||
case 0x29: update_video(); tia_->set_missile_position_to_player(decodedAddress - 0x28, (*value)&2); break;
|
||||
case 0x2a: update_video(); tia_->move(); break;
|
||||
case 0x2b: update_video(); tia_->clear_motion(); break;
|
||||
case 0x2c: update_video(); tia_->clear_collision_flags(); break;
|
||||
case 0x29: update_video(); tia_.set_missile_position_to_player(decodedAddress - 0x28, (*value)&2); break;
|
||||
case 0x2a: update_video(); tia_.move(); break;
|
||||
case 0x2b: update_video(); tia_.clear_motion(); break;
|
||||
case 0x2c: update_video(); tia_.clear_collision_flags(); break;
|
||||
|
||||
case 0x15:
|
||||
case 0x16: update_audio(); tia_sound_.set_control(decodedAddress - 0x15, *value); break;
|
||||
@ -192,7 +192,7 @@ template<class T> class Cartridge:
|
||||
}
|
||||
}
|
||||
|
||||
if(!tia_->get_cycles_until_horizontal_blank(cycles_since_video_update_)) m6502_.set_ready_line(false);
|
||||
if(!tia_.get_cycles_until_horizontal_blank(cycles_since_video_update_)) m6502_.set_ready_line(false);
|
||||
|
||||
return Cycles(cycles_run_for / 3);
|
||||
}
|
||||
|
@ -22,12 +22,10 @@ namespace {
|
||||
uint8_t reverse_table[256];
|
||||
}
|
||||
|
||||
TIA::TIA(bool create_crt) {
|
||||
if(create_crt) {
|
||||
crt_.reset(new Outputs::CRT::CRT(cycles_per_line * 2 - 1, 1, Outputs::CRT::DisplayType::NTSC60, 1));
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
set_output_mode(OutputMode::NTSC);
|
||||
}
|
||||
TIA::TIA():
|
||||
crt_(cycles_per_line * 2 - 1, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance8Phase8) {
|
||||
|
||||
set_output_mode(OutputMode::NTSC);
|
||||
|
||||
for(int c = 0; c < 256; c++) {
|
||||
reverse_table[c] = static_cast<uint8_t>(
|
||||
@ -113,51 +111,35 @@ TIA::TIA(bool create_crt) {
|
||||
}
|
||||
}
|
||||
|
||||
TIA::TIA() : TIA(true) {}
|
||||
|
||||
TIA::TIA(std::function<void(uint8_t *output_buffer)> line_end_function) : TIA(false) {
|
||||
line_end_function_ = line_end_function;
|
||||
}
|
||||
|
||||
void TIA::set_output_mode(Atari2600::TIA::OutputMode output_mode) {
|
||||
Outputs::CRT::DisplayType display_type;
|
||||
Outputs::Display::Type display_type;
|
||||
tv_standard_ = output_mode;
|
||||
|
||||
if(output_mode == OutputMode::NTSC) {
|
||||
crt_->set_svideo_sampling_function(
|
||||
"vec2 svideo_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"uint c = texture(texID, coordinate).r;"
|
||||
"uint y = c & 14u;"
|
||||
"uint iPhase = (c >> 4);"
|
||||
|
||||
"float phaseOffset = 6.283185308 * float(iPhase) / 13.0 + 5.074880441076923;"
|
||||
"return vec2(float(y) / 14.0, step(1, iPhase) * cos(phase - phaseOffset));"
|
||||
"}");
|
||||
display_type = Outputs::CRT::DisplayType::NTSC60;
|
||||
display_type = Outputs::Display::Type::NTSC60;
|
||||
} else {
|
||||
crt_->set_svideo_sampling_function(
|
||||
"vec2 svideo_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"uint c = texture(texID, coordinate).r;"
|
||||
"uint y = c & 14u;"
|
||||
"uint iPhase = (c >> 4);"
|
||||
|
||||
"uint direction = iPhase & 1u;"
|
||||
"float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);"
|
||||
"phaseOffset *= 6.283185308 / 12.0;"
|
||||
"return vec2(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset));"
|
||||
"}");
|
||||
display_type = Outputs::CRT::DisplayType::PAL50;
|
||||
display_type = Outputs::Display::Type::PAL50;
|
||||
}
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::CompositeColour);
|
||||
|
||||
// line number of cycles in a line of video is one less than twice the number of clock cycles per line; the Atari
|
||||
// outputs 228 colour cycles of material per line when an NTSC line 227.5. Since all clock numbers will be doubled
|
||||
// later, cycles_per_line * 2 - 1 is therefore the real length of an NTSC line, even though we're going to supply
|
||||
// cycles_per_line * 2 cycles of information from one sync edge to the next
|
||||
crt_->set_new_display_type(cycles_per_line * 2 - 1, display_type);
|
||||
crt_.set_new_display_type(cycles_per_line * 2 - 1, display_type);
|
||||
|
||||
/* speaker_->set_input_rate(static_cast<float>(get_clock_rate() / 38.0));*/
|
||||
// Update the luminance/phase mappings of the current palette.
|
||||
for(size_t c = 0; c < colour_palette_.size(); ++c) {
|
||||
set_colour_palette_entry(c, colour_palette_[c].original);
|
||||
}
|
||||
}
|
||||
|
||||
void TIA::set_crt_delegate(Outputs::CRT::Delegate *delegate) {
|
||||
crt_.set_delegate(delegate);
|
||||
}
|
||||
|
||||
void TIA::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void TIA::run_for(const Cycles cycles) {
|
||||
@ -198,7 +180,40 @@ int TIA::get_cycles_until_horizontal_blank(const Cycles from_offset) {
|
||||
}
|
||||
|
||||
void TIA::set_background_colour(uint8_t colour) {
|
||||
colour_palette_[static_cast<int>(ColourIndex::Background)] = colour;
|
||||
set_colour_palette_entry(size_t(ColourIndex::Background), colour);
|
||||
}
|
||||
|
||||
void TIA::set_colour_palette_entry(size_t index, uint8_t colour) {
|
||||
const uint8_t luminance = ((colour & 14) * 255) / 14;
|
||||
|
||||
uint8_t phase = colour >> 4;
|
||||
|
||||
if(tv_standard_ == OutputMode::NTSC) {
|
||||
if(!phase) phase = 255;
|
||||
else {
|
||||
phase = -(phase * 127) / 13;
|
||||
phase -= 102;
|
||||
phase &= 127;
|
||||
}
|
||||
} else {
|
||||
if(phase < 2 || phase > 13) {
|
||||
phase = 255;
|
||||
} else {
|
||||
const auto direction = phase & 1;
|
||||
|
||||
phase >>= 1;
|
||||
if(direction) phase ^= 0xf;
|
||||
phase = (phase + 6 + direction) & 0xf;
|
||||
|
||||
phase = (phase * 127) / 12;
|
||||
phase &= 127;
|
||||
}
|
||||
}
|
||||
|
||||
colour_palette_[index].original = colour;
|
||||
uint8_t *target = reinterpret_cast<uint8_t *>(&colour_palette_[index].luminance_phase);
|
||||
target[0] = luminance;
|
||||
target[1] = phase;
|
||||
}
|
||||
|
||||
void TIA::set_playfield(uint16_t offset, uint8_t value) {
|
||||
@ -238,7 +253,7 @@ void TIA::set_playfield_control_and_ball_size(uint8_t value) {
|
||||
}
|
||||
|
||||
void TIA::set_playfield_ball_colour(uint8_t colour) {
|
||||
colour_palette_[static_cast<int>(ColourIndex::PlayfieldBall)] = colour;
|
||||
set_colour_palette_entry(size_t(ColourIndex::PlayfieldBall), colour);
|
||||
}
|
||||
|
||||
void TIA::set_player_number_and_size(int player, uint8_t value) {
|
||||
@ -300,7 +315,7 @@ void TIA::set_player_motion(int player, uint8_t motion) {
|
||||
|
||||
void TIA::set_player_missile_colour(int player, uint8_t colour) {
|
||||
assert(player >= 0 && player < 2);
|
||||
colour_palette_[static_cast<int>(ColourIndex::PlayerMissile0) + player] = colour;
|
||||
set_colour_palette_entry(size_t(ColourIndex::PlayerMissile0) + size_t(player), colour);
|
||||
}
|
||||
|
||||
void TIA::set_missile_enable(int missile, bool enabled) {
|
||||
@ -382,7 +397,6 @@ void TIA::output_for_cycles(int number_of_cycles) {
|
||||
bool is_reset = output_cursor < 224 && horizontal_counter_ >= 224;
|
||||
|
||||
if(!output_cursor) {
|
||||
if(line_end_function_) line_end_function_(collision_buffer_);
|
||||
std::memset(collision_buffer_, 0, sizeof(collision_buffer_));
|
||||
|
||||
ball_.motion_time %= 228;
|
||||
@ -407,11 +421,11 @@ void TIA::output_for_cycles(int number_of_cycles) {
|
||||
#define Period(function, target) \
|
||||
if(output_cursor < target) { \
|
||||
if(horizontal_counter_ <= target) { \
|
||||
if(crt_) crt_->function(static_cast<unsigned int>((horizontal_counter_ - output_cursor) * 2)); \
|
||||
crt_.function((horizontal_counter_ - output_cursor) * 2); \
|
||||
horizontal_counter_ %= cycles_per_line; \
|
||||
return; \
|
||||
} else { \
|
||||
if(crt_) crt_->function(static_cast<unsigned int>((target - output_cursor) * 2)); \
|
||||
crt_.function((target - output_cursor) * 2); \
|
||||
output_cursor = target; \
|
||||
} \
|
||||
}
|
||||
@ -437,19 +451,17 @@ void TIA::output_for_cycles(int number_of_cycles) {
|
||||
if(output_mode_ & blank_flag) {
|
||||
if(pixel_target_) {
|
||||
output_pixels(pixels_start_location_, output_cursor);
|
||||
if(crt_) {
|
||||
const unsigned int data_length = static_cast<unsigned int>(output_cursor - pixels_start_location_);
|
||||
crt_->output_data(data_length * 2, data_length);
|
||||
}
|
||||
const int data_length = int(output_cursor - pixels_start_location_);
|
||||
crt_.output_data(data_length * 2, size_t(data_length));
|
||||
pixel_target_ = nullptr;
|
||||
pixels_start_location_ = 0;
|
||||
}
|
||||
int duration = std::min(228, horizontal_counter_) - output_cursor;
|
||||
if(crt_) crt_->output_blank(static_cast<unsigned int>(duration * 2));
|
||||
crt_.output_blank(duration * 2);
|
||||
} else {
|
||||
if(!pixels_start_location_ && crt_) {
|
||||
if(!pixels_start_location_) {
|
||||
pixels_start_location_ = output_cursor;
|
||||
pixel_target_ = crt_->allocate_write_area(160);
|
||||
pixel_target_ = reinterpret_cast<uint16_t *>(crt_.begin_data(160));
|
||||
}
|
||||
|
||||
// convert that into pixels
|
||||
@ -461,9 +473,9 @@ void TIA::output_for_cycles(int number_of_cycles) {
|
||||
output_cursor++;
|
||||
}
|
||||
|
||||
if(horizontal_counter_ == cycles_per_line && crt_) {
|
||||
const unsigned int data_length = static_cast<unsigned int>(output_cursor - pixels_start_location_);
|
||||
crt_->output_data(data_length * 2, data_length);
|
||||
if(horizontal_counter_ == cycles_per_line) {
|
||||
const int data_length = int(output_cursor - pixels_start_location_);
|
||||
crt_.output_data(data_length * 2, size_t(data_length));
|
||||
pixel_target_ = nullptr;
|
||||
pixels_start_location_ = 0;
|
||||
}
|
||||
@ -480,7 +492,7 @@ void TIA::output_pixels(int start, int end) {
|
||||
|
||||
if(start < first_pixel_cycle+8 && horizontal_blank_extend_) {
|
||||
while(start < end && start < first_pixel_cycle+8) {
|
||||
pixel_target_[target_position] = 0;
|
||||
pixel_target_[target_position] = 0xff00; // TODO: this assumes little endianness.
|
||||
start++;
|
||||
target_position++;
|
||||
}
|
||||
@ -489,13 +501,13 @@ void TIA::output_pixels(int start, int end) {
|
||||
if(playfield_priority_ == PlayfieldPriority::Score) {
|
||||
while(start < end && start < first_pixel_cycle + 80) {
|
||||
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[static_cast<int>(ColourMode::ScoreLeft)][buffer_value]];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[static_cast<int>(ColourMode::ScoreLeft)][buffer_value]].luminance_phase;
|
||||
start++;
|
||||
target_position++;
|
||||
}
|
||||
while(start < end) {
|
||||
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[static_cast<int>(ColourMode::ScoreRight)][buffer_value]];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[static_cast<int>(ColourMode::ScoreRight)][buffer_value]].luminance_phase;
|
||||
start++;
|
||||
target_position++;
|
||||
}
|
||||
@ -503,7 +515,7 @@ void TIA::output_pixels(int start, int end) {
|
||||
int table_index = static_cast<int>((playfield_priority_ == PlayfieldPriority::Standard) ? ColourMode::Standard : ColourMode::OnTop);
|
||||
while(start < end) {
|
||||
uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[table_index][buffer_value]];
|
||||
pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[table_index][buffer_value]].luminance_phase;
|
||||
start++;
|
||||
target_position++;
|
||||
}
|
||||
@ -518,20 +530,16 @@ void TIA::output_line() {
|
||||
break;
|
||||
case sync_flag:
|
||||
case sync_flag | blank_flag:
|
||||
if(crt_) {
|
||||
crt_->output_sync(32);
|
||||
crt_->output_blank(32);
|
||||
crt_->output_sync(392);
|
||||
}
|
||||
crt_.output_sync(32);
|
||||
crt_.output_blank(32);
|
||||
crt_.output_sync(392);
|
||||
horizontal_blank_extend_ = false;
|
||||
break;
|
||||
case blank_flag:
|
||||
if(crt_) {
|
||||
crt_->output_blank(32);
|
||||
crt_->output_sync(32);
|
||||
crt_->output_default_colour_burst(32);
|
||||
crt_->output_blank(360);
|
||||
}
|
||||
crt_.output_blank(32);
|
||||
crt_.output_sync(32);
|
||||
crt_.output_default_colour_burst(32);
|
||||
crt_.output_blank(360);
|
||||
horizontal_blank_extend_ = false;
|
||||
break;
|
||||
}
|
||||
|
@ -9,19 +9,19 @@
|
||||
#ifndef TIA_hpp
|
||||
#define TIA_hpp
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
|
||||
#include "../CRTMachine.hpp"
|
||||
#include "../../Outputs/CRT/CRT.hpp"
|
||||
#include "../../ClockReceiver/ClockReceiver.hpp"
|
||||
|
||||
namespace Atari2600 {
|
||||
|
||||
class TIA {
|
||||
public:
|
||||
TIA();
|
||||
// The supplied hook is for unit testing only; if instantiated with a line_end_function then it will
|
||||
// be called with the latest collision buffer upon the conclusion of each line. What's a collision
|
||||
// buffer? It's an implementation detail. If you're not writing a unit test, leave it alone.
|
||||
TIA(std::function<void(uint8_t *output_buffer)> line_end_function);
|
||||
|
||||
enum class OutputMode {
|
||||
NTSC, PAL
|
||||
@ -35,7 +35,7 @@ class TIA {
|
||||
|
||||
void set_sync(bool sync);
|
||||
void set_blank(bool blank);
|
||||
void reset_horizontal_counter(); // Reset is delayed by four cycles.
|
||||
void reset_horizontal_counter(); // Reset is delayed by four cycles.
|
||||
|
||||
/*!
|
||||
@returns the number of cycles between (current TIA time) + from_offset to the current or
|
||||
@ -73,12 +73,11 @@ class TIA {
|
||||
uint8_t get_collision_flags(int offset);
|
||||
void clear_collision_flags();
|
||||
|
||||
Outputs::CRT::CRT *get_crt() { return crt_.get(); }
|
||||
void set_crt_delegate(Outputs::CRT::Delegate *);
|
||||
void set_scan_target(Outputs::Display::ScanTarget *);
|
||||
|
||||
private:
|
||||
TIA(bool create_crt);
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
std::function<void(uint8_t *output_buffer)> line_end_function_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
// the master counter; counts from 0 to 228 with all visible pixels being in the final 160
|
||||
int horizontal_counter_ = 0;
|
||||
@ -107,7 +106,7 @@ class TIA {
|
||||
ScoreRight,
|
||||
OnTop
|
||||
};
|
||||
uint8_t colour_mask_by_mode_collision_flags_[4][64]; // maps from [ColourMode][CollisionMark] to colour_pallete_ entry
|
||||
uint8_t colour_mask_by_mode_collision_flags_[4][64]; // maps from [ColourMode][CollisionMark] to colour_palette_ entry
|
||||
|
||||
enum class ColourIndex {
|
||||
Background = 0,
|
||||
@ -115,7 +114,13 @@ class TIA {
|
||||
PlayerMissile0,
|
||||
PlayerMissile1
|
||||
};
|
||||
uint8_t colour_palette_[4];
|
||||
struct Colour {
|
||||
uint16_t luminance_phase;
|
||||
uint8_t original;
|
||||
};
|
||||
std::array<Colour, 4> colour_palette_;
|
||||
void set_colour_palette_entry(size_t index, uint8_t colour);
|
||||
OutputMode tv_standard_;
|
||||
|
||||
// playfield state
|
||||
int background_half_mask_ = 0;
|
||||
@ -302,7 +307,7 @@ class TIA {
|
||||
inline void output_line();
|
||||
|
||||
int pixels_start_location_ = 0;
|
||||
uint8_t *pixel_target_ = nullptr;
|
||||
uint16_t *pixel_target_ = nullptr;
|
||||
inline void output_pixels(int start, int end);
|
||||
};
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
#ifndef CRTMachine_hpp
|
||||
#define CRTMachine_hpp
|
||||
|
||||
#include "../Outputs/CRT/CRT.hpp"
|
||||
#include "../Outputs/ScanTarget.hpp"
|
||||
#include "../Outputs/Speaker/Speaker.hpp"
|
||||
#include "../ClockReceiver/ClockReceiver.hpp"
|
||||
#include "../ClockReceiver/TimeTypes.hpp"
|
||||
@ -19,6 +19,7 @@
|
||||
|
||||
#include <cmath>
|
||||
|
||||
// TODO: rename.
|
||||
namespace CRTMachine {
|
||||
|
||||
/*!
|
||||
@ -29,19 +30,12 @@ namespace CRTMachine {
|
||||
class Machine {
|
||||
public:
|
||||
/*!
|
||||
Causes the machine to set up its CRT and, if it has one, speaker. The caller guarantees
|
||||
that an OpenGL context is bound.
|
||||
*/
|
||||
virtual void setup_output(float aspect_ratio) = 0;
|
||||
Causes the machine to set up its display and, if it has one, speaker.
|
||||
|
||||
/*!
|
||||
Gives the machine a chance to release all owned resources. The caller guarantees that the
|
||||
OpenGL context is bound.
|
||||
The @c scan_target will receive all video output; the caller guarantees
|
||||
that it is non-null.
|
||||
*/
|
||||
virtual void close_output() = 0;
|
||||
|
||||
/// @returns The CRT this machine is drawing to. Should not be @c nullptr.
|
||||
virtual Outputs::CRT::CRT *get_crt() = 0;
|
||||
virtual void set_scan_target(Outputs::Display::ScanTarget *scan_target) = 0;
|
||||
|
||||
/// @returns The speaker that receives this machine's output, or @c nullptr if this machine is mute.
|
||||
virtual Outputs::Speaker::Speaker *get_speaker() = 0;
|
||||
@ -68,32 +62,33 @@ class Machine {
|
||||
}
|
||||
|
||||
/*!
|
||||
Maps from Configurable::Display to Outputs::CRT::VideoSignal and calls
|
||||
@c set_video_signal with the result.
|
||||
Maps from Configurable::Display to Outputs::Display::VideoSignal and calls
|
||||
@c set_display_type with the result.
|
||||
*/
|
||||
void set_video_signal_configurable(Configurable::Display type) {
|
||||
Outputs::CRT::VideoSignal signal;
|
||||
Outputs::Display::DisplayType display_type;
|
||||
switch(type) {
|
||||
default:
|
||||
case Configurable::Display::RGB:
|
||||
signal = Outputs::CRT::VideoSignal::RGB;
|
||||
display_type = Outputs::Display::DisplayType::RGB;
|
||||
break;
|
||||
case Configurable::Display::SVideo:
|
||||
signal = Outputs::CRT::VideoSignal::SVideo;
|
||||
display_type = Outputs::Display::DisplayType::SVideo;
|
||||
break;
|
||||
case Configurable::Display::Composite:
|
||||
signal = Outputs::CRT::VideoSignal::Composite;
|
||||
case Configurable::Display::CompositeColour:
|
||||
display_type = Outputs::Display::DisplayType::CompositeColour;
|
||||
break;
|
||||
case Configurable::Display::CompositeMonochrome:
|
||||
display_type = Outputs::Display::DisplayType::CompositeMonochrome;
|
||||
break;
|
||||
}
|
||||
set_video_signal(signal);
|
||||
set_display_type(display_type);
|
||||
}
|
||||
|
||||
/*!
|
||||
Forwards the video signal to the CRT returned by get_crt().
|
||||
Forwards the video signal to the target returned by get_crt().
|
||||
*/
|
||||
virtual void set_video_signal(Outputs::CRT::VideoSignal video_signal) {
|
||||
get_crt()->set_video_signal(video_signal);
|
||||
}
|
||||
virtual void set_display_type(Outputs::Display::DisplayType display_type) {}
|
||||
|
||||
private:
|
||||
double clock_rate_ = 1.0;
|
||||
|
@ -76,7 +76,7 @@ class Joystick: public Inputs::ConcreteJoystick {
|
||||
}
|
||||
break;
|
||||
|
||||
case Input::Up: if(is_active) direction_ &= ~0x01; else direction_ |= 0x01; break;
|
||||
case Input::Up: if(is_active) direction_ &= ~0x01; else direction_ |= 0x01; break;
|
||||
case Input::Right: if(is_active) direction_ &= ~0x02; else direction_ |= 0x02; break;
|
||||
case Input::Down: if(is_active) direction_ &= ~0x04; else direction_ |= 0x04; break;
|
||||
case Input::Left: if(is_active) direction_ &= ~0x08; else direction_ |= 0x08; break;
|
||||
@ -112,6 +112,7 @@ class ConcreteMachine:
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
|
||||
z80_(*this),
|
||||
vdp_(TI::TMS::TMS9918A),
|
||||
sn76489_(TI::SN76489::Personality::SN76489, audio_queue_, sn76489_divider),
|
||||
ay_(audio_queue_),
|
||||
mixer_(sn76489_, ay_),
|
||||
@ -159,6 +160,9 @@ class ConcreteMachine:
|
||||
is_megacart_ = false;
|
||||
}
|
||||
}
|
||||
|
||||
// ColecoVisions have composite output only.
|
||||
vdp_.set_display_type(Outputs::Display::DisplayType::CompositeColour);
|
||||
}
|
||||
|
||||
~ConcreteMachine() {
|
||||
@ -169,17 +173,12 @@ class ConcreteMachine:
|
||||
return joysticks_;
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override {
|
||||
vdp_.reset(new TI::TMS::TMS9918(TI::TMS::TMS9918A));
|
||||
get_crt()->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
|
||||
vdp_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override {
|
||||
vdp_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override {
|
||||
return vdp_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
vdp_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
@ -249,9 +248,9 @@ class ConcreteMachine:
|
||||
switch((address >> 5) & 7) {
|
||||
case 5:
|
||||
update_video();
|
||||
*cycle.value = vdp_->get_register(address);
|
||||
z80_.set_non_maskable_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
*cycle.value = vdp_.get_register(address);
|
||||
z80_.set_non_maskable_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
|
||||
case 7: {
|
||||
@ -293,9 +292,9 @@ class ConcreteMachine:
|
||||
|
||||
case 5:
|
||||
update_video();
|
||||
vdp_->set_register(address, *cycle.value);
|
||||
z80_.set_non_maskable_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
vdp_.set_register(address, *cycle.value);
|
||||
z80_.set_non_maskable_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
|
||||
case 7:
|
||||
@ -366,11 +365,11 @@ class ConcreteMachine:
|
||||
speaker_.run_for(audio_queue_, time_since_sn76489_update_.divide_cycles(Cycles(sn76489_divider)));
|
||||
}
|
||||
inline void update_video() {
|
||||
vdp_->run_for(time_since_vdp_update_.flush());
|
||||
vdp_.run_for(time_since_vdp_update_.flush());
|
||||
}
|
||||
|
||||
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
|
||||
std::unique_ptr<TI::TMS::TMS9918> vdp_;
|
||||
TI::TMS::TMS9918 vdp_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
TI::SN76489 sn76489_;
|
||||
|
@ -34,7 +34,7 @@ enum Key: uint16_t {
|
||||
Key1 = key(0, 0x01), Key3 = key(0, 0x02), Key5 = key(0, 0x04), Key7 = key(0, 0x08),
|
||||
Key9 = key(0, 0x10), KeyPlus = key(0, 0x20), KeyGBP = key(0, 0x40), KeyDelete = key(0, 0x80),
|
||||
|
||||
KeyRestore = 0xfffd
|
||||
KeyRestore = 0xfffd
|
||||
#undef key
|
||||
};
|
||||
|
||||
|
@ -50,7 +50,7 @@ enum ROMSlot {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplaySVideo | Configurable::DisplayComposite | Configurable::QuickLoadTape)
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplaySVideo | Configurable::DisplayCompositeColour | Configurable::QuickLoadTape)
|
||||
);
|
||||
}
|
||||
|
||||
@ -294,6 +294,7 @@ class ConcreteMachine:
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::Commodore::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
|
||||
m6502_(*this),
|
||||
mos6560_(mos6560_bus_handler_),
|
||||
user_port_via_port_handler_(new UserPortVIA),
|
||||
keyboard_via_port_handler_(new KeyboardVIA),
|
||||
serial_port_(new SerialPort),
|
||||
@ -377,13 +378,16 @@ class ConcreteMachine:
|
||||
if(target.region == Analyser::Static::Commodore::Target::Region::American || target.region == Analyser::Static::Commodore::Target::Region::Japanese) {
|
||||
// NTSC
|
||||
set_clock_rate(1022727);
|
||||
output_mode_ = MOS::MOS6560::OutputMode::NTSC;
|
||||
mos6560_.set_output_mode(MOS::MOS6560::OutputMode::NTSC);
|
||||
} else {
|
||||
// PAL
|
||||
set_clock_rate(1108404);
|
||||
output_mode_ = MOS::MOS6560::OutputMode::PAL;
|
||||
mos6560_.set_output_mode(MOS::MOS6560::OutputMode::PAL);
|
||||
}
|
||||
|
||||
mos6560_.set_high_frequency_cutoff(1600); // There is a 1.6Khz low-pass filter in the Vic-20.
|
||||
mos6560_.set_clock_rate(get_clock_rate());
|
||||
|
||||
// Initialise the memory maps as all pointing to nothing
|
||||
memset(processor_read_memory_map_, 0, sizeof(processor_read_memory_map_));
|
||||
memset(processor_write_memory_map_, 0, sizeof(processor_write_memory_map_));
|
||||
@ -501,7 +505,7 @@ class ConcreteMachine:
|
||||
if((address&0xfc00) == 0x9000) {
|
||||
if(!(address&0x100)) {
|
||||
update_video();
|
||||
result &= mos6560_->get_register(address);
|
||||
result &= mos6560_.get_register(address);
|
||||
}
|
||||
if(address & 0x10) result &= user_port_via_.get_register(address);
|
||||
if(address & 0x20) result &= keyboard_via_.get_register(address);
|
||||
@ -588,7 +592,7 @@ class ConcreteMachine:
|
||||
// The VIC is selected by bit 8 = 0
|
||||
if(!(address&0x100)) {
|
||||
update_video();
|
||||
mos6560_->set_register(address, *value);
|
||||
mos6560_.set_register(address, *value);
|
||||
}
|
||||
// The first VIA is selected by bit 4 = 1.
|
||||
if(address & 0x10) user_port_via_.set_register(address, *value);
|
||||
@ -613,30 +617,23 @@ class ConcreteMachine:
|
||||
|
||||
void flush() {
|
||||
update_video();
|
||||
mos6560_->flush();
|
||||
mos6560_.flush();
|
||||
}
|
||||
|
||||
void run_for(const Cycles cycles) override final {
|
||||
m6502_.run_for(cycles);
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override final {
|
||||
mos6560_.reset(new MOS::MOS6560::MOS6560<Vic6560BusHandler>(mos6560_bus_handler_));
|
||||
mos6560_->set_high_frequency_cutoff(1600); // There is a 1.6Khz low-pass filter in the Vic-20.
|
||||
mos6560_->set_output_mode(output_mode_);
|
||||
mos6560_->set_clock_rate(get_clock_rate());
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override final {
|
||||
mos6560_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override final {
|
||||
mos6560_ = nullptr;
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override final {
|
||||
return mos6560_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override final {
|
||||
mos6560_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override final {
|
||||
return mos6560_->get_speaker();
|
||||
return mos6560_.get_speaker();
|
||||
}
|
||||
|
||||
void mos6522_did_change_interrupt_status(void *mos6522) override final {
|
||||
@ -678,7 +675,7 @@ class ConcreteMachine:
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_quick_load_tape_selection(selection_set, false);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
@ -701,7 +698,7 @@ class ConcreteMachine:
|
||||
|
||||
private:
|
||||
void update_video() {
|
||||
mos6560_->run_for(cycles_since_mos6560_update_.flush());
|
||||
mos6560_.run_for(cycles_since_mos6560_update_.flush());
|
||||
}
|
||||
CPU::MOS6502::Processor<CPU::MOS6502::Personality::P6502, ConcreteMachine, false> m6502_;
|
||||
|
||||
@ -731,8 +728,7 @@ class ConcreteMachine:
|
||||
|
||||
Cycles cycles_since_mos6560_update_;
|
||||
Vic6560BusHandler mos6560_bus_handler_;
|
||||
MOS::MOS6560::OutputMode output_mode_;
|
||||
std::unique_ptr<MOS::MOS6560::MOS6560<Vic6560BusHandler>> mos6560_;
|
||||
MOS::MOS6560::MOS6560<Vic6560BusHandler> mos6560_;
|
||||
std::shared_ptr<UserPortVIA> user_port_via_port_handler_;
|
||||
std::shared_ptr<KeyboardVIA> keyboard_via_port_handler_;
|
||||
std::shared_ptr<SerialPort> serial_port_;
|
||||
|
@ -34,7 +34,7 @@ namespace Electron {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayComposite | Configurable::QuickLoadTape)
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayCompositeColour | Configurable::QuickLoadTape)
|
||||
);
|
||||
}
|
||||
|
||||
@ -51,6 +51,7 @@ class ConcreteMachine:
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::Acorn::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
|
||||
m6502_(*this),
|
||||
video_output_(ram_),
|
||||
sound_generator_(audio_queue_),
|
||||
speaker_(sound_generator_) {
|
||||
memset(key_states_, 0, sizeof(key_states_));
|
||||
@ -160,7 +161,7 @@ class ConcreteMachine:
|
||||
|
||||
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
|
||||
// it's also accessible only outside of the pixel regions
|
||||
cycles += video_output_->get_cycles_until_next_ram_availability(cycles_since_display_update_.as_int() + 1);
|
||||
cycles += video_output_.get_cycles_until_next_ram_availability(cycles_since_display_update_.as_int() + 1);
|
||||
} else {
|
||||
switch(address & 0xff0f) {
|
||||
case 0xfe00:
|
||||
@ -198,8 +199,8 @@ class ConcreteMachine:
|
||||
case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f:
|
||||
if(!isReadOperation(operation)) {
|
||||
update_display();
|
||||
video_output_->set_register(address, *value);
|
||||
video_access_range_ = video_output_->get_memory_access_range();
|
||||
video_output_.set_register(address, *value);
|
||||
video_access_range_ = video_output_.get_memory_access_range();
|
||||
queue_next_display_interrupt();
|
||||
}
|
||||
break;
|
||||
@ -373,16 +374,12 @@ class ConcreteMachine:
|
||||
audio_queue_.perform();
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override final {
|
||||
video_output_.reset(new VideoOutput(ram_));
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override final {
|
||||
video_output_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override final {
|
||||
video_output_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override final {
|
||||
return video_output_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
video_output_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override final {
|
||||
@ -436,7 +433,7 @@ class ConcreteMachine:
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_quick_load_tape_selection(selection_set, false);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
@ -508,12 +505,12 @@ class ConcreteMachine:
|
||||
// MARK: - Work deferral updates.
|
||||
inline void update_display() {
|
||||
if(cycles_since_display_update_ > 0) {
|
||||
video_output_->run_for(cycles_since_display_update_.flush());
|
||||
video_output_.run_for(cycles_since_display_update_.flush());
|
||||
}
|
||||
}
|
||||
|
||||
inline void queue_next_display_interrupt() {
|
||||
VideoOutput::Interrupt next_interrupt = video_output_->get_next_interrupt();
|
||||
VideoOutput::Interrupt next_interrupt = video_output_.get_next_interrupt();
|
||||
cycles_until_display_interrupt_ = next_interrupt.cycles;
|
||||
next_display_interrupt_ = next_interrupt.interrupt;
|
||||
}
|
||||
@ -583,7 +580,7 @@ class ConcreteMachine:
|
||||
int shift_restart_counter_ = 0;
|
||||
|
||||
// Outputs
|
||||
std::unique_ptr<VideoOutput> video_output_;
|
||||
VideoOutput video_output_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
SoundGenerator sound_generator_;
|
||||
|
@ -38,26 +38,26 @@ namespace {
|
||||
|
||||
// MARK: - Lifecycle
|
||||
|
||||
VideoOutput::VideoOutput(uint8_t *memory) : ram_(memory) {
|
||||
VideoOutput::VideoOutput(uint8_t *memory) :
|
||||
ram_(memory),
|
||||
crt_(crt_cycles_per_line,
|
||||
1,
|
||||
Outputs::Display::Type::PAL50,
|
||||
Outputs::Display::InputDataType::Red1Green1Blue1) {
|
||||
memset(palette_, 0xf, sizeof(palette_));
|
||||
setup_screen_map();
|
||||
setup_base_address();
|
||||
|
||||
crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
|
||||
crt_->set_rgb_sampling_function(
|
||||
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate)"
|
||||
"{"
|
||||
"uint texValue = texture(sampler, coordinate).r;"
|
||||
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
|
||||
"}");
|
||||
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
|
||||
crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
|
||||
crt_.set_visible_area(crt_.get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
|
||||
}
|
||||
|
||||
// MARK: - CRT getter
|
||||
void VideoOutput::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *VideoOutput::get_crt() {
|
||||
return crt_.get();
|
||||
void VideoOutput::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
// MARK: - Display update methods
|
||||
@ -87,20 +87,20 @@ void VideoOutput::start_pixel_line() {
|
||||
}
|
||||
|
||||
void VideoOutput::end_pixel_line() {
|
||||
if(current_output_target_) {
|
||||
const unsigned int data_length = static_cast<unsigned int>(current_output_target_ - initial_output_target_);
|
||||
crt_->output_data(data_length * current_output_divider_, data_length);
|
||||
const int data_length = int(current_output_target_ - initial_output_target_);
|
||||
if(data_length) {
|
||||
crt_.output_data(data_length * current_output_divider_, size_t(data_length));
|
||||
}
|
||||
current_character_row_++;
|
||||
}
|
||||
|
||||
void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
void VideoOutput::output_pixels(int number_of_cycles) {
|
||||
if(!number_of_cycles) return;
|
||||
|
||||
if(is_blank_line_) {
|
||||
crt_->output_blank(number_of_cycles * crt_cycles_multiplier);
|
||||
crt_.output_blank(number_of_cycles * crt_cycles_multiplier);
|
||||
} else {
|
||||
unsigned int divider = 1;
|
||||
int divider = 1;
|
||||
switch(screen_mode_) {
|
||||
case 0: case 3: divider = 1; break;
|
||||
case 1: case 4: case 6: divider = 2; break;
|
||||
@ -108,12 +108,12 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
}
|
||||
|
||||
if(!initial_output_target_ || divider != current_output_divider_) {
|
||||
if(current_output_target_) {
|
||||
const unsigned int data_length = static_cast<unsigned int>(current_output_target_ - initial_output_target_);
|
||||
crt_->output_data(data_length * current_output_divider_, data_length);
|
||||
const int data_length = int(current_output_target_ - initial_output_target_);
|
||||
if(data_length) {
|
||||
crt_.output_data(data_length * current_output_divider_, size_t(data_length));
|
||||
}
|
||||
current_output_divider_ = divider;
|
||||
initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_, 8 / divider);
|
||||
initial_output_target_ = current_output_target_ = crt_.begin_data(size_t(640 / current_output_divider_), size_t(8 / divider));
|
||||
}
|
||||
|
||||
#define get_pixel() \
|
||||
@ -132,7 +132,7 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
current_output_target_ += 8;
|
||||
current_pixel_column_++;
|
||||
}
|
||||
} else current_output_target_ += 4*number_of_cycles;
|
||||
} else current_output_target_ += 8*number_of_cycles;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
@ -143,7 +143,7 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
current_output_target_ += 4;
|
||||
current_pixel_column_++;
|
||||
}
|
||||
} else current_output_target_ += 2*number_of_cycles;
|
||||
} else current_output_target_ += 4*number_of_cycles;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
@ -154,7 +154,7 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
current_output_target_ += 2;
|
||||
current_pixel_column_++;
|
||||
}
|
||||
} else current_output_target_ += number_of_cycles;
|
||||
} else current_output_target_ += 2*number_of_cycles;
|
||||
break;
|
||||
|
||||
case 4: case 6:
|
||||
@ -185,7 +185,7 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
current_output_target_ += 4;
|
||||
current_pixel_column_++;
|
||||
}
|
||||
} else current_output_target_ += 2 * number_of_cycles;
|
||||
} else current_output_target_ += 4 * number_of_cycles;
|
||||
break;
|
||||
|
||||
case 5:
|
||||
@ -216,7 +216,7 @@ void VideoOutput::output_pixels(unsigned int number_of_cycles) {
|
||||
current_output_target_ += 2;
|
||||
current_pixel_column_++;
|
||||
}
|
||||
} else current_output_target_ += number_of_cycles;
|
||||
} else current_output_target_ += 2*number_of_cycles;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -230,16 +230,16 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
while(number_of_cycles) {
|
||||
int draw_action_length = screen_map_[screen_map_pointer_].length;
|
||||
int time_left_in_action = std::min(number_of_cycles, draw_action_length - cycles_into_draw_action_);
|
||||
if(screen_map_[screen_map_pointer_].type == DrawAction::Pixels) output_pixels(static_cast<unsigned int>(time_left_in_action));
|
||||
if(screen_map_[screen_map_pointer_].type == DrawAction::Pixels) output_pixels(time_left_in_action);
|
||||
|
||||
number_of_cycles -= time_left_in_action;
|
||||
cycles_into_draw_action_ += time_left_in_action;
|
||||
if(cycles_into_draw_action_ == draw_action_length) {
|
||||
switch(screen_map_[screen_map_pointer_].type) {
|
||||
case DrawAction::Sync: crt_->output_sync(static_cast<unsigned int>(draw_action_length * crt_cycles_multiplier)); break;
|
||||
case DrawAction::ColourBurst: crt_->output_default_colour_burst(static_cast<unsigned int>(draw_action_length * crt_cycles_multiplier)); break;
|
||||
case DrawAction::Blank: crt_->output_blank(static_cast<unsigned int>(draw_action_length * crt_cycles_multiplier)); break;
|
||||
case DrawAction::Pixels: end_pixel_line(); break;
|
||||
case DrawAction::Sync: crt_.output_sync(draw_action_length * crt_cycles_multiplier); break;
|
||||
case DrawAction::ColourBurst: crt_.output_default_colour_burst(draw_action_length * crt_cycles_multiplier); break;
|
||||
case DrawAction::Blank: crt_.output_blank(draw_action_length * crt_cycles_multiplier); break;
|
||||
case DrawAction::Pixels: end_pixel_line(); break;
|
||||
}
|
||||
screen_map_pointer_ = (screen_map_pointer_ + 1) % screen_map_.size();
|
||||
cycles_into_draw_action_ = 0;
|
||||
|
@ -13,6 +13,8 @@
|
||||
#include "../../ClockReceiver/ClockReceiver.hpp"
|
||||
#include "Interrupts.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace Electron {
|
||||
|
||||
/*!
|
||||
@ -25,17 +27,21 @@ namespace Electron {
|
||||
class VideoOutput {
|
||||
public:
|
||||
/*!
|
||||
Instantiates a VideoOutput that will read its pixels from @c memory. The pointer supplied
|
||||
should be to address 0 in the unexpanded Electron's memory map.
|
||||
Instantiates a VideoOutput that will read its pixels from @c memory.
|
||||
|
||||
The pointer supplied should be to address 0 in the unexpanded Electron's memory map.
|
||||
*/
|
||||
VideoOutput(uint8_t *memory);
|
||||
|
||||
/// @returns the CRT to which output is being painted.
|
||||
Outputs::CRT::CRT *get_crt();
|
||||
|
||||
/// Produces the next @c cycles of video output.
|
||||
void run_for(const Cycles cycles);
|
||||
|
||||
/// Sets the destination for output.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
|
||||
|
||||
/// Sets the type of output.
|
||||
void set_display_type(Outputs::Display::DisplayType);
|
||||
|
||||
/*!
|
||||
Writes @c value to the register at @c address. May mutate the results of @c get_next_interrupt,
|
||||
@c get_cycles_until_next_ram_availability and @c get_memory_access_range.
|
||||
@ -77,7 +83,7 @@ class VideoOutput {
|
||||
private:
|
||||
inline void start_pixel_line();
|
||||
inline void end_pixel_line();
|
||||
inline void output_pixels(unsigned int number_of_cycles);
|
||||
inline void output_pixels(int number_of_cycles);
|
||||
inline void setup_base_address();
|
||||
|
||||
int output_position_ = 0;
|
||||
@ -109,9 +115,8 @@ class VideoOutput {
|
||||
// CRT output
|
||||
uint8_t *current_output_target_ = nullptr;
|
||||
uint8_t *initial_output_target_ = nullptr;
|
||||
unsigned int current_output_divider_ = 1;
|
||||
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
int current_output_divider_ = 1;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
struct DrawAction {
|
||||
enum Type {
|
||||
|
@ -51,7 +51,7 @@ namespace MSX {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplaySVideo | Configurable::DisplayComposite | Configurable::QuickLoadTape)
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplaySVideo | Configurable::DisplayCompositeColour | Configurable::QuickLoadTape)
|
||||
);
|
||||
}
|
||||
|
||||
@ -148,6 +148,7 @@ class ConcreteMachine:
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::MSX::Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
|
||||
z80_(*this),
|
||||
vdp_(TI::TMS::TMS9918A),
|
||||
i8255_(i8255_port_handler_),
|
||||
ay_(audio_queue_),
|
||||
audio_toggle_(audio_queue_),
|
||||
@ -218,16 +219,12 @@ class ConcreteMachine:
|
||||
audio_queue_.flush();
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override {
|
||||
vdp_.reset(new TI::TMS::TMS9918(TI::TMS::TMS9918A));
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
|
||||
vdp_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override {
|
||||
vdp_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override {
|
||||
return vdp_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
vdp_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
@ -451,10 +448,10 @@ class ConcreteMachine:
|
||||
case CPU::Z80::PartialMachineCycle::Input:
|
||||
switch(address & 0xff) {
|
||||
case 0x98: case 0x99:
|
||||
vdp_->run_for(time_since_vdp_update_.flush());
|
||||
*cycle.value = vdp_->get_register(address);
|
||||
z80_.set_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
vdp_.run_for(time_since_vdp_update_.flush());
|
||||
*cycle.value = vdp_.get_register(address);
|
||||
z80_.set_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
|
||||
case 0xa2:
|
||||
@ -479,10 +476,10 @@ class ConcreteMachine:
|
||||
const int port = address & 0xff;
|
||||
switch(port) {
|
||||
case 0x98: case 0x99:
|
||||
vdp_->run_for(time_since_vdp_update_.flush());
|
||||
vdp_->set_register(address, *cycle.value);
|
||||
z80_.set_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
vdp_.run_for(time_since_vdp_update_.flush());
|
||||
vdp_.set_register(address, *cycle.value);
|
||||
z80_.set_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
|
||||
case 0xa0: case 0xa1:
|
||||
@ -555,7 +552,7 @@ class ConcreteMachine:
|
||||
}
|
||||
|
||||
void flush() {
|
||||
vdp_->run_for(time_since_vdp_update_.flush());
|
||||
vdp_.run_for(time_since_vdp_update_.flush());
|
||||
update_audio();
|
||||
audio_queue_.perform();
|
||||
}
|
||||
@ -603,7 +600,7 @@ class ConcreteMachine:
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_quick_load_tape_selection(selection_set, false);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
@ -652,7 +649,7 @@ class ConcreteMachine:
|
||||
case 2: {
|
||||
// TODO:
|
||||
// b6 caps lock LED
|
||||
// b5 audio output
|
||||
// b5 audio output
|
||||
|
||||
// b4: cassette motor relay
|
||||
tape_player_.set_motor_control(!(value & 0x10));
|
||||
@ -685,7 +682,7 @@ class ConcreteMachine:
|
||||
};
|
||||
|
||||
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
|
||||
std::unique_ptr<TI::TMS::TMS9918> vdp_;
|
||||
TI::TMS::TMS9918 vdp_;
|
||||
Intel::i8255::i8255<i8255PortHandler> i8255_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
|
@ -43,6 +43,8 @@ class MemoryMap {
|
||||
|
||||
class ROMSlotHandler {
|
||||
public:
|
||||
virtual ~ROMSlotHandler() {}
|
||||
|
||||
/*! Advances time by @c half_cycles. */
|
||||
virtual void run_for(HalfCycles half_cycles) {}
|
||||
|
||||
|
@ -36,7 +36,7 @@ namespace MasterSystem {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayComposite)
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayCompositeColour)
|
||||
);
|
||||
}
|
||||
|
||||
@ -57,7 +57,7 @@ class Joystick: public Inputs::ConcreteJoystick {
|
||||
switch(digital_input.type) {
|
||||
default: return;
|
||||
|
||||
case Input::Up: if(is_active) state_ &= ~0x01; else state_ |= 0x01; break;
|
||||
case Input::Up: if(is_active) state_ &= ~0x01; else state_ |= 0x01; break;
|
||||
case Input::Down: if(is_active) state_ &= ~0x02; else state_ |= 0x02; break;
|
||||
case Input::Left: if(is_active) state_ &= ~0x04; else state_ |= 0x04; break;
|
||||
case Input::Right: if(is_active) state_ &= ~0x08; else state_ |= 0x08; break;
|
||||
@ -94,6 +94,7 @@ class ConcreteMachine:
|
||||
region_(target.region),
|
||||
paging_scheme_(target.paging_scheme),
|
||||
z80_(*this),
|
||||
vdp_(tms_personality_for_model(target.model)),
|
||||
sn76489_(
|
||||
(target.model == Target::Model::SG1000) ? TI::SN76489::Personality::SN76489 : TI::SN76489::Personality::SMS,
|
||||
audio_queue_,
|
||||
@ -161,28 +162,17 @@ class ConcreteMachine:
|
||||
audio_queue_.flush();
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override {
|
||||
TI::TMS::Personality personality = TI::TMS::TMS9918A;
|
||||
switch(model_) {
|
||||
case Target::Model::SG1000: personality = TI::TMS::TMS9918A; break;
|
||||
case Target::Model::MasterSystem: personality = TI::TMS::SMSVDP; break;
|
||||
case Target::Model::MasterSystem2: personality = TI::TMS::SMS2VDP; break;
|
||||
}
|
||||
vdp_.reset(new TI::TMS::TMS9918(personality));
|
||||
vdp_->set_tv_standard(
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
|
||||
vdp_.set_tv_standard(
|
||||
(region_ == Target::Region::Europe) ?
|
||||
TI::TMS::TVStandard::PAL : TI::TMS::TVStandard::NTSC);
|
||||
get_crt()->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
time_until_debounce_ = vdp_.get_time_until_line(-1);
|
||||
|
||||
time_until_debounce_ = vdp_->get_time_until_line(-1);
|
||||
vdp_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override {
|
||||
vdp_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override {
|
||||
return vdp_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
vdp_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
@ -239,16 +229,16 @@ class ConcreteMachine:
|
||||
break;
|
||||
case 0x40:
|
||||
update_video();
|
||||
*cycle.value = vdp_->get_current_line();
|
||||
*cycle.value = vdp_.get_current_line();
|
||||
break;
|
||||
case 0x41:
|
||||
*cycle.value = vdp_->get_latched_horizontal_counter();
|
||||
*cycle.value = vdp_.get_latched_horizontal_counter();
|
||||
break;
|
||||
case 0x80: case 0x81:
|
||||
update_video();
|
||||
*cycle.value = vdp_->get_register(address);
|
||||
z80_.set_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
*cycle.value = vdp_.get_register(address);
|
||||
z80_.set_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
case 0xc0: {
|
||||
Joystick *const joypad1 = static_cast<Joystick *>(joysticks_[0].get());
|
||||
@ -290,7 +280,7 @@ class ConcreteMachine:
|
||||
// Latch if either TH has newly gone to 1.
|
||||
if((new_ths^previous_ths)&new_ths) {
|
||||
update_video();
|
||||
vdp_->latch_horizontal_counter();
|
||||
vdp_.latch_horizontal_counter();
|
||||
}
|
||||
} break;
|
||||
case 0x40: case 0x41:
|
||||
@ -299,9 +289,9 @@ class ConcreteMachine:
|
||||
break;
|
||||
case 0x80: case 0x81:
|
||||
update_video();
|
||||
vdp_->set_register(address, *cycle.value);
|
||||
z80_.set_interrupt_line(vdp_->get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_->get_time_until_interrupt();
|
||||
vdp_.set_register(address, *cycle.value);
|
||||
z80_.set_interrupt_line(vdp_.get_interrupt_line());
|
||||
time_until_interrupt_ = vdp_.get_time_until_interrupt();
|
||||
break;
|
||||
case 0xc0:
|
||||
LOG("TODO: [output] I/O port A/N; " << int(*cycle.value));
|
||||
@ -337,7 +327,7 @@ class ConcreteMachine:
|
||||
if(time_until_debounce_ <= HalfCycles(0)) {
|
||||
z80_.set_non_maskable_interrupt_line(pause_is_pressed_);
|
||||
update_video();
|
||||
time_until_debounce_ = vdp_->get_time_until_line(-1);
|
||||
time_until_debounce_ = vdp_.get_time_until_line(-1);
|
||||
}
|
||||
|
||||
return HalfCycles(0);
|
||||
@ -366,7 +356,6 @@ class ConcreteMachine:
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void reset_all_keys(Inputs::Keyboard *) override {
|
||||
}
|
||||
|
||||
@ -384,7 +373,7 @@ class ConcreteMachine:
|
||||
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
@ -395,6 +384,15 @@ class ConcreteMachine:
|
||||
}
|
||||
|
||||
private:
|
||||
static TI::TMS::Personality tms_personality_for_model(Analyser::Static::Sega::Target::Model model) {
|
||||
switch(model) {
|
||||
default:
|
||||
case Target::Model::SG1000: return TI::TMS::TMS9918A;
|
||||
case Target::Model::MasterSystem: return TI::TMS::SMSVDP;
|
||||
case Target::Model::MasterSystem2: return TI::TMS::SMS2VDP;
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_th_values() {
|
||||
// Quick not on TH inputs here: if either is setup as an output, then the
|
||||
// currently output level is returned. Otherwise they're fixed at 1.
|
||||
@ -410,7 +408,7 @@ class ConcreteMachine:
|
||||
speaker_.run_for(audio_queue_, time_since_sn76489_update_.divide_cycles(Cycles(sn76489_divider)));
|
||||
}
|
||||
inline void update_video() {
|
||||
vdp_->run_for(time_since_vdp_update_.flush());
|
||||
vdp_.run_for(time_since_vdp_update_.flush());
|
||||
}
|
||||
|
||||
using Target = Analyser::Static::Sega::Target;
|
||||
@ -418,7 +416,7 @@ class ConcreteMachine:
|
||||
Target::Region region_;
|
||||
Target::PagingScheme paging_scheme_;
|
||||
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
|
||||
std::unique_ptr<TI::TMS::TMS9918> vdp_;
|
||||
TI::TMS::TMS9918 vdp_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
TI::SN76489 sn76489_;
|
||||
|
@ -29,10 +29,10 @@ uint16_t KeyboardMapper::mapped_key_for_key(Inputs::Keyboard::Key key) {
|
||||
BIND(Hyphen, KeyMinus); BIND(Equals, KeyEquals); BIND(BackSlash, KeyBackSlash);
|
||||
BIND(OpenSquareBracket, KeyOpenSquare); BIND(CloseSquareBracket, KeyCloseSquare);
|
||||
|
||||
BIND(BackSpace, KeyDelete); BIND(Delete, KeyDelete);
|
||||
BIND(BackSpace, KeyDelete); BIND(Delete, KeyDelete);
|
||||
|
||||
BIND(Semicolon, KeySemiColon); BIND(Quote, KeyQuote);
|
||||
BIND(Comma, KeyComma); BIND(FullStop, KeyFullStop); BIND(ForwardSlash, KeyForwardSlash);
|
||||
BIND(Comma, KeyComma); BIND(FullStop, KeyFullStop); BIND(ForwardSlash, KeyForwardSlash);
|
||||
|
||||
BIND(Escape, KeyEscape); BIND(Tab, KeyEscape);
|
||||
BIND(CapsLock, KeyControl); BIND(LeftControl, KeyControl); BIND(RightControl, KeyControl);
|
||||
|
@ -46,7 +46,11 @@ enum ROM {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplayComposite | Configurable::QuickLoadTape)
|
||||
static_cast<Configurable::StandardOptions>(
|
||||
Configurable::DisplayRGB |
|
||||
Configurable::DisplayCompositeColour |
|
||||
Configurable::DisplayCompositeMonochrome |
|
||||
Configurable::QuickLoadTape)
|
||||
);
|
||||
}
|
||||
|
||||
@ -208,12 +212,14 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
public:
|
||||
ConcreteMachine(const Analyser::Static::Oric::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
|
||||
m6502_(*this),
|
||||
video_output_(ram_),
|
||||
ay8910_(audio_queue_),
|
||||
speaker_(ay8910_),
|
||||
via_port_handler_(audio_queue_, ay8910_, speaker_, tape_player_, keyboard_),
|
||||
via_(via_port_handler_),
|
||||
diskii_(2000000) {
|
||||
set_clock_rate(1000000);
|
||||
speaker_.set_input_rate(1000000.0f);
|
||||
via_port_handler_.set_interrupt_delegate(this);
|
||||
tape_player_.set_delegate(this);
|
||||
Memory::Fuzz(ram_, sizeof(ram_));
|
||||
@ -242,7 +248,7 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
}
|
||||
}
|
||||
|
||||
colour_rom_ = std::move(*roms[0]);
|
||||
video_output_.set_colour_rom(*roms[0]);
|
||||
rom_ = std::move(*roms[1]);
|
||||
|
||||
switch(disk_interface) {
|
||||
@ -263,7 +269,6 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
} break;
|
||||
}
|
||||
|
||||
colour_rom_.resize(128);
|
||||
rom_.resize(16384);
|
||||
paged_rom_ = rom_.data();
|
||||
|
||||
@ -456,20 +461,12 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
}
|
||||
|
||||
// to satisfy CRTMachine::Machine
|
||||
void setup_output(float aspect_ratio) override final {
|
||||
speaker_.set_input_rate(1000000.0f);
|
||||
|
||||
video_output_.reset(new VideoOutput(ram_));
|
||||
if(!colour_rom_.empty()) video_output_->set_colour_rom(colour_rom_);
|
||||
set_video_signal(Outputs::CRT::VideoSignal::RGB);
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override final {
|
||||
video_output_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void close_output() override final {
|
||||
video_output_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override final {
|
||||
return video_output_->get_crt();
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
video_output_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override final {
|
||||
@ -537,14 +534,10 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
}
|
||||
}
|
||||
|
||||
void set_video_signal(Outputs::CRT::VideoSignal video_signal) override {
|
||||
video_output_->set_video_signal(video_signal);
|
||||
}
|
||||
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_quick_load_tape_selection(selection_set, false);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
@ -578,11 +571,11 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
CPU::MOS6502::Processor<CPU::MOS6502::Personality::P6502, ConcreteMachine, false> m6502_;
|
||||
|
||||
// RAM and ROM
|
||||
std::vector<uint8_t> rom_, microdisc_rom_, colour_rom_;
|
||||
std::vector<uint8_t> rom_, microdisc_rom_;
|
||||
uint8_t ram_[65536];
|
||||
Cycles cycles_since_video_update_;
|
||||
inline void update_video() {
|
||||
video_output_->run_for(cycles_since_video_update_.flush());
|
||||
video_output_.run_for(cycles_since_video_update_.flush());
|
||||
}
|
||||
|
||||
// ROM bookkeeping
|
||||
@ -590,7 +583,7 @@ template <Analyser::Static::Oric::Target::DiskInterface disk_interface> class Co
|
||||
int keyboard_read_count_ = 0;
|
||||
|
||||
// Outputs
|
||||
std::unique_ptr<VideoOutput> video_output_;
|
||||
VideoOutput video_output_;
|
||||
|
||||
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
||||
GI::AY38910::AY38910 ay8910_;
|
||||
|
@ -8,6 +8,10 @@
|
||||
|
||||
#include "Video.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
//#define SUPPLY_COMPOSITE
|
||||
|
||||
using namespace Oric;
|
||||
|
||||
namespace {
|
||||
@ -21,54 +25,66 @@ namespace {
|
||||
|
||||
VideoOutput::VideoOutput(uint8_t *memory) :
|
||||
ram_(memory),
|
||||
crt_(new Outputs::CRT::CRT(64*6, 6, Outputs::CRT::DisplayType::PAL50, 2)),
|
||||
crt_(64*6, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red1Green1Blue1),
|
||||
v_sync_start_position_(PAL50VSyncStartPosition), v_sync_end_position_(PAL50VSyncEndPosition),
|
||||
counter_period_(PAL50Period) {
|
||||
crt_->set_rgb_sampling_function(
|
||||
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate)"
|
||||
"{"
|
||||
"uint texValue = texture(sampler, coordinate).r;"
|
||||
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
|
||||
"}");
|
||||
crt_->set_composite_sampling_function(
|
||||
"float composite_sample(usampler2D sampler, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"uint texValue = uint(dot(texture(sampler, coordinate).rg, uvec2(1, 256)));"
|
||||
"uint iPhase = uint((phase + 3.141592654 + 0.39269908175) * 2.0 / 3.141592654) & 3u;"
|
||||
"texValue = (texValue >> (4u*(3u - iPhase))) & 15u;"
|
||||
"return (float(texValue) - 4.0) / 20.0;"
|
||||
"}"
|
||||
);
|
||||
crt_->set_composite_function_type(Outputs::CRT::CRT::CompositeSourceType::DiscreteFourSamplesPerCycle, 0.0f);
|
||||
|
||||
set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
crt_->set_visible_area(crt_->get_rect_for_area(54, 224, 16 * 6, 40 * 6, 4.0f / 3.0f));
|
||||
crt_.set_visible_area(crt_.get_rect_for_area(54, 224, 16 * 6, 40 * 6, 4.0f / 3.0f));
|
||||
crt_.set_phase_linked_luminance_offset(-1.0f / 8.0f);
|
||||
data_type_ = Outputs::Display::InputDataType::Red1Green1Blue1;
|
||||
crt_.set_input_data_type(data_type_);
|
||||
}
|
||||
|
||||
void VideoOutput::set_video_signal(Outputs::CRT::VideoSignal video_signal) {
|
||||
video_signal_ = video_signal;
|
||||
crt_->set_video_signal(video_signal);
|
||||
void VideoOutput::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
|
||||
#ifdef SUPPLY_COMPOSITE
|
||||
const auto data_type =
|
||||
(display_type == Outputs::Display::DisplayType::RGB) ?
|
||||
Outputs::Display::InputDataType::Red1Green1Blue1 :
|
||||
Outputs::Display::InputDataType::PhaseLinkedLuminance8;
|
||||
#else
|
||||
const auto data_type = Outputs::Display::InputDataType::Red1Green1Blue1;
|
||||
#endif
|
||||
|
||||
if(data_type_ != data_type) {
|
||||
data_type_ = data_type;
|
||||
crt_.set_input_data_type(data_type_);
|
||||
}
|
||||
}
|
||||
|
||||
void VideoOutput::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void VideoOutput::set_colour_rom(const std::vector<uint8_t> &rom) {
|
||||
for(std::size_t c = 0; c < 8; c++) {
|
||||
std::size_t index = (c << 2);
|
||||
uint16_t rom_value = static_cast<uint16_t>((static_cast<uint16_t>(rom[index]) << 8) | static_cast<uint16_t>(rom[index+1]));
|
||||
rom_value = (rom_value & 0xff00) | ((rom_value >> 4)&0x000f) | ((rom_value << 4)&0x00f0);
|
||||
colour_forms_[c] = rom_value;
|
||||
}
|
||||
colour_forms_[c] = 0;
|
||||
|
||||
// check for big endianness and byte swap if required
|
||||
uint16_t test_value = 0x0001;
|
||||
if(*reinterpret_cast<uint8_t *>(&test_value) != 0x01) {
|
||||
for(std::size_t c = 0; c < 8; c++) {
|
||||
colour_forms_[c] = static_cast<uint16_t>((colour_forms_[c] >> 8) | (colour_forms_[c] << 8));
|
||||
uint8_t *const colour = reinterpret_cast<uint8_t *>(&colour_forms_[c]);
|
||||
const std::size_t index = (c << 2);
|
||||
|
||||
// Values in the ROM are encoded for indexing by two square waves
|
||||
// in quadrature, which means that they're indexed in the order
|
||||
// 0, 1, 3, 2.
|
||||
colour[0] = uint8_t((rom[index] & 0x0f) << 4);
|
||||
colour[1] = uint8_t(rom[index] & 0xf0);
|
||||
colour[2] = uint8_t(rom[index+1] & 0xf0);
|
||||
colour[3] = uint8_t((rom[index+1] & 0x0f) << 4);
|
||||
|
||||
// Extracting just the visible part of the stored range of values
|
||||
// means extracting the range 0x40 to 0xe0.
|
||||
for(int sub = 0; sub < 4; ++sub) {
|
||||
colour[sub] = ((colour[sub] - 0x40) * 255) / 0xa0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *VideoOutput::get_crt() {
|
||||
return crt_.get();
|
||||
// Check for big endianness and byte swap if required.
|
||||
// uint32_t test_value = 0x0001;
|
||||
// if(*reinterpret_cast<uint8_t *>(&test_value) != 0x01) {
|
||||
// for(std::size_t c = 0; c < 8; c++) {
|
||||
// colour_forms_[c] = static_cast<uint16_t>((colour_forms_[c] >> 8) | (colour_forms_[c] << 8));
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
void VideoOutput::run_for(const Cycles cycles) {
|
||||
@ -86,7 +102,7 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
if(counter_ >= v_sync_start_position_ && counter_ < v_sync_end_position_) {
|
||||
// this is a sync line
|
||||
cycles_run_for = v_sync_end_position_ - counter_;
|
||||
clamp(crt_->output_sync(static_cast<unsigned int>(v_sync_end_position_ - v_sync_start_position_) * 6));
|
||||
clamp(crt_.output_sync((v_sync_end_position_ - v_sync_start_position_) * 6));
|
||||
} else if(counter_ < 224*64 && h_counter < 40) {
|
||||
// this is a pixel line
|
||||
if(!h_counter) {
|
||||
@ -94,7 +110,12 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
paper_ = 0x0;
|
||||
use_alternative_character_set_ = use_double_height_characters_ = blink_text_ = false;
|
||||
set_character_set_base_address();
|
||||
pixel_target_ = reinterpret_cast<uint16_t *>(crt_->allocate_write_area(240));
|
||||
|
||||
if(data_type_ == Outputs::Display::InputDataType::Red1Green1Blue1) {
|
||||
rgb_pixel_target_ = reinterpret_cast<uint8_t *>(crt_.begin_data(240));
|
||||
} else {
|
||||
composite_pixel_target_ = reinterpret_cast<uint32_t *>(crt_.begin_data(240));
|
||||
}
|
||||
|
||||
if(!counter_) {
|
||||
frame_counter_++;
|
||||
@ -109,7 +130,7 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
int columns = cycles_run_for;
|
||||
int pixel_base_address = 0xa000 + (counter_ >> 6) * 40;
|
||||
int character_base_address = 0xbb80 + (counter_ >> 9) * 40;
|
||||
uint8_t blink_mask = (blink_text_ && (frame_counter_&32)) ? 0x00 : 0xff;
|
||||
const uint8_t blink_mask = (blink_text_ && (frame_counter_&32)) ? 0x00 : 0xff;
|
||||
|
||||
while(columns--) {
|
||||
uint8_t pixels, control_byte;
|
||||
@ -119,29 +140,36 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
} else {
|
||||
int address = character_base_address + h_counter;
|
||||
control_byte = ram_[address];
|
||||
int line = use_double_height_characters_ ? ((counter_ >> 7) & 7) : ((counter_ >> 6) & 7);
|
||||
const int line = use_double_height_characters_ ? ((counter_ >> 7) & 7) : ((counter_ >> 6) & 7);
|
||||
pixels = ram_[character_set_base_address_ + (control_byte&127) * 8 + line];
|
||||
}
|
||||
|
||||
uint8_t inverse_mask = (control_byte & 0x80) ? 0x7 : 0x0;
|
||||
const uint8_t inverse_mask = (control_byte & 0x80) ? 0x7 : 0x0;
|
||||
pixels &= blink_mask;
|
||||
|
||||
if(control_byte & 0x60) {
|
||||
if(pixel_target_) {
|
||||
uint16_t colours[2];
|
||||
if(video_signal_ == Outputs::CRT::VideoSignal::RGB) {
|
||||
colours[0] = static_cast<uint8_t>(paper_ ^ inverse_mask);
|
||||
colours[1] = static_cast<uint8_t>(ink_ ^ inverse_mask);
|
||||
} else {
|
||||
colours[0] = colour_forms_[paper_ ^ inverse_mask];
|
||||
colours[1] = colour_forms_[ink_ ^ inverse_mask];
|
||||
}
|
||||
pixel_target_[0] = colours[(pixels >> 5)&1];
|
||||
pixel_target_[1] = colours[(pixels >> 4)&1];
|
||||
pixel_target_[2] = colours[(pixels >> 3)&1];
|
||||
pixel_target_[3] = colours[(pixels >> 2)&1];
|
||||
pixel_target_[4] = colours[(pixels >> 1)&1];
|
||||
pixel_target_[5] = colours[(pixels >> 0)&1];
|
||||
if(data_type_ == Outputs::Display::InputDataType::Red1Green1Blue1 && rgb_pixel_target_) {
|
||||
const uint8_t colours[2] = {
|
||||
uint8_t(paper_ ^ inverse_mask),
|
||||
uint8_t(ink_ ^ inverse_mask)
|
||||
};
|
||||
rgb_pixel_target_[0] = colours[(pixels >> 5)&1];
|
||||
rgb_pixel_target_[1] = colours[(pixels >> 4)&1];
|
||||
rgb_pixel_target_[2] = colours[(pixels >> 3)&1];
|
||||
rgb_pixel_target_[3] = colours[(pixels >> 2)&1];
|
||||
rgb_pixel_target_[4] = colours[(pixels >> 1)&1];
|
||||
rgb_pixel_target_[5] = colours[(pixels >> 0)&1];
|
||||
} else if(composite_pixel_target_) {
|
||||
const uint32_t colours[2] = {
|
||||
colour_forms_[paper_ ^ inverse_mask],
|
||||
colour_forms_[ink_ ^ inverse_mask]
|
||||
};
|
||||
composite_pixel_target_[0] = colours[(pixels >> 5)&1];
|
||||
composite_pixel_target_[1] = colours[(pixels >> 4)&1];
|
||||
composite_pixel_target_[2] = colours[(pixels >> 3)&1];
|
||||
composite_pixel_target_[3] = colours[(pixels >> 2)&1];
|
||||
composite_pixel_target_[4] = colours[(pixels >> 1)&1];
|
||||
composite_pixel_target_[5] = colours[(pixels >> 0)&1];
|
||||
}
|
||||
} else {
|
||||
switch(control_byte & 0x1f) {
|
||||
@ -179,19 +207,26 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
|
||||
default: break;
|
||||
}
|
||||
if(pixel_target_) {
|
||||
pixel_target_[0] = pixel_target_[1] =
|
||||
pixel_target_[2] = pixel_target_[3] =
|
||||
pixel_target_[4] = pixel_target_[5] =
|
||||
(video_signal_ == Outputs::CRT::VideoSignal::RGB) ? paper_ ^ inverse_mask : colour_forms_[paper_ ^ inverse_mask];
|
||||
|
||||
if(data_type_ == Outputs::Display::InputDataType::Red1Green1Blue1 && rgb_pixel_target_) {
|
||||
rgb_pixel_target_[0] = rgb_pixel_target_[1] =
|
||||
rgb_pixel_target_[2] = rgb_pixel_target_[3] =
|
||||
rgb_pixel_target_[4] = rgb_pixel_target_[5] = paper_ ^ inverse_mask;
|
||||
} else if(composite_pixel_target_) {
|
||||
composite_pixel_target_[0] = composite_pixel_target_[1] =
|
||||
composite_pixel_target_[2] = composite_pixel_target_[3] =
|
||||
composite_pixel_target_[4] = composite_pixel_target_[5] = colour_forms_[paper_ ^ inverse_mask];
|
||||
}
|
||||
}
|
||||
if(pixel_target_) pixel_target_ += 6;
|
||||
if(rgb_pixel_target_) rgb_pixel_target_ += 6;
|
||||
if(composite_pixel_target_) composite_pixel_target_ += 6;
|
||||
h_counter++;
|
||||
}
|
||||
|
||||
if(h_counter == 40) {
|
||||
crt_->output_data(40 * 6);
|
||||
crt_.output_data(40 * 6);
|
||||
rgb_pixel_target_ = nullptr;
|
||||
composite_pixel_target_ = nullptr;
|
||||
}
|
||||
} else {
|
||||
// this is a blank line (or the equivalent part of a pixel line)
|
||||
@ -199,17 +234,17 @@ void VideoOutput::run_for(const Cycles cycles) {
|
||||
cycles_run_for = 48 - h_counter;
|
||||
clamp(
|
||||
int period = (counter_ < 224*64) ? 8 : 48;
|
||||
crt_->output_blank(static_cast<unsigned int>(period) * 6);
|
||||
crt_.output_blank(period * 6);
|
||||
);
|
||||
} else if(h_counter < 54) {
|
||||
cycles_run_for = 54 - h_counter;
|
||||
clamp(crt_->output_sync(6 * 6));
|
||||
clamp(crt_.output_sync(6 * 6));
|
||||
} else if(h_counter < 56) {
|
||||
cycles_run_for = 56 - h_counter;
|
||||
clamp(crt_->output_default_colour_burst(2 * 6));
|
||||
clamp(crt_.output_default_colour_burst(2 * 6));
|
||||
} else {
|
||||
cycles_run_for = 64 - h_counter;
|
||||
clamp(crt_->output_blank(8 * 6));
|
||||
clamp(crt_.output_blank(8 * 6));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -12,28 +12,35 @@
|
||||
#include "../../Outputs/CRT/CRT.hpp"
|
||||
#include "../../ClockReceiver/ClockReceiver.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace Oric {
|
||||
|
||||
class VideoOutput {
|
||||
public:
|
||||
VideoOutput(uint8_t *memory);
|
||||
Outputs::CRT::CRT *get_crt();
|
||||
void set_colour_rom(const std::vector<uint8_t> &colour_rom);
|
||||
|
||||
void run_for(const Cycles cycles);
|
||||
void set_colour_rom(const std::vector<uint8_t> &rom);
|
||||
void set_video_signal(Outputs::CRT::VideoSignal output_device);
|
||||
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
|
||||
void set_display_type(Outputs::Display::DisplayType display_type);
|
||||
|
||||
private:
|
||||
uint8_t *ram_;
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
// Counters and limits
|
||||
int counter_ = 0, frame_counter_ = 0;
|
||||
int v_sync_start_position_, v_sync_end_position_, counter_period_;
|
||||
|
||||
// Output target and device
|
||||
uint16_t *pixel_target_;
|
||||
uint16_t colour_forms_[8];
|
||||
Outputs::CRT::VideoSignal video_signal_;
|
||||
uint8_t *rgb_pixel_target_;
|
||||
uint32_t *composite_pixel_target_;
|
||||
uint32_t colour_forms_[8];
|
||||
Outputs::Display::InputDataType data_type_;
|
||||
|
||||
// Registers
|
||||
uint8_t ink_, paper_;
|
||||
|
@ -132,6 +132,7 @@ std::map<std::string, std::vector<std::unique_ptr<Configurable::Option>>> Machin
|
||||
std::map<std::string, std::vector<std::unique_ptr<Configurable::Option>>> options;
|
||||
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::AmstradCPC), AmstradCPC::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::AppleII), AppleII::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::Electron), Electron::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::MSX), MSX::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::Oric), Oric::get_options()));
|
||||
|
@ -23,6 +23,8 @@ namespace Utility {
|
||||
*/
|
||||
class CharacterMapper {
|
||||
public:
|
||||
virtual ~CharacterMapper() {}
|
||||
|
||||
/// @returns The EndSequence-terminated sequence of keys that would cause @c character to be typed.
|
||||
virtual uint16_t *sequence_for_character(char character) = 0;
|
||||
|
||||
|
@ -8,6 +8,8 @@
|
||||
|
||||
#include "Video.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
using namespace ZX8081;
|
||||
|
||||
namespace {
|
||||
@ -21,19 +23,11 @@ const std::size_t StandardAllocationSize = 320;
|
||||
}
|
||||
|
||||
Video::Video() :
|
||||
crt_(new Outputs::CRT::CRT(207 * 2, 1, Outputs::CRT::DisplayType::PAL50, 1)) {
|
||||
|
||||
// Set a composite sampling function that assumes two-level input; either a byte is 0, which is black,
|
||||
// or it is non-zero, which is white.
|
||||
crt_->set_composite_sampling_function(
|
||||
"float composite_sample(usampler2D sampler, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"return texture(sampler, coordinate).r;"
|
||||
"}");
|
||||
crt_(207 * 2, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Luminance1) {
|
||||
|
||||
// Show only the centre 80% of the TV frame.
|
||||
crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite);
|
||||
crt_->set_visible_area(Outputs::CRT::Rect(0.1f, 0.1f, 0.8f, 0.8f));
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::CompositeMonochrome);
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.1f, 0.8f, 0.8f));
|
||||
}
|
||||
|
||||
void Video::run_for(const HalfCycles half_cycles) {
|
||||
@ -48,7 +42,7 @@ void Video::flush() {
|
||||
void Video::flush(bool next_sync) {
|
||||
if(sync_) {
|
||||
// If in sync, that takes priority. Output the proper amount of sync.
|
||||
crt_->output_sync(static_cast<unsigned int>(time_since_update_.as_int()));
|
||||
crt_.output_sync(time_since_update_.as_int());
|
||||
} else {
|
||||
// If not presently in sync, then...
|
||||
|
||||
@ -58,16 +52,16 @@ void Video::flush(bool next_sync) {
|
||||
int data_length = static_cast<int>(line_data_pointer_ - line_data_);
|
||||
if(data_length < time_since_update_.as_int() || next_sync) {
|
||||
auto output_length = std::min(data_length, time_since_update_.as_int());
|
||||
crt_->output_data(static_cast<unsigned int>(output_length), static_cast<unsigned int>(output_length));
|
||||
crt_.output_data(output_length);
|
||||
line_data_pointer_ = line_data_ = nullptr;
|
||||
time_since_update_ -= HalfCycles(output_length);
|
||||
} else return;
|
||||
}
|
||||
|
||||
// Any pending pixels being dealt with, pad with the white level.
|
||||
uint8_t *colour_pointer = static_cast<uint8_t *>(crt_->allocate_write_area(1));
|
||||
uint8_t *colour_pointer = static_cast<uint8_t *>(crt_.begin_data(1));
|
||||
if(colour_pointer) *colour_pointer = 0xff;
|
||||
crt_->output_level(static_cast<unsigned int>(time_since_update_.as_int()));
|
||||
crt_.output_level(time_since_update_.as_int());
|
||||
}
|
||||
|
||||
time_since_update_ = 0;
|
||||
@ -89,16 +83,16 @@ void Video::output_byte(uint8_t byte) {
|
||||
|
||||
// Grab a buffer if one isn't already available.
|
||||
if(!line_data_) {
|
||||
line_data_pointer_ = line_data_ = crt_->allocate_write_area(StandardAllocationSize);
|
||||
line_data_pointer_ = line_data_ = crt_.begin_data(StandardAllocationSize);
|
||||
}
|
||||
|
||||
// If a buffer was obtained, serialise the new pixels.
|
||||
if(line_data_) {
|
||||
// If the buffer is full, output it now and obtain a new one
|
||||
if(line_data_pointer_ - line_data_ == StandardAllocationSize) {
|
||||
crt_->output_data(StandardAllocationSize, StandardAllocationSize);
|
||||
crt_.output_data(StandardAllocationSize, StandardAllocationSize);
|
||||
time_since_update_ -= StandardAllocationSize;
|
||||
line_data_pointer_ = line_data_ = crt_->allocate_write_area(StandardAllocationSize);
|
||||
line_data_pointer_ = line_data_ = crt_.begin_data(StandardAllocationSize);
|
||||
if(!line_data_) return;
|
||||
}
|
||||
|
||||
@ -112,6 +106,6 @@ void Video::output_byte(uint8_t byte) {
|
||||
}
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *Video::get_crt() {
|
||||
return crt_.get();
|
||||
void Video::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
@ -26,10 +26,8 @@ namespace ZX8081 {
|
||||
*/
|
||||
class Video {
|
||||
public:
|
||||
/// Constructs an instance of the video feed; a CRT is also created.
|
||||
/// Constructs an instance of the video feed.
|
||||
Video();
|
||||
/// @returns The CRT this video feed is feeding.
|
||||
Outputs::CRT::CRT *get_crt();
|
||||
|
||||
/// Advances time by @c half-cycles.
|
||||
void run_for(const HalfCycles);
|
||||
@ -41,12 +39,15 @@ class Video {
|
||||
/// Causes @c byte to be serialised into pixels and output over the next four cycles.
|
||||
void output_byte(uint8_t byte);
|
||||
|
||||
/// Sets the scan target.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
|
||||
|
||||
private:
|
||||
bool sync_ = false;
|
||||
uint8_t *line_data_ = nullptr;
|
||||
uint8_t *line_data_pointer_ = nullptr;
|
||||
HalfCycles time_since_update_ = 0;
|
||||
std::unique_ptr<Outputs::CRT::CRT> crt_;
|
||||
Outputs::CRT::CRT crt_;
|
||||
|
||||
void flush(bool next_sync);
|
||||
};
|
||||
|
@ -135,23 +135,23 @@ template<bool is_zx81> class ConcreteMachine:
|
||||
time_since_ay_update_ += cycle.length;
|
||||
|
||||
if(previous_counter < vsync_start_ && horizontal_counter_ >= vsync_start_) {
|
||||
video_->run_for(vsync_start_ - previous_counter);
|
||||
video_.run_for(vsync_start_ - previous_counter);
|
||||
set_hsync(true);
|
||||
line_counter_ = (line_counter_ + 1) & 7;
|
||||
if(nmi_is_enabled_) {
|
||||
z80_.set_non_maskable_interrupt_line(true);
|
||||
}
|
||||
video_->run_for(horizontal_counter_ - vsync_start_);
|
||||
video_.run_for(horizontal_counter_ - vsync_start_);
|
||||
} else if(previous_counter < vsync_end_ && horizontal_counter_ >= vsync_end_) {
|
||||
video_->run_for(vsync_end_ - previous_counter);
|
||||
video_.run_for(vsync_end_ - previous_counter);
|
||||
set_hsync(false);
|
||||
if(nmi_is_enabled_) {
|
||||
z80_.set_non_maskable_interrupt_line(false);
|
||||
z80_.set_wait_line(false);
|
||||
}
|
||||
video_->run_for(horizontal_counter_ - vsync_end_);
|
||||
video_.run_for(horizontal_counter_ - vsync_end_);
|
||||
} else {
|
||||
video_->run_for(cycle.length);
|
||||
video_.run_for(cycle.length);
|
||||
}
|
||||
|
||||
if(is_zx81) horizontal_counter_ %= HalfCycles(Cycles(207));
|
||||
@ -240,7 +240,7 @@ template<bool is_zx81> class ConcreteMachine:
|
||||
latched_video_byte_ = ram_[address & ram_mask_] ^ mask;
|
||||
}
|
||||
|
||||
video_->output_byte(latched_video_byte_);
|
||||
video_.output_byte(latched_video_byte_);
|
||||
has_latched_video_byte_ = false;
|
||||
}
|
||||
break;
|
||||
@ -303,23 +303,15 @@ template<bool is_zx81> class ConcreteMachine:
|
||||
}
|
||||
|
||||
forceinline void flush() {
|
||||
video_->flush();
|
||||
video_.flush();
|
||||
if(is_zx81) {
|
||||
update_audio();
|
||||
audio_queue_.perform();
|
||||
}
|
||||
}
|
||||
|
||||
void setup_output(float aspect_ratio) override final {
|
||||
video_.reset(new Video);
|
||||
}
|
||||
|
||||
void close_output() override final {
|
||||
video_.reset();
|
||||
}
|
||||
|
||||
Outputs::CRT::CRT *get_crt() override final {
|
||||
return video_->get_crt();
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override final {
|
||||
video_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override final {
|
||||
@ -415,8 +407,7 @@ template<bool is_zx81> class ConcreteMachine:
|
||||
|
||||
private:
|
||||
CPU::Z80::Processor<ConcreteMachine, false, is_zx81> z80_;
|
||||
|
||||
std::unique_ptr<Video> video_;
|
||||
Video video_;
|
||||
|
||||
uint16_t tape_trap_address_, tape_return_address_;
|
||||
uint16_t automatic_tape_motor_start_address_, automatic_tape_motor_end_address_;
|
||||
@ -464,7 +455,7 @@ template<bool is_zx81> class ConcreteMachine:
|
||||
}
|
||||
|
||||
inline void update_sync() {
|
||||
video_->set_sync(vsync_ || hsync_);
|
||||
video_.set_sync(vsync_ || hsync_);
|
||||
}
|
||||
|
||||
// MARK: - Audio
|
||||
|
@ -12,6 +12,8 @@
|
||||
4B0333AF2094081A0050B93D /* AppleDSK.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0333AD2094081A0050B93D /* AppleDSK.cpp */; };
|
||||
4B0333B02094081A0050B93D /* AppleDSK.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0333AD2094081A0050B93D /* AppleDSK.cpp */; };
|
||||
4B049CDD1DA3C82F00322067 /* BCDTest.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4B049CDC1DA3C82F00322067 /* BCDTest.swift */; };
|
||||
4B05401E219D1618001BF69C /* ScanTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B05401D219D1618001BF69C /* ScanTarget.cpp */; };
|
||||
4B05401F219D1618001BF69C /* ScanTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B05401D219D1618001BF69C /* ScanTarget.cpp */; };
|
||||
4B055A7A1FAE78A00060FFFF /* SDL2.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 4B055A771FAE78210060FFFF /* SDL2.framework */; };
|
||||
4B055A7E1FAE84AA0060FFFF /* main.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B055A7C1FAE84A50060FFFF /* main.cpp */; };
|
||||
4B055A8D1FAE85920060FFFF /* AsyncTaskQueue.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B3940E51DA83C8300427841 /* AsyncTaskQueue.cpp */; };
|
||||
@ -94,13 +96,6 @@
|
||||
4B055ADE1FAE9B4C0060FFFF /* 6522Base.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B83348B1F5DB99C0097E338 /* 6522Base.cpp */; };
|
||||
4B055ADF1FAE9B4C0060FFFF /* IRQDelegatePortHandler.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334891F5DB94B0097E338 /* IRQDelegatePortHandler.cpp */; };
|
||||
4B055AE01FAE9B660060FFFF /* CRT.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0CCC421C62D0B3001CAC5F /* CRT.cpp */; };
|
||||
4B055AE11FAE9B6F0060FFFF /* ArrayBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B5073051DDD3B9400C48FBD /* ArrayBuilder.cpp */; };
|
||||
4B055AE21FAE9B6F0060FFFF /* CRTOpenGL.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF990A1C8FBA6F0075DAFB /* CRTOpenGL.cpp */; };
|
||||
4B055AE31FAE9B6F0060FFFF /* TextureBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99081C8FBA6F0075DAFB /* TextureBuilder.cpp */; };
|
||||
4B055AE41FAE9B6F0060FFFF /* TextureTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */; };
|
||||
4B055AE51FAE9B6F0060FFFF /* IntermediateShader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB142F1CD2CECE00BDB55C /* IntermediateShader.cpp */; };
|
||||
4B055AE61FAE9B6F0060FFFF /* OutputShader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC3B7501CD1956900F86E85 /* OutputShader.cpp */; };
|
||||
4B055AE71FAE9B6F0060FFFF /* Shader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC3B74D1CD194CC00F86E85 /* Shader.cpp */; };
|
||||
4B055AE81FAE9B7B0060FFFF /* FIRFilter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */; };
|
||||
4B055AE91FAE9B990060FFFF /* 6502Base.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B6A4C951F58F09E00E3F787 /* 6502Base.cpp */; };
|
||||
4B055AEA1FAE9B990060FFFF /* 6502Storage.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334851F5DA3780097E338 /* 6502Storage.cpp */; };
|
||||
@ -203,7 +198,6 @@
|
||||
4B4B1A3D200198CA00A0F866 /* KonamiSCC.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B4B1A3A200198C900A0F866 /* KonamiSCC.cpp */; };
|
||||
4B4DC8211D2C2425003C5BF8 /* Vic20.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B4DC81F1D2C2425003C5BF8 /* Vic20.cpp */; };
|
||||
4B4DC82B1D2C27A4003C5BF8 /* SerialBus.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B4DC8291D2C27A4003C5BF8 /* SerialBus.cpp */; };
|
||||
4B5073071DDD3B9400C48FBD /* ArrayBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B5073051DDD3B9400C48FBD /* ArrayBuilder.cpp */; };
|
||||
4B50730A1DDFCFDF00C48FBD /* ArrayBuilderTests.mm in Sources */ = {isa = PBXBuildFile; fileRef = 4B5073091DDFCFDF00C48FBD /* ArrayBuilderTests.mm */; };
|
||||
4B54C0BC1F8D8E790050900F /* KeyboardMachine.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B54C0BB1F8D8E790050900F /* KeyboardMachine.cpp */; };
|
||||
4B54C0BF1F8D8F450050900F /* Keyboard.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B54C0BD1F8D8F450050900F /* Keyboard.cpp */; };
|
||||
@ -600,38 +594,40 @@
|
||||
4BB73EAC1B587A5100552FC2 /* MainMenu.xib in Resources */ = {isa = PBXBuildFile; fileRef = 4BB73EAA1B587A5100552FC2 /* MainMenu.xib */; };
|
||||
4BB73EB71B587A5100552FC2 /* AllSuiteATests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4BB73EB61B587A5100552FC2 /* AllSuiteATests.swift */; };
|
||||
4BB73EC21B587A5100552FC2 /* Clock_SignalUITests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4BB73EC11B587A5100552FC2 /* Clock_SignalUITests.swift */; };
|
||||
4BBB14311CD2CECE00BDB55C /* IntermediateShader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB142F1CD2CECE00BDB55C /* IntermediateShader.cpp */; };
|
||||
4BBB70A4202011C2002FE009 /* MultiMediaTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB70A3202011C2002FE009 /* MultiMediaTarget.cpp */; };
|
||||
4BBB70A5202011C2002FE009 /* MultiMediaTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB70A3202011C2002FE009 /* MultiMediaTarget.cpp */; };
|
||||
4BBB70A8202014E2002FE009 /* MultiCRTMachine.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB70A6202014E2002FE009 /* MultiCRTMachine.cpp */; };
|
||||
4BBB70A9202014E2002FE009 /* MultiCRTMachine.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBB70A6202014E2002FE009 /* MultiCRTMachine.cpp */; };
|
||||
4BBC951E1F368D83008F4C34 /* i8272.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBC951C1F368D83008F4C34 /* i8272.cpp */; };
|
||||
4BBF49AF1ED2880200AB3669 /* FUSETests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF49AE1ED2880200AB3669 /* FUSETests.swift */; };
|
||||
4BBF99141C8FBA6F0075DAFB /* TextureBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99081C8FBA6F0075DAFB /* TextureBuilder.cpp */; };
|
||||
4BBF99151C8FBA6F0075DAFB /* CRTOpenGL.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF990A1C8FBA6F0075DAFB /* CRTOpenGL.cpp */; };
|
||||
4BBF99181C8FBA6F0075DAFB /* TextureTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */; };
|
||||
4BBFBB6C1EE8401E00C01E7A /* ZX8081.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBFBB6A1EE8401E00C01E7A /* ZX8081.cpp */; };
|
||||
4BBFE83D21015D9C00BF1C40 /* CSJoystickManager.m in Sources */ = {isa = PBXBuildFile; fileRef = 4BBFE83C21015D9C00BF1C40 /* CSJoystickManager.m */; };
|
||||
4BBFFEE61F7B27F1005F3FEB /* TrackSerialiser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBFFEE51F7B27F1005F3FEB /* TrackSerialiser.cpp */; };
|
||||
4BC39568208EE6CF0044766B /* DiskIICard.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC39566208EE6CF0044766B /* DiskIICard.cpp */; };
|
||||
4BC39569208EE6CF0044766B /* DiskIICard.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC39566208EE6CF0044766B /* DiskIICard.cpp */; };
|
||||
4BC3B74F1CD194CC00F86E85 /* Shader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC3B74D1CD194CC00F86E85 /* Shader.cpp */; };
|
||||
4BC3B7521CD1956900F86E85 /* OutputShader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC3B7501CD1956900F86E85 /* OutputShader.cpp */; };
|
||||
4BC5FC3020CDDDEF00410AA0 /* AppleIIOptions.xib in Resources */ = {isa = PBXBuildFile; fileRef = 4BC5FC2E20CDDDEE00410AA0 /* AppleIIOptions.xib */; };
|
||||
4BC751B21D157E61006C31D9 /* 6522Tests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4BC751B11D157E61006C31D9 /* 6522Tests.swift */; };
|
||||
4BC76E691C98E31700E6EF73 /* FIRFilter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */; };
|
||||
4BC76E6B1C98F43700E6EF73 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 4BC76E6A1C98F43700E6EF73 /* Accelerate.framework */; };
|
||||
4BC891AD20F6EAB300EDE5B3 /* Rectangle.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC891AB20F6EAB300EDE5B3 /* Rectangle.cpp */; };
|
||||
4BC891AE20F6EAB300EDE5B3 /* Rectangle.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC891AB20F6EAB300EDE5B3 /* Rectangle.cpp */; };
|
||||
4BC91B831D1F160E00884B76 /* CommodoreTAP.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC91B811D1F160E00884B76 /* CommodoreTAP.cpp */; };
|
||||
4BC9DF451D044FCA00F44158 /* ROMImages in Resources */ = {isa = PBXBuildFile; fileRef = 4BC9DF441D044FCA00F44158 /* ROMImages */; };
|
||||
4BC9DF4F1D04691600F44158 /* 6560.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC9DF4D1D04691600F44158 /* 6560.cpp */; };
|
||||
4BC9E1EE1D23449A003FCEE4 /* 6502InterruptTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 4BC9E1ED1D23449A003FCEE4 /* 6502InterruptTests.swift */; };
|
||||
4BCA6CC81D9DD9F000C2D7B2 /* CommodoreROM.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BCA6CC61D9DD9F000C2D7B2 /* CommodoreROM.cpp */; };
|
||||
4BCF1FA41DADC3DD0039D2E7 /* Oric.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BCF1FA21DADC3DD0039D2E7 /* Oric.cpp */; };
|
||||
4BD191F42191180E0042E144 /* ScanTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD191F22191180E0042E144 /* ScanTarget.cpp */; };
|
||||
4BD191F52191180E0042E144 /* ScanTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD191F22191180E0042E144 /* ScanTarget.cpp */; };
|
||||
4BD3A30B1EE755C800B5B501 /* Video.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD3A3091EE755C800B5B501 /* Video.cpp */; };
|
||||
4BD424DF2193B5340097291A /* TextureTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424DD2193B5340097291A /* TextureTarget.cpp */; };
|
||||
4BD424E02193B5340097291A /* TextureTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424DD2193B5340097291A /* TextureTarget.cpp */; };
|
||||
4BD424E52193B5830097291A /* Shader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424E12193B5820097291A /* Shader.cpp */; };
|
||||
4BD424E62193B5830097291A /* Shader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424E12193B5820097291A /* Shader.cpp */; };
|
||||
4BD424E72193B5830097291A /* Rectangle.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424E22193B5820097291A /* Rectangle.cpp */; };
|
||||
4BD424E82193B5830097291A /* Rectangle.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD424E22193B5820097291A /* Rectangle.cpp */; };
|
||||
4BD468F71D8DF41D0084958B /* 1770.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD468F51D8DF41D0084958B /* 1770.cpp */; };
|
||||
4BD4A8D01E077FD20020D856 /* PCMTrackTests.mm in Sources */ = {isa = PBXBuildFile; fileRef = 4BD4A8CF1E077FD20020D856 /* PCMTrackTests.mm */; };
|
||||
4BD5D2682199148100DDF17D /* ScanTargetGLSLFragments.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD5D2672199148100DDF17D /* ScanTargetGLSLFragments.cpp */; };
|
||||
4BD5D2692199148100DDF17D /* ScanTargetGLSLFragments.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD5D2672199148100DDF17D /* ScanTargetGLSLFragments.cpp */; };
|
||||
4BD5F1951D13528900631CD1 /* CSBestEffortUpdater.mm in Sources */ = {isa = PBXBuildFile; fileRef = 4BD5F1941D13528900631CD1 /* CSBestEffortUpdater.mm */; };
|
||||
4BD61664206B2AC800236112 /* QuickLoadOptions.xib in Resources */ = {isa = PBXBuildFile; fileRef = 4BD61662206B2AC700236112 /* QuickLoadOptions.xib */; };
|
||||
4BD67DCB209BE4D700AB2146 /* StaticAnalyser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BD67DCA209BE4D600AB2146 /* StaticAnalyser.cpp */; };
|
||||
@ -703,6 +699,7 @@
|
||||
4B046DC31CFE651500E9E45E /* CRTMachine.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = CRTMachine.hpp; sourceTree = "<group>"; };
|
||||
4B047075201ABC180047AB0D /* Cartridge.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Cartridge.hpp; sourceTree = "<group>"; };
|
||||
4B049CDC1DA3C82F00322067 /* BCDTest.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = BCDTest.swift; sourceTree = "<group>"; };
|
||||
4B05401D219D1618001BF69C /* ScanTarget.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = ScanTarget.cpp; path = ../../Outputs/ScanTarget.cpp; sourceTree = "<group>"; };
|
||||
4B055A6A1FAE763F0060FFFF /* Clock Signal Kiosk */ = {isa = PBXFileReference; explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = "Clock Signal Kiosk"; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
4B055A771FAE78210060FFFF /* SDL2.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = SDL2.framework; path = ../../../../Library/Frameworks/SDL2.framework; sourceTree = SOURCE_ROOT; };
|
||||
4B055A7C1FAE84A50060FFFF /* main.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = main.cpp; sourceTree = "<group>"; };
|
||||
@ -715,7 +712,6 @@
|
||||
4B08A2771EE39306008B7065 /* TestMachine.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = TestMachine.mm; sourceTree = "<group>"; };
|
||||
4B08A2791EE3957B008B7065 /* TestMachine+ForSubclassEyesOnly.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "TestMachine+ForSubclassEyesOnly.h"; sourceTree = "<group>"; };
|
||||
4B08A56820D72BEF0016CE5A /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.xib; name = Base; path = "Clock Signal/Base.lproj/Activity.xib"; sourceTree = SOURCE_ROOT; };
|
||||
4B0B6E121C9DBD5D00FFB60D /* CRTConstants.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = CRTConstants.hpp; sourceTree = "<group>"; };
|
||||
4B0CCC421C62D0B3001CAC5F /* CRT.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CRT.cpp; sourceTree = "<group>"; };
|
||||
4B0CCC431C62D0B3001CAC5F /* CRT.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = CRT.hpp; sourceTree = "<group>"; };
|
||||
4B0E04E81FC9E5DA00F43484 /* CAS.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = CAS.cpp; sourceTree = "<group>"; };
|
||||
@ -872,8 +868,6 @@
|
||||
4B4DC8271D2C2470003C5BF8 /* C1540.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = C1540.hpp; sourceTree = "<group>"; };
|
||||
4B4DC8291D2C27A4003C5BF8 /* SerialBus.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = SerialBus.cpp; sourceTree = "<group>"; };
|
||||
4B4DC82A1D2C27A4003C5BF8 /* SerialBus.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = SerialBus.hpp; sourceTree = "<group>"; };
|
||||
4B5073051DDD3B9400C48FBD /* ArrayBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = ArrayBuilder.cpp; sourceTree = "<group>"; };
|
||||
4B5073061DDD3B9400C48FBD /* ArrayBuilder.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = ArrayBuilder.hpp; sourceTree = "<group>"; };
|
||||
4B5073091DDFCFDF00C48FBD /* ArrayBuilderTests.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = ArrayBuilderTests.mm; sourceTree = "<group>"; };
|
||||
4B51F70920A521D700AFA2C1 /* Source.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Source.hpp; sourceTree = "<group>"; };
|
||||
4B51F70A20A521D700AFA2C1 /* Observer.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Observer.hpp; sourceTree = "<group>"; };
|
||||
@ -1338,8 +1332,6 @@
|
||||
4BB73EC11B587A5100552FC2 /* Clock_SignalUITests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = Clock_SignalUITests.swift; sourceTree = "<group>"; };
|
||||
4BB73EC31B587A5100552FC2 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
|
||||
4BB73ECF1B587A6700552FC2 /* Clock Signal.entitlements */ = {isa = PBXFileReference; lastKnownFileType = text.xml; path = "Clock Signal.entitlements"; sourceTree = "<group>"; };
|
||||
4BBB142F1CD2CECE00BDB55C /* IntermediateShader.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = IntermediateShader.cpp; sourceTree = "<group>"; };
|
||||
4BBB14301CD2CECE00BDB55C /* IntermediateShader.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = IntermediateShader.hpp; sourceTree = "<group>"; };
|
||||
4BBB709C2020109C002FE009 /* DynamicMachine.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = DynamicMachine.hpp; sourceTree = "<group>"; };
|
||||
4BBB70A2202011C2002FE009 /* MultiMediaTarget.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = MultiMediaTarget.hpp; sourceTree = "<group>"; };
|
||||
4BBB70A3202011C2002FE009 /* MultiMediaTarget.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = MultiMediaTarget.cpp; sourceTree = "<group>"; };
|
||||
@ -1349,15 +1341,7 @@
|
||||
4BBC951C1F368D83008F4C34 /* i8272.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = i8272.cpp; path = 8272/i8272.cpp; sourceTree = "<group>"; };
|
||||
4BBC951D1F368D83008F4C34 /* i8272.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = i8272.hpp; path = 8272/i8272.hpp; sourceTree = "<group>"; };
|
||||
4BBF49AE1ED2880200AB3669 /* FUSETests.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = FUSETests.swift; sourceTree = "<group>"; };
|
||||
4BBF99081C8FBA6F0075DAFB /* TextureBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = TextureBuilder.cpp; sourceTree = "<group>"; };
|
||||
4BBF99091C8FBA6F0075DAFB /* TextureBuilder.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = TextureBuilder.hpp; sourceTree = "<group>"; };
|
||||
4BBF990A1C8FBA6F0075DAFB /* CRTOpenGL.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CRTOpenGL.cpp; sourceTree = "<group>"; };
|
||||
4BBF990B1C8FBA6F0075DAFB /* CRTOpenGL.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = CRTOpenGL.hpp; sourceTree = "<group>"; };
|
||||
4BBF990E1C8FBA6F0075DAFB /* Flywheel.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Flywheel.hpp; sourceTree = "<group>"; };
|
||||
4BBF990F1C8FBA6F0075DAFB /* OpenGL.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = OpenGL.hpp; sourceTree = "<group>"; };
|
||||
4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = TextureTarget.cpp; sourceTree = "<group>"; };
|
||||
4BBF99131C8FBA6F0075DAFB /* TextureTarget.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = TextureTarget.hpp; sourceTree = "<group>"; };
|
||||
4BBF99191C8FC2750075DAFB /* CRTTypes.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = CRTTypes.hpp; sourceTree = "<group>"; };
|
||||
4BBFBB6A1EE8401E00C01E7A /* ZX8081.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = ZX8081.cpp; path = Parsers/ZX8081.cpp; sourceTree = "<group>"; };
|
||||
4BBFBB6B1EE8401E00C01E7A /* ZX8081.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = ZX8081.hpp; path = Parsers/ZX8081.hpp; sourceTree = "<group>"; };
|
||||
4BBFE83C21015D9C00BF1C40 /* CSJoystickManager.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = CSJoystickManager.m; sourceTree = "<group>"; };
|
||||
@ -1366,17 +1350,11 @@
|
||||
4BC39565208EDFCE0044766B /* Card.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Card.hpp; sourceTree = "<group>"; };
|
||||
4BC39566208EE6CF0044766B /* DiskIICard.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = DiskIICard.cpp; sourceTree = "<group>"; };
|
||||
4BC39567208EE6CF0044766B /* DiskIICard.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = DiskIICard.hpp; sourceTree = "<group>"; };
|
||||
4BC3B74D1CD194CC00F86E85 /* Shader.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = Shader.cpp; sourceTree = "<group>"; };
|
||||
4BC3B74E1CD194CC00F86E85 /* Shader.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Shader.hpp; sourceTree = "<group>"; };
|
||||
4BC3B7501CD1956900F86E85 /* OutputShader.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = OutputShader.cpp; sourceTree = "<group>"; };
|
||||
4BC3B7511CD1956900F86E85 /* OutputShader.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = OutputShader.hpp; sourceTree = "<group>"; };
|
||||
4BC5FC2F20CDDDEE00410AA0 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.xib; name = Base; path = "Clock Signal/Base.lproj/AppleIIOptions.xib"; sourceTree = SOURCE_ROOT; };
|
||||
4BC751B11D157E61006C31D9 /* 6522Tests.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = 6522Tests.swift; sourceTree = "<group>"; };
|
||||
4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = FIRFilter.cpp; sourceTree = "<group>"; };
|
||||
4BC76E681C98E31700E6EF73 /* FIRFilter.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = FIRFilter.hpp; sourceTree = "<group>"; };
|
||||
4BC76E6A1C98F43700E6EF73 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
|
||||
4BC891AB20F6EAB300EDE5B3 /* Rectangle.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = Rectangle.cpp; sourceTree = "<group>"; };
|
||||
4BC891AC20F6EAB300EDE5B3 /* Rectangle.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Rectangle.hpp; sourceTree = "<group>"; };
|
||||
4BC91B811D1F160E00884B76 /* CommodoreTAP.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CommodoreTAP.cpp; sourceTree = "<group>"; };
|
||||
4BC91B821D1F160E00884B76 /* CommodoreTAP.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = CommodoreTAP.hpp; sourceTree = "<group>"; };
|
||||
4BC9DF441D044FCA00F44158 /* ROMImages */ = {isa = PBXFileReference; lastKnownFileType = folder; name = ROMImages; path = ../../../../ROMImages; sourceTree = "<group>"; };
|
||||
@ -1389,12 +1367,22 @@
|
||||
4BCF1FA21DADC3DD0039D2E7 /* Oric.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Oric.cpp; path = Oric/Oric.cpp; sourceTree = "<group>"; };
|
||||
4BCF1FA31DADC3DD0039D2E7 /* Oric.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = Oric.hpp; path = Oric/Oric.hpp; sourceTree = "<group>"; };
|
||||
4BD060A51FE49D3C006E14BE /* Speaker.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Speaker.hpp; sourceTree = "<group>"; };
|
||||
4BD191D9219113B80042E144 /* OpenGL.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = OpenGL.hpp; sourceTree = "<group>"; };
|
||||
4BD191F22191180E0042E144 /* ScanTarget.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = ScanTarget.cpp; sourceTree = "<group>"; };
|
||||
4BD191F32191180E0042E144 /* ScanTarget.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = ScanTarget.hpp; sourceTree = "<group>"; };
|
||||
4BD388411FE34E010042B588 /* 9918Base.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; name = 9918Base.hpp; path = 9918/Implementation/9918Base.hpp; sourceTree = "<group>"; };
|
||||
4BD3A3091EE755C800B5B501 /* Video.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Video.cpp; path = ZX8081/Video.cpp; sourceTree = "<group>"; };
|
||||
4BD3A30A1EE755C800B5B501 /* Video.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = Video.hpp; path = ZX8081/Video.hpp; sourceTree = "<group>"; };
|
||||
4BD424DD2193B5340097291A /* TextureTarget.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = TextureTarget.cpp; sourceTree = "<group>"; };
|
||||
4BD424DE2193B5340097291A /* TextureTarget.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = TextureTarget.hpp; sourceTree = "<group>"; };
|
||||
4BD424E12193B5820097291A /* Shader.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = Shader.cpp; sourceTree = "<group>"; };
|
||||
4BD424E22193B5820097291A /* Rectangle.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = Rectangle.cpp; sourceTree = "<group>"; };
|
||||
4BD424E32193B5830097291A /* Rectangle.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Rectangle.hpp; sourceTree = "<group>"; };
|
||||
4BD424E42193B5830097291A /* Shader.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Shader.hpp; sourceTree = "<group>"; };
|
||||
4BD468F51D8DF41D0084958B /* 1770.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = 1770.cpp; path = 1770/1770.cpp; sourceTree = "<group>"; };
|
||||
4BD468F61D8DF41D0084958B /* 1770.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = 1770.hpp; path = 1770/1770.hpp; sourceTree = "<group>"; };
|
||||
4BD4A8CF1E077FD20020D856 /* PCMTrackTests.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = PCMTrackTests.mm; sourceTree = "<group>"; };
|
||||
4BD5D2672199148100DDF17D /* ScanTargetGLSLFragments.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = ScanTargetGLSLFragments.cpp; sourceTree = "<group>"; };
|
||||
4BD5F1931D13528900631CD1 /* CSBestEffortUpdater.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = CSBestEffortUpdater.h; path = Updater/CSBestEffortUpdater.h; sourceTree = "<group>"; };
|
||||
4BD5F1941D13528900631CD1 /* CSBestEffortUpdater.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; name = CSBestEffortUpdater.mm; path = Updater/CSBestEffortUpdater.mm; sourceTree = "<group>"; };
|
||||
4BD601A920D89F2A00CBCE57 /* Log.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; name = Log.hpp; path = ../../Outputs/Log.hpp; sourceTree = "<group>"; };
|
||||
@ -1454,6 +1442,7 @@
|
||||
4BF437ED209D0F7E008CBD6B /* SegmentParser.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = SegmentParser.hpp; sourceTree = "<group>"; };
|
||||
4BF437F0209D112F008CBD6B /* Sector.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Sector.hpp; sourceTree = "<group>"; };
|
||||
4BF4A2D91F534DB300B171F4 /* TargetPlatforms.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = TargetPlatforms.hpp; sourceTree = "<group>"; };
|
||||
4BF52672218E752E00313227 /* ScanTarget.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = ScanTarget.hpp; path = ../../Outputs/ScanTarget.hpp; sourceTree = "<group>"; };
|
||||
4BF6606A1F281573002CB053 /* ClockReceiver.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = ClockReceiver.hpp; sourceTree = "<group>"; };
|
||||
4BF8295F1D8F3C87001BAE39 /* CRC.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = CRC.hpp; path = ../../NumberTheory/CRC.hpp; sourceTree = "<group>"; };
|
||||
4BFCA1211ECBDCAF00AC40C1 /* AllRAMProcessor.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = AllRAMProcessor.cpp; sourceTree = "<group>"; };
|
||||
@ -1529,7 +1518,6 @@
|
||||
children = (
|
||||
4B0CCC421C62D0B3001CAC5F /* CRT.cpp */,
|
||||
4B0CCC431C62D0B3001CAC5F /* CRT.hpp */,
|
||||
4BBF99191C8FC2750075DAFB /* CRTTypes.hpp */,
|
||||
4BBF99071C8FBA6F0075DAFB /* Internals */,
|
||||
);
|
||||
name = CRT;
|
||||
@ -1791,9 +1779,12 @@
|
||||
4B366DFD1B5C165F0026627B /* Outputs */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4B0CCC411C62D0B3001CAC5F /* CRT */,
|
||||
4BD060A41FE49D3C006E14BE /* Speaker */,
|
||||
4B05401D219D1618001BF69C /* ScanTarget.cpp */,
|
||||
4BD601A920D89F2A00CBCE57 /* Log.hpp */,
|
||||
4BF52672218E752E00313227 /* ScanTarget.hpp */,
|
||||
4B0CCC411C62D0B3001CAC5F /* CRT */,
|
||||
4BD191D5219113B80042E144 /* OpenGL */,
|
||||
4BD060A41FE49D3C006E14BE /* Speaker */,
|
||||
);
|
||||
name = Outputs;
|
||||
sourceTree = "<group>";
|
||||
@ -2939,20 +2930,7 @@
|
||||
4BBF99071C8FBA6F0075DAFB /* Internals */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4B5073051DDD3B9400C48FBD /* ArrayBuilder.cpp */,
|
||||
4BBF990A1C8FBA6F0075DAFB /* CRTOpenGL.cpp */,
|
||||
4BC891AB20F6EAB300EDE5B3 /* Rectangle.cpp */,
|
||||
4BBF99081C8FBA6F0075DAFB /* TextureBuilder.cpp */,
|
||||
4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */,
|
||||
4B5073061DDD3B9400C48FBD /* ArrayBuilder.hpp */,
|
||||
4B0B6E121C9DBD5D00FFB60D /* CRTConstants.hpp */,
|
||||
4BBF990B1C8FBA6F0075DAFB /* CRTOpenGL.hpp */,
|
||||
4BBF990E1C8FBA6F0075DAFB /* Flywheel.hpp */,
|
||||
4BBF990F1C8FBA6F0075DAFB /* OpenGL.hpp */,
|
||||
4BC891AC20F6EAB300EDE5B3 /* Rectangle.hpp */,
|
||||
4BBF99091C8FBA6F0075DAFB /* TextureBuilder.hpp */,
|
||||
4BBF99131C8FBA6F0075DAFB /* TextureTarget.hpp */,
|
||||
4BC3B74C1CD194CC00F86E85 /* Shaders */,
|
||||
);
|
||||
path = Internals;
|
||||
sourceTree = "<group>";
|
||||
@ -2966,19 +2944,6 @@
|
||||
path = "Joystick Manager";
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BC3B74C1CD194CC00F86E85 /* Shaders */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4BBB142F1CD2CECE00BDB55C /* IntermediateShader.cpp */,
|
||||
4BC3B7501CD1956900F86E85 /* OutputShader.cpp */,
|
||||
4BC3B74D1CD194CC00F86E85 /* Shader.cpp */,
|
||||
4BBB14301CD2CECE00BDB55C /* IntermediateShader.hpp */,
|
||||
4BC3B7511CD1956900F86E85 /* OutputShader.hpp */,
|
||||
4BC3B74E1CD194CC00F86E85 /* Shader.hpp */,
|
||||
);
|
||||
path = Shaders;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BC9DF4A1D04691600F44158 /* Components */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@ -3052,6 +3017,19 @@
|
||||
path = ../../Outputs/Speaker;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BD191D5219113B80042E144 /* OpenGL */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4BD191F22191180E0042E144 /* ScanTarget.cpp */,
|
||||
4BD5D2672199148100DDF17D /* ScanTargetGLSLFragments.cpp */,
|
||||
4BD191D9219113B80042E144 /* OpenGL.hpp */,
|
||||
4BD191F32191180E0042E144 /* ScanTarget.hpp */,
|
||||
4BD424DC2193B5340097291A /* Primitives */,
|
||||
);
|
||||
name = OpenGL;
|
||||
path = ../../Outputs/OpenGL;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BD388431FE34E060042B588 /* Implementation */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@ -3060,6 +3038,19 @@
|
||||
name = Implementation;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BD424DC2193B5340097291A /* Primitives */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4BD424E22193B5820097291A /* Rectangle.cpp */,
|
||||
4BD424E12193B5820097291A /* Shader.cpp */,
|
||||
4BD424DD2193B5340097291A /* TextureTarget.cpp */,
|
||||
4BD424E32193B5830097291A /* Rectangle.hpp */,
|
||||
4BD424E42193B5830097291A /* Shader.hpp */,
|
||||
4BD424DE2193B5340097291A /* TextureTarget.hpp */,
|
||||
);
|
||||
path = Primitives;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
4BD468F81D8DF4290084958B /* 1770 */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@ -3655,14 +3646,13 @@
|
||||
4B055A9A1FAE85CB0060FFFF /* MFMDiskController.cpp in Sources */,
|
||||
4B055ACB1FAE9AFB0060FFFF /* SerialBus.cpp in Sources */,
|
||||
4B055AA41FAE85E50060FFFF /* DigitalPhaseLockedLoop.cpp in Sources */,
|
||||
4B055AE61FAE9B6F0060FFFF /* OutputShader.cpp in Sources */,
|
||||
4B055A9B1FAE85DA0060FFFF /* AcornADF.cpp in Sources */,
|
||||
4B0E04F11FC9EA9500F43484 /* MSX.cpp in Sources */,
|
||||
4B055AD51FAE9B0B0060FFFF /* Video.cpp in Sources */,
|
||||
4B055AE11FAE9B6F0060FFFF /* ArrayBuilder.cpp in Sources */,
|
||||
4B894521201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4B7F188F2154825E00388727 /* MasterSystem.cpp in Sources */,
|
||||
4B055AA51FAE85EF0060FFFF /* Encoder.cpp in Sources */,
|
||||
4BD5D2692199148100DDF17D /* ScanTargetGLSLFragments.cpp in Sources */,
|
||||
4B894529201967B4007DE474 /* Disk.cpp in Sources */,
|
||||
4B055AEA1FAE9B990060FFFF /* 6502Storage.cpp in Sources */,
|
||||
4B055AA71FAE85EF0060FFFF /* SegmentParser.cpp in Sources */,
|
||||
@ -3673,10 +3663,8 @@
|
||||
4B055AD81FAE9B180060FFFF /* Video.cpp in Sources */,
|
||||
4B89452F201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4B894531201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4BC891AE20F6EAB300EDE5B3 /* Rectangle.cpp in Sources */,
|
||||
4B894539201967B4007DE474 /* Tape.cpp in Sources */,
|
||||
4B7F1898215486A200388727 /* StaticAnalyser.cpp in Sources */,
|
||||
4B055AE51FAE9B6F0060FFFF /* IntermediateShader.cpp in Sources */,
|
||||
4B15A9FD208249BB005E6C8D /* StaticAnalyser.cpp in Sources */,
|
||||
4B055AD31FAE9B0B0060FFFF /* Microdisc.cpp in Sources */,
|
||||
4B055AB41FAE860F0060FFFF /* OricTAP.cpp in Sources */,
|
||||
@ -3689,6 +3677,7 @@
|
||||
4B055A9D1FAE85DA0060FFFF /* D64.cpp in Sources */,
|
||||
4B055ABB1FAE86170060FFFF /* Oric.cpp in Sources */,
|
||||
4B12C0EE1FCFAD1A005BFD93 /* Keyboard.cpp in Sources */,
|
||||
4B05401F219D1618001BF69C /* ScanTarget.cpp in Sources */,
|
||||
4B055AE81FAE9B7B0060FFFF /* FIRFilter.cpp in Sources */,
|
||||
4B055A901FAE85A90060FFFF /* TimedEventLoop.cpp in Sources */,
|
||||
4B055AC71FAE9AEE0060FFFF /* TIA.cpp in Sources */,
|
||||
@ -3699,8 +3688,8 @@
|
||||
4B055AAE1FAE85FD0060FFFF /* TrackSerialiser.cpp in Sources */,
|
||||
4B89452B201967B4007DE474 /* File.cpp in Sources */,
|
||||
4B055A981FAE85C50060FFFF /* Drive.cpp in Sources */,
|
||||
4BD424E62193B5830097291A /* Shader.cpp in Sources */,
|
||||
4B4B1A3D200198CA00A0F866 /* KonamiSCC.cpp in Sources */,
|
||||
4B055AE21FAE9B6F0060FFFF /* CRTOpenGL.cpp in Sources */,
|
||||
4B055AC31FAE9AE80060FFFF /* AmstradCPC.cpp in Sources */,
|
||||
4B055A9E1FAE85DA0060FFFF /* G64.cpp in Sources */,
|
||||
4B055AB81FAE860F0060FFFF /* ZX80O81P.cpp in Sources */,
|
||||
@ -3721,7 +3710,6 @@
|
||||
4B055ADD1FAE9B460060FFFF /* i8272.cpp in Sources */,
|
||||
4B055AC51FAE9AEE0060FFFF /* Atari2600.cpp in Sources */,
|
||||
4B055A9C1FAE85DA0060FFFF /* CPCDSK.cpp in Sources */,
|
||||
4B055AE41FAE9B6F0060FFFF /* TextureTarget.cpp in Sources */,
|
||||
4B055ABA1FAE86170060FFFF /* Commodore.cpp in Sources */,
|
||||
4B9BE401203A0C0600FFAE60 /* MultiSpeaker.cpp in Sources */,
|
||||
4B055AA61FAE85EF0060FFFF /* Parser.cpp in Sources */,
|
||||
@ -3767,11 +3755,13 @@
|
||||
4B055ACD1FAE9B030060FFFF /* Keyboard.cpp in Sources */,
|
||||
4B055AB21FAE860F0060FFFF /* CommodoreTAP.cpp in Sources */,
|
||||
4B055ADF1FAE9B4C0060FFFF /* IRQDelegatePortHandler.cpp in Sources */,
|
||||
4BD424E02193B5340097291A /* TextureTarget.cpp in Sources */,
|
||||
4B055AB51FAE860F0060FFFF /* TapePRG.cpp in Sources */,
|
||||
4B055AE01FAE9B660060FFFF /* CRT.cpp in Sources */,
|
||||
4B894527201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4BAF2B4F2004580C00480230 /* DMK.cpp in Sources */,
|
||||
4B055AD01FAE9B030060FFFF /* Tape.cpp in Sources */,
|
||||
4BD424E82193B5830097291A /* Rectangle.cpp in Sources */,
|
||||
4B055A961FAE85BB0060FFFF /* Commodore.cpp in Sources */,
|
||||
4B0333B02094081A0050B93D /* AppleDSK.cpp in Sources */,
|
||||
4B055ADE1FAE9B4C0060FFFF /* 6522Base.cpp in Sources */,
|
||||
@ -3783,12 +3773,11 @@
|
||||
4B894537201967B4007DE474 /* Z80.cpp in Sources */,
|
||||
4B055A9F1FAE85DA0060FFFF /* HFE.cpp in Sources */,
|
||||
4B07835B1FC11D42001D12BB /* Configurable.cpp in Sources */,
|
||||
4B055AE71FAE9B6F0060FFFF /* Shader.cpp in Sources */,
|
||||
4BD191F52191180E0042E144 /* ScanTarget.cpp in Sources */,
|
||||
4B894523201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4B055AEC1FAE9BA20060FFFF /* Z80Base.cpp in Sources */,
|
||||
4B0F94FF208C1A1600FE41D9 /* NIB.cpp in Sources */,
|
||||
4B0E04EB1FC9E78800F43484 /* CAS.cpp in Sources */,
|
||||
4B055AE31FAE9B6F0060FFFF /* TextureBuilder.cpp in Sources */,
|
||||
4BB0A65D2045009000FB3688 /* ColecoVision.cpp in Sources */,
|
||||
4BB0A65C2044FD3000FB3688 /* SN76489.cpp in Sources */,
|
||||
4B595FAE2086DFBA0083CAA8 /* AudioToggle.cpp in Sources */,
|
||||
@ -3821,8 +3810,8 @@
|
||||
4B58601E1F806AB200AEE2E3 /* MFMSectorDump.cpp in Sources */,
|
||||
4B448E841F1C4C480009ABD6 /* PulseQueuedTape.cpp in Sources */,
|
||||
4B0E61071FF34737002A9DBD /* MSX.cpp in Sources */,
|
||||
4BBF99151C8FBA6F0075DAFB /* CRTOpenGL.cpp in Sources */,
|
||||
4B4518A01F75FD1C00926311 /* CPCDSK.cpp in Sources */,
|
||||
4BD424DF2193B5340097291A /* TextureTarget.cpp in Sources */,
|
||||
4B0CCC451C62D0B3001CAC5F /* CRT.cpp in Sources */,
|
||||
4B322E041F5A2E3C004EB04C /* Z80Base.cpp in Sources */,
|
||||
4B894530201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
@ -3843,6 +3832,7 @@
|
||||
4B1497921EE4B5A800CE2596 /* ZX8081.cpp in Sources */,
|
||||
4B643F3F1D77B88000D431D6 /* DocumentController.swift in Sources */,
|
||||
4BC39568208EE6CF0044766B /* DiskIICard.cpp in Sources */,
|
||||
4B05401E219D1618001BF69C /* ScanTarget.cpp in Sources */,
|
||||
4B4518861F75E91A00926311 /* MFMDiskController.cpp in Sources */,
|
||||
4B54C0BF1F8D8F450050900F /* Keyboard.cpp in Sources */,
|
||||
4B3FE75E1F3CF68B00448EE4 /* CPM.cpp in Sources */,
|
||||
@ -3850,14 +3840,14 @@
|
||||
4B4DC82B1D2C27A4003C5BF8 /* SerialBus.cpp in Sources */,
|
||||
4BBFFEE61F7B27F1005F3FEB /* TrackSerialiser.cpp in Sources */,
|
||||
4BAE49582032881E004BE78E /* CSZX8081.mm in Sources */,
|
||||
4BC3B74F1CD194CC00F86E85 /* Shader.cpp in Sources */,
|
||||
4BD424E52193B5830097291A /* Shader.cpp in Sources */,
|
||||
4B0333AF2094081A0050B93D /* AppleDSK.cpp in Sources */,
|
||||
4B894518201967B4007DE474 /* ConfidenceCounter.cpp in Sources */,
|
||||
4B89452E201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4BD5D2682199148100DDF17D /* ScanTargetGLSLFragments.cpp in Sources */,
|
||||
4B38F3481F2EC11D00D9235D /* AmstradCPC.cpp in Sources */,
|
||||
4B8FE2221DA19FB20090D3CE /* MachinePanel.swift in Sources */,
|
||||
4B4518A41F75FD1C00926311 /* OricMFMDSK.cpp in Sources */,
|
||||
4BBB14311CD2CECE00BDB55C /* IntermediateShader.cpp in Sources */,
|
||||
4B4B1A3C200198CA00A0F866 /* KonamiSCC.cpp in Sources */,
|
||||
4BB0A65B2044FD3000FB3688 /* SN76489.cpp in Sources */,
|
||||
4BD5F1951D13528900631CD1 /* CSBestEffortUpdater.mm in Sources */,
|
||||
@ -3865,7 +3855,6 @@
|
||||
4BDB61EC203285AE0048AF91 /* Atari2600OptionsPanel.swift in Sources */,
|
||||
4BBB70A8202014E2002FE009 /* MultiCRTMachine.cpp in Sources */,
|
||||
4B8805F71DCFF6C9003085B1 /* Commodore.cpp in Sources */,
|
||||
4BBF99181C8FBA6F0075DAFB /* TextureTarget.cpp in Sources */,
|
||||
4BC76E691C98E31700E6EF73 /* FIRFilter.cpp in Sources */,
|
||||
4B3BF5B01F146265005B6C36 /* CSW.cpp in Sources */,
|
||||
4B4518A51F75FD1C00926311 /* SSD.cpp in Sources */,
|
||||
@ -3892,6 +3881,7 @@
|
||||
4B4518851F75E91A00926311 /* DiskController.cpp in Sources */,
|
||||
4B8334841F5DA0360097E338 /* Z80Storage.cpp in Sources */,
|
||||
4BA61EB01D91515900B3C876 /* NSData+StdVector.mm in Sources */,
|
||||
4BD191F42191180E0042E144 /* ScanTarget.cpp in Sources */,
|
||||
4B0F94FE208C1A1600FE41D9 /* NIB.cpp in Sources */,
|
||||
4B89452A201967B4007DE474 /* File.cpp in Sources */,
|
||||
4B4DC8211D2C2425003C5BF8 /* Vic20.cpp in Sources */,
|
||||
@ -3901,9 +3891,7 @@
|
||||
4BD468F71D8DF41D0084958B /* 1770.cpp in Sources */,
|
||||
4B7F1897215486A200388727 /* StaticAnalyser.cpp in Sources */,
|
||||
4BD3A30B1EE755C800B5B501 /* Video.cpp in Sources */,
|
||||
4BBF99141C8FBA6F0075DAFB /* TextureBuilder.cpp in Sources */,
|
||||
4B5FADBA1DE3151600AEC565 /* FileHolder.cpp in Sources */,
|
||||
4BC891AD20F6EAB300EDE5B3 /* Rectangle.cpp in Sources */,
|
||||
4B643F3A1D77AD1900D431D6 /* CSStaticAnalyser.mm in Sources */,
|
||||
4B1497881EE4A1DA00CE2596 /* ZX80O81P.cpp in Sources */,
|
||||
4B894520201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
@ -3949,8 +3937,6 @@
|
||||
4B7136891F78725F008B8ED9 /* Shifter.cpp in Sources */,
|
||||
4BDB61EB2032806E0048AF91 /* CSAtari2600.mm in Sources */,
|
||||
4BFDD78C1F7F2DB4008579B9 /* ImplicitSectors.cpp in Sources */,
|
||||
4BC3B7521CD1956900F86E85 /* OutputShader.cpp in Sources */,
|
||||
4B5073071DDD3B9400C48FBD /* ArrayBuilder.cpp in Sources */,
|
||||
4B894526201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4BEE0A6F1D72496600532C7B /* Cartridge.cpp in Sources */,
|
||||
4B8805FB1DCFF807003085B1 /* Oric.cpp in Sources */,
|
||||
@ -3971,6 +3957,7 @@
|
||||
4B89453E201967B4007DE474 /* StaticAnalyser.cpp in Sources */,
|
||||
4B37EE821D7345A6006A09A4 /* BinaryDump.cpp in Sources */,
|
||||
4B8334821F5D9FF70097E338 /* PartialMachineCycle.cpp in Sources */,
|
||||
4BD424E72193B5830097291A /* Rectangle.cpp in Sources */,
|
||||
4B1B88C0202E3DB200B67DFF /* MultiConfigurable.cpp in Sources */,
|
||||
4B54C0BC1F8D8E790050900F /* KeyboardMachine.cpp in Sources */,
|
||||
4BB73EA21B587A5100552FC2 /* AppDelegate.swift in Sources */,
|
||||
|
@ -1,8 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14113" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14460.31" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<dependencies>
|
||||
<deployment identifier="macosx"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14113"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14460.31"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<objects>
|
||||
@ -13,37 +13,43 @@
|
||||
</customObject>
|
||||
<customObject id="-1" userLabel="First Responder" customClass="FirstResponder"/>
|
||||
<customObject id="-3" userLabel="Application" customClass="NSObject"/>
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" oneShot="NO" releasedWhenClosed="NO" showsToolbarButton="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" releasedWhenClosed="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<windowStyleMask key="styleMask" titled="YES" closable="YES" utility="YES" nonactivatingPanel="YES" HUD="YES"/>
|
||||
<windowPositionMask key="initialPositionMask" leftStrut="YES" rightStrut="YES" topStrut="YES" bottomStrut="YES"/>
|
||||
<rect key="contentRect" x="80" y="150" width="200" height="54"/>
|
||||
<rect key="contentRect" x="80" y="150" width="200" height="61"/>
|
||||
<rect key="screenRect" x="0.0" y="0.0" width="1440" height="900"/>
|
||||
<view key="contentView" id="tpZ-0B-QQu">
|
||||
<rect key="frame" x="0.0" y="0.0" width="200" height="54"/>
|
||||
<rect key="frame" x="0.0" y="0.0" width="200" height="61"/>
|
||||
<autoresizingMask key="autoresizingMask"/>
|
||||
<subviews>
|
||||
<button translatesAutoresizingMaskIntoConstraints="NO" id="e1J-pw-zGw">
|
||||
<rect key="frame" x="18" y="18" width="164" height="18"/>
|
||||
<buttonCell key="cell" type="check" title="Accelerate DOS 3.3" bezelStyle="regularSquare" imagePosition="left" alignment="left" state="on" inset="2" id="tD6-UB-ESB">
|
||||
<behavior key="behavior" changeContents="YES" doesNotDimImage="YES" lightByContents="YES"/>
|
||||
<font key="font" metaFont="system"/>
|
||||
</buttonCell>
|
||||
<popUpButton verticalHuggingPriority="750" translatesAutoresizingMaskIntoConstraints="NO" id="ex3-VM-58z">
|
||||
<rect key="frame" x="18" y="17" width="165" height="25"/>
|
||||
<popUpButtonCell key="cell" type="push" title="Colour" bezelStyle="rounded" alignment="left" lineBreakMode="truncatingTail" state="on" borderStyle="borderAndBezel" tag="1" imageScaling="proportionallyDown" inset="2" selectedItem="gOu-dv-tre" id="u3N-Je-c2L">
|
||||
<behavior key="behavior" lightByBackground="YES" lightByGray="YES"/>
|
||||
<font key="font" metaFont="menu"/>
|
||||
<menu key="menu" id="BUS-Pl-jBm">
|
||||
<items>
|
||||
<menuItem title="Colour" state="on" tag="1" id="gOu-dv-tre"/>
|
||||
<menuItem title="Monochrome" tag="3" id="qhQ-ab-jRo"/>
|
||||
</items>
|
||||
</menu>
|
||||
</popUpButtonCell>
|
||||
<connections>
|
||||
<action selector="setFastLoading:" target="ZW7-Bw-4RP" id="JmG-Ks-jSh"/>
|
||||
<action selector="setDisplayType:" target="ZW7-Bw-4RP" id="f7A-2O-wR8"/>
|
||||
</connections>
|
||||
</button>
|
||||
</popUpButton>
|
||||
</subviews>
|
||||
<constraints>
|
||||
<constraint firstAttribute="bottom" secondItem="e1J-pw-zGw" secondAttribute="bottom" constant="20" id="5ce-DO-a4T"/>
|
||||
<constraint firstItem="e1J-pw-zGw" firstAttribute="leading" secondItem="tpZ-0B-QQu" secondAttribute="leading" constant="20" id="HSD-3d-Bl7"/>
|
||||
<constraint firstAttribute="trailing" secondItem="e1J-pw-zGw" secondAttribute="trailing" constant="20" id="Q9M-FH-92N"/>
|
||||
<constraint firstItem="e1J-pw-zGw" firstAttribute="top" secondItem="tpZ-0B-QQu" secondAttribute="top" constant="20" id="ul9-lf-Y3u"/>
|
||||
<constraint firstAttribute="bottom" secondItem="ex3-VM-58z" secondAttribute="bottom" constant="20" id="4ZS-q5-TJL"/>
|
||||
<constraint firstItem="ex3-VM-58z" firstAttribute="leading" secondItem="tpZ-0B-QQu" secondAttribute="leading" constant="20" id="8Pj-Ns-TrJ"/>
|
||||
<constraint firstAttribute="trailing" secondItem="ex3-VM-58z" secondAttribute="trailing" constant="20" id="QWA-lY-ugz"/>
|
||||
<constraint firstItem="ex3-VM-58z" firstAttribute="top" secondItem="tpZ-0B-QQu" secondAttribute="top" constant="20" id="szw-WO-3tS"/>
|
||||
</constraints>
|
||||
</view>
|
||||
<connections>
|
||||
<outlet property="fastLoadingButton" destination="e1J-pw-zGw" id="jj7-OZ-mOH"/>
|
||||
<outlet property="displayTypeButton" destination="ex3-VM-58z" id="lmZ-aN-lcj"/>
|
||||
</connections>
|
||||
<point key="canvasLocation" x="175" y="30"/>
|
||||
<point key="canvasLocation" x="-161" y="38.5"/>
|
||||
</window>
|
||||
</objects>
|
||||
</document>
|
||||
|
@ -1,8 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14113" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14460.31" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<dependencies>
|
||||
<deployment identifier="macosx"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14113"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14460.31"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<objects>
|
||||
@ -13,17 +13,17 @@
|
||||
</customObject>
|
||||
<customObject id="-1" userLabel="First Responder" customClass="FirstResponder"/>
|
||||
<customObject id="-3" userLabel="Application" customClass="NSObject"/>
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" oneShot="NO" releasedWhenClosed="NO" showsToolbarButton="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" releasedWhenClosed="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<windowStyleMask key="styleMask" titled="YES" closable="YES" utility="YES" nonactivatingPanel="YES" HUD="YES"/>
|
||||
<windowPositionMask key="initialPositionMask" leftStrut="YES" rightStrut="YES" topStrut="YES" bottomStrut="YES"/>
|
||||
<rect key="contentRect" x="80" y="150" width="200" height="83"/>
|
||||
<rect key="screenRect" x="0.0" y="0.0" width="1440" height="900"/>
|
||||
<view key="contentView" id="tpZ-0B-QQu">
|
||||
<rect key="frame" x="0.0" y="0.0" width="200" height="83"/>
|
||||
<rect key="frame" x="0.0" y="0.0" width="222" height="83"/>
|
||||
<autoresizingMask key="autoresizingMask"/>
|
||||
<subviews>
|
||||
<button translatesAutoresizingMaskIntoConstraints="NO" id="zPG-yW-4Gy">
|
||||
<rect key="frame" x="18" y="47" width="164" height="18"/>
|
||||
<rect key="frame" x="18" y="47" width="186" height="18"/>
|
||||
<buttonCell key="cell" type="check" title="Load Quickly" bezelStyle="regularSquare" imagePosition="left" state="on" inset="2" id="alI-Mw-35c">
|
||||
<behavior key="behavior" changeContents="YES" doesNotDimImage="YES" lightByContents="YES"/>
|
||||
<font key="font" metaFont="system"/>
|
||||
@ -33,7 +33,7 @@
|
||||
</connections>
|
||||
</button>
|
||||
<popUpButton verticalHuggingPriority="750" translatesAutoresizingMaskIntoConstraints="NO" id="rh8-km-57n">
|
||||
<rect key="frame" x="18" y="17" width="165" height="26"/>
|
||||
<rect key="frame" x="18" y="17" width="187" height="25"/>
|
||||
<popUpButtonCell key="cell" type="push" title="SCART" bezelStyle="rounded" alignment="left" lineBreakMode="truncatingTail" state="on" borderStyle="borderAndBezel" imageScaling="proportionallyDown" inset="2" selectedItem="tJM-kX-gaK" id="8SX-c5-ud1">
|
||||
<behavior key="behavior" lightByBackground="YES" lightByGray="YES"/>
|
||||
<font key="font" metaFont="menu"/>
|
||||
@ -41,6 +41,7 @@
|
||||
<items>
|
||||
<menuItem title="SCART" state="on" id="tJM-kX-gaK"/>
|
||||
<menuItem title="Composite" tag="1" id="fFm-fS-rWG"/>
|
||||
<menuItem title="Composite Monochrome" tag="3" id="hjs-qh-WKP"/>
|
||||
</items>
|
||||
</menu>
|
||||
</popUpButtonCell>
|
||||
|
@ -32,6 +32,7 @@ class MachinePanel: NSPanel {
|
||||
switch tag {
|
||||
case 1: return .composite
|
||||
case 2: return .sVideo
|
||||
case 3: return .monochromeComposite
|
||||
default: break
|
||||
}
|
||||
return .RGB
|
||||
|
@ -24,7 +24,8 @@
|
||||
typedef NS_ENUM(NSInteger, CSMachineVideoSignal) {
|
||||
CSMachineVideoSignalComposite,
|
||||
CSMachineVideoSignalSVideo,
|
||||
CSMachineVideoSignalRGB
|
||||
CSMachineVideoSignalRGB,
|
||||
CSMachineVideoSignalMonochromeComposite
|
||||
};
|
||||
|
||||
typedef NS_ENUM(NSInteger, CSMachineKeyboardInputMode) {
|
||||
|
@ -26,6 +26,11 @@
|
||||
|
||||
#include <bitset>
|
||||
|
||||
#import <OpenGL/OpenGL.h>
|
||||
#include <OpenGL/gl3.h>
|
||||
|
||||
#include "../../../../Outputs/OpenGL/ScanTarget.hpp"
|
||||
|
||||
@interface CSMachine() <CSFastLoading>
|
||||
- (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length;
|
||||
- (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker;
|
||||
@ -80,6 +85,8 @@ struct ActivityObserver: public Activity::Observer {
|
||||
CSJoystickManager *_joystickManager;
|
||||
std::bitset<65536> _depressedKeys;
|
||||
NSMutableArray<NSString *> *_leds;
|
||||
|
||||
std::unique_ptr<Outputs::Display::OpenGL::ScanTarget> _scanTarget;
|
||||
}
|
||||
|
||||
- (instancetype)initWithAnalyser:(CSStaticAnalyser *)result {
|
||||
@ -133,7 +140,7 @@ struct ActivityObserver: public Activity::Observer {
|
||||
|
||||
[_view performWithGLContext:^{
|
||||
@synchronized(self) {
|
||||
self->_machine->crt_machine()->close_output();
|
||||
self->_scanTarget.reset();
|
||||
}
|
||||
}];
|
||||
}
|
||||
@ -178,7 +185,7 @@ struct ActivityObserver: public Activity::Observer {
|
||||
std::vector<std::unique_ptr<Inputs::Joystick>> &machine_joysticks = _joystickMachine->get_joysticks();
|
||||
for(CSJoystick *joystick in _joystickManager.joysticks) {
|
||||
size_t target = c % machine_joysticks.size();
|
||||
++++c;
|
||||
++c;
|
||||
|
||||
// Post the first two analogue axes presented by the controller as horizontal and vertical inputs,
|
||||
// unless the user seems to be using a hat.
|
||||
@ -228,15 +235,12 @@ struct ActivityObserver: public Activity::Observer {
|
||||
}
|
||||
|
||||
- (void)setupOutputWithAspectRatio:(float)aspectRatio {
|
||||
_machine->crt_machine()->setup_output(aspectRatio);
|
||||
|
||||
// Since OS X v10.6, Macs have had a gamma of 2.2.
|
||||
_machine->crt_machine()->get_crt()->set_output_gamma(2.2f);
|
||||
_machine->crt_machine()->get_crt()->set_target_framebuffer(0);
|
||||
_scanTarget.reset(new Outputs::Display::OpenGL::ScanTarget);
|
||||
_machine->crt_machine()->set_scan_target(_scanTarget.get());
|
||||
}
|
||||
|
||||
- (void)drawViewForPixelSize:(CGSize)pixelSize onlyIfDirty:(BOOL)onlyIfDirty {
|
||||
_machine->crt_machine()->get_crt()->draw_frame((unsigned int)pixelSize.width, (unsigned int)pixelSize.height, onlyIfDirty ? true : false);
|
||||
_scanTarget->draw(true, (int)pixelSize.width, (int)pixelSize.height);
|
||||
}
|
||||
|
||||
- (void)paste:(NSString *)paste {
|
||||
@ -357,7 +361,7 @@ struct ActivityObserver: public Activity::Observer {
|
||||
BIND(VK_ForwardDelete, Delete);
|
||||
|
||||
BIND(VK_LeftArrow, Left); BIND(VK_RightArrow, Right);
|
||||
BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up);
|
||||
BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up);
|
||||
}
|
||||
#undef BIND
|
||||
|
||||
@ -457,9 +461,10 @@ struct ActivityObserver: public Activity::Observer {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::Display display;
|
||||
switch(videoSignal) {
|
||||
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
|
||||
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
|
||||
case CSMachineVideoSignalComposite: display = Configurable::Display::Composite; break;
|
||||
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
|
||||
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
|
||||
case CSMachineVideoSignalComposite: display = Configurable::Display::CompositeColour; break;
|
||||
case CSMachineVideoSignalMonochromeComposite: display = Configurable::Display::CompositeMonochrome; break;
|
||||
}
|
||||
append_display_selection(selection_set, display);
|
||||
configurable_device->set_selections(selection_set);
|
||||
@ -479,9 +484,10 @@ struct ActivityObserver: public Activity::Observer {
|
||||
// Get the standard option for this video signal.
|
||||
Configurable::StandardOptions option;
|
||||
switch(videoSignal) {
|
||||
case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break;
|
||||
case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break;
|
||||
case CSMachineVideoSignalComposite: option = Configurable::DisplayComposite; break;
|
||||
case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break;
|
||||
case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break;
|
||||
case CSMachineVideoSignalComposite: option = Configurable::DisplayCompositeColour; break;
|
||||
case CSMachineVideoSignalMonochromeComposite: option = Configurable::DisplayCompositeMonochrome; break;
|
||||
}
|
||||
std::unique_ptr<Configurable::Option> display_option = std::move(standard_options(option).front());
|
||||
Configurable::ListOption *display_list_option = dynamic_cast<Configurable::ListOption *>(display_option.get());
|
||||
|
@ -169,7 +169,7 @@ static Analyser::Static::ZX8081::Target::MemoryModel ZX8081MemoryModelFromSize(K
|
||||
std::unique_ptr<Target> target(new Target);
|
||||
target->machine = Analyser::Machine::AppleII;
|
||||
switch(model) {
|
||||
default: target->model = Target::Model::II; break;
|
||||
default: target->model = Target::Model::II; break;
|
||||
case CSMachineAppleIIModelAppleIIPlus: target->model = Target::Model::IIplus; break;
|
||||
case CSMachineAppleIIModelAppleIIe: target->model = Target::Model::IIe; break;
|
||||
case CSMachineAppleIIModelAppleEnhancedIIe: target->model = Target::Model::EnhancedIIe; break;
|
||||
@ -189,7 +189,7 @@ static Analyser::Static::ZX8081::Target::MemoryModel ZX8081MemoryModelFromSize(K
|
||||
- (NSString *)optionsPanelNibName {
|
||||
switch(_targets.front()->machine) {
|
||||
case Analyser::Machine::AmstradCPC: return @"CompositeOptions";
|
||||
// case Analyser::Machine::AppleII: return @"AppleIIOptions";
|
||||
case Analyser::Machine::AppleII: return @"AppleIIOptions";
|
||||
case Analyser::Machine::Atari2600: return @"Atari2600Options";
|
||||
case Analyser::Machine::Electron: return @"QuickLoadCompositeOptions";
|
||||
case Analyser::Machine::MasterSystem: return @"CompositeOptions";
|
||||
|
@ -141,7 +141,7 @@ class MachinePicker: NSObject {
|
||||
case 13: diskController = .thirteenSector
|
||||
case 16: diskController = .sixteenSector
|
||||
case 0: fallthrough
|
||||
default: diskController = .none
|
||||
default: diskController = .none
|
||||
}
|
||||
|
||||
return CSStaticAnalyser(appleIIModel: model, diskController: diskController)
|
||||
@ -162,7 +162,7 @@ class MachinePicker: NSObject {
|
||||
switch oricDiskInterfaceButton!.selectedTag() {
|
||||
case 1: diskInterface = .microdisc
|
||||
case 2: diskInterface = .pravetz
|
||||
default: break;
|
||||
default: break;
|
||||
|
||||
}
|
||||
var model: CSMachineOricModel = .oric1
|
||||
|
@ -93,9 +93,9 @@ static CVReturn DisplayLinkCallback(CVDisplayLinkRef displayLink, const CVTimeSt
|
||||
{
|
||||
NSOpenGLPFADoubleBuffer,
|
||||
NSOpenGLPFAOpenGLProfile, NSOpenGLProfileVersion3_2Core,
|
||||
NSOpenGLPFAMultisample,
|
||||
NSOpenGLPFASampleBuffers, 1,
|
||||
NSOpenGLPFASamples, 2,
|
||||
// NSOpenGLPFAMultisample,
|
||||
// NSOpenGLPFASampleBuffers, 1,
|
||||
// NSOpenGLPFASamples, 2,
|
||||
0
|
||||
};
|
||||
|
||||
|
@ -19,7 +19,7 @@
|
||||
}
|
||||
|
||||
- (void)setUp {
|
||||
[super setUp];
|
||||
[super setUp];
|
||||
|
||||
// Create a valid OpenGL context, so that a VDP can be constructed.
|
||||
NSOpenGLPixelFormatAttribute attributes[] =
|
||||
@ -34,10 +34,10 @@
|
||||
}
|
||||
|
||||
- (void)tearDown {
|
||||
// Put teardown code here. This method is called after the invocation of each test method in the class.
|
||||
_openGLContext = nil;
|
||||
// Put teardown code here. This method is called after the invocation of each test method in the class.
|
||||
_openGLContext = nil;
|
||||
|
||||
[super tearDown];
|
||||
[super tearDown];
|
||||
}
|
||||
|
||||
- (void)testLineInterrupt {
|
||||
|
@ -303,7 +303,7 @@ class Z80MachineCycleTests: XCTestCase {
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
]
|
||||
@ -318,7 +318,7 @@ class Z80MachineCycleTests: XCTestCase {
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .write, length: 3),
|
||||
MachineCycle(operation: .write, length: 3),
|
||||
]
|
||||
@ -333,7 +333,7 @@ class Z80MachineCycleTests: XCTestCase {
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
]
|
||||
@ -348,7 +348,7 @@ class Z80MachineCycleTests: XCTestCase {
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .readOpcode, length: 4),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .read, length: 3),
|
||||
MachineCycle(operation: .write, length: 3),
|
||||
MachineCycle(operation: .write, length: 3),
|
||||
]
|
||||
|
@ -61,9 +61,10 @@ SOURCES += glob.glob('../../Machines/Oric/*.cpp')
|
||||
SOURCES += glob.glob('../../Machines/Utility/*.cpp')
|
||||
SOURCES += glob.glob('../../Machines/ZX8081/*.cpp')
|
||||
|
||||
SOURCES += glob.glob('../../Outputs/*.cpp')
|
||||
SOURCES += glob.glob('../../Outputs/CRT/*.cpp')
|
||||
SOURCES += glob.glob('../../Outputs/CRT/Internals/*.cpp')
|
||||
SOURCES += glob.glob('../../Outputs/CRT/Internals/Shaders/*.cpp')
|
||||
SOURCES += glob.glob('../../Outputs/OpenGL/*.cpp')
|
||||
SOURCES += glob.glob('../../Outputs/OpenGL/Primitives/*.cpp')
|
||||
|
||||
SOURCES += glob.glob('../../Processors/6502/Implementation/*.cpp')
|
||||
SOURCES += glob.glob('../../Processors/Z80/Implementation/*.cpp')
|
||||
|
@ -26,7 +26,8 @@
|
||||
#include "../../Concurrency/BestEffortUpdater.hpp"
|
||||
|
||||
#include "../../Activity/Observer.hpp"
|
||||
#include "../../Outputs/CRT/Internals/Rectangle.hpp"
|
||||
#include "../../Outputs/OpenGL/Primitives/Rectangle.hpp"
|
||||
#include "../../Outputs/OpenGL/ScanTarget.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
@ -109,7 +110,7 @@ class ActivityObserver: public Activity::Observer {
|
||||
float y = 1.0f - 2.0f * height;
|
||||
for(const auto &drive: drives_) {
|
||||
// TODO: use std::make_unique as below, if/when formally embracing C++14.
|
||||
lights_.emplace(std::make_pair(drive, std::unique_ptr<OpenGL::Rectangle>(new OpenGL::Rectangle(right_x, y, width, height))));
|
||||
lights_.emplace(std::make_pair(drive, std::unique_ptr<Outputs::Display::OpenGL::Rectangle>(new Outputs::Display::OpenGL::Rectangle(right_x, y, width, height))));
|
||||
y -= height * 2.0f;
|
||||
}
|
||||
|
||||
@ -154,7 +155,7 @@ class ActivityObserver: public Activity::Observer {
|
||||
blinking_leds_.insert(name);
|
||||
}
|
||||
|
||||
std::map<std::string, std::unique_ptr<OpenGL::Rectangle>> lights_;
|
||||
std::map<std::string, std::unique_ptr<Outputs::Display::OpenGL::Rectangle>> lights_;
|
||||
std::set<std::string> lit_leds_;
|
||||
std::set<std::string> blinking_leds_;
|
||||
};
|
||||
@ -454,22 +455,24 @@ int main(int argc, char *argv[]) {
|
||||
400, 300,
|
||||
SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE);
|
||||
|
||||
if(!window)
|
||||
{
|
||||
std::cerr << "Could not create window" << std::endl;
|
||||
SDL_GLContext gl_context;
|
||||
if(window) {
|
||||
gl_context = SDL_GL_CreateContext(window);
|
||||
}
|
||||
if(!window || !gl_context) {
|
||||
std::cerr << "Could not create " << (window ? "OpenGL context" : "window");
|
||||
std::cerr << "; reported error: \"" << SDL_GetError() << "\"" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
SDL_GLContext gl_context = SDL_GL_CreateContext(window);
|
||||
SDL_GL_MakeCurrent(window, gl_context);
|
||||
|
||||
GLint target_framebuffer = 0;
|
||||
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &target_framebuffer);
|
||||
|
||||
// Setup output, assuming a CRT machine for now, and prepare a best-effort updater.
|
||||
machine->crt_machine()->setup_output(4.0 / 3.0);
|
||||
machine->crt_machine()->get_crt()->set_output_gamma(2.2f);
|
||||
machine->crt_machine()->get_crt()->set_target_framebuffer(target_framebuffer);
|
||||
Outputs::Display::OpenGL::ScanTarget scan_target(target_framebuffer);
|
||||
machine->crt_machine()->set_scan_target(&scan_target);
|
||||
|
||||
// For now, lie about audio output intentions.
|
||||
auto speaker = machine->crt_machine()->get_speaker();
|
||||
@ -593,7 +596,7 @@ int main(int argc, char *argv[]) {
|
||||
case SDL_WINDOWEVENT_RESIZED: {
|
||||
GLint target_framebuffer = 0;
|
||||
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &target_framebuffer);
|
||||
machine->crt_machine()->get_crt()->set_target_framebuffer(target_framebuffer);
|
||||
scan_target.set_target_framebuffer(target_framebuffer);
|
||||
SDL_GetWindowSize(window, &window_width, &window_height);
|
||||
if(activity_observer) activity_observer->set_aspect_ratio(static_cast<float>(window_width) / static_cast<float>(window_height));
|
||||
} break;
|
||||
@ -785,7 +788,7 @@ int main(int argc, char *argv[]) {
|
||||
|
||||
// Display a new frame and wait for vsync.
|
||||
updater.update();
|
||||
machine->crt_machine()->get_crt()->draw_frame(static_cast<unsigned int>(window_width), static_cast<unsigned int>(window_height), false);
|
||||
scan_target.draw(true, int(window_width), int(window_height));
|
||||
if(activity_observer) activity_observer->draw();
|
||||
SDL_GL_SwapWindow(window);
|
||||
}
|
||||
|
@ -7,7 +7,7 @@
|
||||
//
|
||||
|
||||
#include "CRT.hpp"
|
||||
#include "Internals/CRTOpenGL.hpp"
|
||||
|
||||
#include <cstdarg>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
@ -15,31 +15,30 @@
|
||||
|
||||
using namespace Outputs::CRT;
|
||||
|
||||
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int vertical_sync_half_lines, bool should_alternate) {
|
||||
openGL_output_builder_.set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator);
|
||||
void CRT::set_new_timing(int cycles_per_line, int height_of_display, Outputs::Display::ColourSpace colour_space, int colour_cycle_numerator, int colour_cycle_denominator, int vertical_sync_half_lines, bool should_alternate) {
|
||||
|
||||
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
|
||||
const unsigned int scanlinesVerticalRetraceTime = 8; // source: ibid
|
||||
const int millisecondsHorizontalRetraceTime = 7; // Source: Dictionary of Video and Television Technology, p. 234.
|
||||
const int scanlinesVerticalRetraceTime = 8; // Source: ibid.
|
||||
|
||||
// To quote:
|
||||
//
|
||||
// "retrace interval; The interval of time for the return of the blanked scanning beam of
|
||||
// a TV picture tube or camera tube to the starting point of a line or field. It is about
|
||||
// 7 microseconds for horizontal retrace and 500 to 750 microseconds for vertical retrace
|
||||
// in NTSC and PAL TV."
|
||||
// To quote:
|
||||
//
|
||||
// "retrace interval; The interval of time for the return of the blanked scanning beam of
|
||||
// a TV picture tube or camera tube to the starting point of a line or field. It is about
|
||||
// 7 microseconds for horizontal retrace and 500 to 750 microseconds for vertical retrace
|
||||
// in NTSC and PAL TV."
|
||||
|
||||
time_multiplier_ = IntermediateBufferWidth / cycles_per_line;
|
||||
phase_denominator_ = cycles_per_line * colour_cycle_denominator * time_multiplier_;
|
||||
time_multiplier_ = 65535 / cycles_per_line;
|
||||
phase_denominator_ = int64_t(cycles_per_line) * int64_t(colour_cycle_denominator) * int64_t(time_multiplier_);
|
||||
phase_numerator_ = 0;
|
||||
colour_cycle_numerator_ = colour_cycle_numerator;
|
||||
colour_cycle_numerator_ = int64_t(colour_cycle_numerator);
|
||||
phase_alternates_ = should_alternate;
|
||||
is_alernate_line_ &= phase_alternates_;
|
||||
cycles_per_line_ = cycles_per_line;
|
||||
unsigned int multiplied_cycles_per_line = cycles_per_line * time_multiplier_;
|
||||
const int multiplied_cycles_per_line = cycles_per_line * time_multiplier_;
|
||||
|
||||
// allow sync to be detected (and acted upon) a line earlier than the specified requirement,
|
||||
// Allow sync to be detected (and acted upon) a line earlier than the specified requirement,
|
||||
// as a simple way of avoiding not-quite-exact comparison issues while still being true enough to
|
||||
// the gist for simple debugging
|
||||
// the gist for simple debugging.
|
||||
sync_capacitor_charge_threshold_ = ((vertical_sync_half_lines - 2) * cycles_per_line) >> 1;
|
||||
|
||||
// Create the two flywheels:
|
||||
@ -54,23 +53,66 @@ void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_di
|
||||
horizontal_flywheel_.reset(new Flywheel(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 5));
|
||||
vertical_flywheel_.reset(new Flywheel(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3));
|
||||
|
||||
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
|
||||
unsigned int real_clock_scan_period = (multiplied_cycles_per_line * height_of_display) / (time_multiplier_ * common_output_divisor_);
|
||||
vertical_flywheel_output_divider_ = static_cast<uint16_t>(ceilf(real_clock_scan_period / 65536.0f) * (time_multiplier_ * common_output_divisor_));
|
||||
// Figure out the divisor necessary to get the horizontal flywheel into a 16-bit range.
|
||||
const int real_clock_scan_period = vertical_flywheel_->get_scan_period();
|
||||
vertical_flywheel_output_divider_ = (real_clock_scan_period + 65534) / 65535;
|
||||
|
||||
openGL_output_builder_.set_timing(cycles_per_line, multiplied_cycles_per_line, height_of_display, horizontal_flywheel_->get_scan_period(), vertical_flywheel_->get_scan_period(), vertical_flywheel_output_divider_);
|
||||
// Communicate relevant fields to the scan target.
|
||||
scan_target_modals_.output_scale.x = uint16_t(horizontal_flywheel_->get_scan_period());
|
||||
scan_target_modals_.output_scale.y = uint16_t(real_clock_scan_period / vertical_flywheel_output_divider_);
|
||||
scan_target_modals_.expected_vertical_lines = height_of_display;
|
||||
scan_target_modals_.composite_colour_space = colour_space;
|
||||
scan_target_modals_.colour_cycle_numerator = colour_cycle_numerator;
|
||||
scan_target_modals_.colour_cycle_denominator = colour_cycle_denominator;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) {
|
||||
void CRT::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
scan_target_ = scan_target;
|
||||
if(!scan_target_) scan_target_ = &Outputs::Display::NullScanTarget::singleton;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_new_data_type(Outputs::Display::InputDataType data_type) {
|
||||
scan_target_modals_.input_data_type = data_type;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_visible_area(Outputs::Display::Rect visible_area) {
|
||||
scan_target_modals_.visible_area = visible_area;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
scan_target_modals_.display_type = display_type;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_phase_linked_luminance_offset(float offset) {
|
||||
scan_target_modals_.input_data_tweaks.phase_linked_luminance_offset = offset;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_input_data_type(Outputs::Display::InputDataType input_data_type) {
|
||||
scan_target_modals_.input_data_type = input_data_type;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_brightness(float brightness) {
|
||||
scan_target_modals_.brightness = brightness;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_new_display_type(int cycles_per_line, Outputs::Display::Type displayType) {
|
||||
switch(displayType) {
|
||||
case DisplayType::PAL50:
|
||||
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 709379, 2500, 5, true); // i.e. 283.7516; 2.5 lines = vertical sync
|
||||
set_input_gamma(2.8f);
|
||||
case Outputs::Display::Type::PAL50:
|
||||
scan_target_modals_.intended_gamma = 2.8f;
|
||||
set_new_timing(cycles_per_line, 312, Outputs::Display::ColourSpace::YUV, 709379, 2500, 5, true); // i.e. 283.7516 colour cycles per line; 2.5 lines = vertical sync.
|
||||
break;
|
||||
|
||||
case DisplayType::NTSC60:
|
||||
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 455, 2, 6, false); // i.e. 227.5, 3 lines = vertical sync
|
||||
set_input_gamma(2.2f);
|
||||
case Outputs::Display::Type::NTSC60:
|
||||
scan_target_modals_.intended_gamma = 2.2f;
|
||||
set_new_timing(cycles_per_line, 262, Outputs::Display::ColourSpace::YIQ, 455, 2, 6, false); // i.e. 227.5 colour cycles per line, 3 lines = vertical sync.
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -84,175 +126,145 @@ void CRT::set_composite_function_type(CompositeSourceType type, float offset_of_
|
||||
}
|
||||
|
||||
void CRT::set_input_gamma(float gamma) {
|
||||
input_gamma_ = gamma;
|
||||
update_gamma();
|
||||
scan_target_modals_.intended_gamma = gamma;
|
||||
scan_target_->set_modals(scan_target_modals_);
|
||||
}
|
||||
|
||||
void CRT::set_output_gamma(float gamma) {
|
||||
output_gamma_ = gamma;
|
||||
update_gamma();
|
||||
}
|
||||
|
||||
void CRT::update_gamma() {
|
||||
float gamma_ratio = input_gamma_ / output_gamma_;
|
||||
openGL_output_builder_.set_gamma(gamma_ratio);
|
||||
}
|
||||
|
||||
CRT::CRT(unsigned int common_output_divisor, unsigned int buffer_depth) :
|
||||
common_output_divisor_(common_output_divisor),
|
||||
openGL_output_builder_(buffer_depth) {}
|
||||
|
||||
CRT::CRT( unsigned int cycles_per_line,
|
||||
unsigned int common_output_divisor,
|
||||
unsigned int height_of_display,
|
||||
ColourSpace colour_space,
|
||||
unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator,
|
||||
unsigned int vertical_sync_half_lines,
|
||||
CRT::CRT( int cycles_per_line,
|
||||
int clocks_per_pixel_greatest_common_divisor,
|
||||
int height_of_display,
|
||||
Outputs::Display::ColourSpace colour_space,
|
||||
int colour_cycle_numerator, int colour_cycle_denominator,
|
||||
int vertical_sync_half_lines,
|
||||
bool should_alternate,
|
||||
unsigned int buffer_depth) :
|
||||
CRT(common_output_divisor, buffer_depth) {
|
||||
Outputs::Display::InputDataType data_type) {
|
||||
scan_target_modals_.input_data_type = data_type;
|
||||
scan_target_modals_.cycles_per_line = cycles_per_line;
|
||||
scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor;
|
||||
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, vertical_sync_half_lines, should_alternate);
|
||||
}
|
||||
|
||||
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) :
|
||||
CRT(common_output_divisor, buffer_depth) {
|
||||
set_new_display_type(cycles_per_line, displayType);
|
||||
CRT::CRT( int cycles_per_line,
|
||||
int clocks_per_pixel_greatest_common_divisor,
|
||||
Outputs::Display::Type display_type,
|
||||
Outputs::Display::InputDataType data_type) {
|
||||
scan_target_modals_.input_data_type = data_type;
|
||||
scan_target_modals_.cycles_per_line = cycles_per_line;
|
||||
scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor;
|
||||
set_new_display_type(cycles_per_line, display_type);
|
||||
}
|
||||
|
||||
// MARK: - Sync loop
|
||||
|
||||
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) {
|
||||
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, int cycles_to_run_for, int *cycles_advanced) {
|
||||
return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
|
||||
}
|
||||
|
||||
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) {
|
||||
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced) {
|
||||
return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
|
||||
}
|
||||
|
||||
#define output_x1() (*reinterpret_cast<uint16_t *>(&next_output_run[OutputVertexOffsetOfHorizontal + 0]))
|
||||
#define output_x2() (*reinterpret_cast<uint16_t *>(&next_output_run[OutputVertexOffsetOfHorizontal + 2]))
|
||||
#define output_position_y() (*reinterpret_cast<uint16_t *>(&next_output_run[OutputVertexOffsetOfVertical + 0]))
|
||||
#define output_tex_y() (*reinterpret_cast<uint16_t *>(&next_output_run[OutputVertexOffsetOfVertical + 2]))
|
||||
Outputs::Display::ScanTarget::Scan::EndPoint CRT::end_point(uint16_t data_offset) {
|
||||
Display::ScanTarget::Scan::EndPoint end_point;
|
||||
|
||||
#define source_input_position_y() (*reinterpret_cast<uint16_t *>(&next_run[SourceVertexOffsetOfInputStart + 2]))
|
||||
#define source_output_position_x1() (*reinterpret_cast<uint16_t *>(&next_run[SourceVertexOffsetOfOutputStart + 0]))
|
||||
#define source_output_position_x2() (*reinterpret_cast<uint16_t *>(&next_run[SourceVertexOffsetOfEnds + 2]))
|
||||
#define source_phase() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 0]
|
||||
#define source_amplitude() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 1]
|
||||
end_point.x = uint16_t(horizontal_flywheel_->get_current_output_position());
|
||||
end_point.y = uint16_t(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_);
|
||||
end_point.data_offset = data_offset;
|
||||
|
||||
void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type) {
|
||||
std::unique_lock<std::mutex> output_lock = openGL_output_builder_.get_output_lock();
|
||||
// TODO: this is a workaround for the limited precision that can be posted onwards;
|
||||
// it'd be better to make time_multiplier_ an explicit modal and just not divide by it.
|
||||
const auto lost_precision = cycles_since_horizontal_sync_ % time_multiplier_;
|
||||
end_point.composite_angle = int16_t(((phase_numerator_ - lost_precision * colour_cycle_numerator_) << 6) / phase_denominator_) * (is_alernate_line_ ? -1 : 1);
|
||||
end_point.cycles_since_end_of_horizontal_retrace = uint16_t(cycles_since_horizontal_sync_ / time_multiplier_);
|
||||
|
||||
return end_point;
|
||||
}
|
||||
|
||||
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type, int number_of_samples) {
|
||||
number_of_cycles *= time_multiplier_;
|
||||
|
||||
bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
|
||||
const bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
|
||||
const auto total_cycles = number_of_cycles;
|
||||
bool did_output = false;
|
||||
|
||||
while(number_of_cycles) {
|
||||
|
||||
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
|
||||
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
|
||||
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
|
||||
// Get time until next horizontal and vertical sync generator events.
|
||||
int time_until_vertical_sync_event, time_until_horizontal_sync_event;
|
||||
const Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
|
||||
const Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
|
||||
|
||||
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
|
||||
// set it to false for the next run through this loop (if any)
|
||||
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
|
||||
phase_numerator_ += next_run_length * colour_cycle_numerator_;
|
||||
phase_numerator_ %= phase_denominator_;
|
||||
// Whichever event is scheduled to happen first is the one to advance to.
|
||||
const int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
|
||||
|
||||
hsync_requested = false;
|
||||
vsync_requested = false;
|
||||
|
||||
bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
|
||||
uint8_t *next_run = nullptr;
|
||||
if(is_output_segment && !openGL_output_builder_.composite_output_buffer_is_full()) {
|
||||
bool did_retain_source_data = openGL_output_builder_.texture_builder.retain_latest();
|
||||
if(did_retain_source_data) {
|
||||
next_run = openGL_output_builder_.array_builder.get_input_storage(SourceVertexSize);
|
||||
if(!next_run) {
|
||||
openGL_output_builder_.texture_builder.discard_latest();
|
||||
}
|
||||
}
|
||||
// Determine whether to output any data for this portion of the output; if so then grab somewhere to put it.
|
||||
const bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
|
||||
Outputs::Display::ScanTarget::Scan *const next_scan = is_output_segment ? scan_target_->begin_scan() : nullptr;
|
||||
did_output |= is_output_segment;
|
||||
|
||||
// If outputting, store the start location and scan constants.
|
||||
if(next_scan) {
|
||||
next_scan->end_points[0] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles));
|
||||
next_scan->composite_amplitude = colour_burst_amplitude_;
|
||||
}
|
||||
|
||||
if(next_run) {
|
||||
// output_y and texture locations will be written later; we won't necessarily know what they are
|
||||
// outside of the locked region
|
||||
source_output_position_x1() = static_cast<uint16_t>(horizontal_flywheel_->get_current_output_position());
|
||||
source_phase() = colour_burst_phase_;
|
||||
|
||||
// TODO: determine what the PAL phase-shift machines actually do re: the swinging burst.
|
||||
source_amplitude() = phase_alternates_ ? 128 - colour_burst_amplitude_ : 128 + colour_burst_amplitude_;
|
||||
}
|
||||
|
||||
// decrement the number of cycles left to run for and increment the
|
||||
// horizontal counter appropriately
|
||||
// Advance time: that'll affect both the colour subcarrier position and the number of cycles left to run.
|
||||
phase_numerator_ += next_run_length * colour_cycle_numerator_;
|
||||
number_of_cycles -= next_run_length;
|
||||
cycles_since_horizontal_sync_ += next_run_length;
|
||||
|
||||
// react to the incoming event...
|
||||
// React to the incoming event.
|
||||
horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
|
||||
vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
|
||||
|
||||
if(next_run) {
|
||||
source_output_position_x2() = static_cast<uint16_t>(horizontal_flywheel_->get_current_output_position());
|
||||
// End the scan if necessary.
|
||||
if(next_scan) {
|
||||
next_scan->end_points[1] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles));
|
||||
scan_target_->end_scan();
|
||||
}
|
||||
|
||||
// if this is horizontal retrace then advance the output line counter and bookend an output run
|
||||
Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None;
|
||||
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
|
||||
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
|
||||
bool needs_endpoint =
|
||||
(honoured_event == Flywheel::SyncEvent::StartRetrace && is_writing_composite_run_) ||
|
||||
(honoured_event == Flywheel::SyncEvent::EndRetrace && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
|
||||
// Announce horizontal retrace events.
|
||||
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) {
|
||||
// Reset the cycles-since-sync counter if this is the end of retrace.
|
||||
if(next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace) {
|
||||
cycles_since_horizontal_sync_ = 0;
|
||||
|
||||
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) is_alernate_line_ ^= phase_alternates_;
|
||||
// This is unnecessary, strictly speaking, but seeks to help ScanTargets fit as
|
||||
// much as possible into a fixed range.
|
||||
phase_numerator_ %= phase_denominator_;
|
||||
if(!phase_numerator_) phase_numerator_ += phase_denominator_;
|
||||
}
|
||||
|
||||
if(needs_endpoint) {
|
||||
if(
|
||||
!openGL_output_builder_.array_builder.is_full() &&
|
||||
!openGL_output_builder_.composite_output_buffer_is_full()) {
|
||||
// Announce event.
|
||||
const auto event =
|
||||
(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace)
|
||||
? Outputs::Display::ScanTarget::Event::BeginHorizontalRetrace : Outputs::Display::ScanTarget::Event::EndHorizontalRetrace;
|
||||
scan_target_->announce(
|
||||
event,
|
||||
!(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()),
|
||||
end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)),
|
||||
colour_burst_amplitude_);
|
||||
|
||||
if(!is_writing_composite_run_) {
|
||||
output_run_.x1 = static_cast<uint16_t>(horizontal_flywheel_->get_current_output_position());
|
||||
output_run_.y = static_cast<uint16_t>(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_);
|
||||
} else {
|
||||
// Get and write all those previously unwritten output ys
|
||||
const uint16_t output_y = openGL_output_builder_.get_composite_output_y();
|
||||
|
||||
// Construct the output run
|
||||
uint8_t *next_output_run = openGL_output_builder_.array_builder.get_output_storage(OutputVertexSize);
|
||||
if(next_output_run) {
|
||||
output_x1() = output_run_.x1;
|
||||
output_position_y() = output_run_.y;
|
||||
output_tex_y() = output_y;
|
||||
output_x2() = static_cast<uint16_t>(horizontal_flywheel_->get_current_output_position());
|
||||
}
|
||||
|
||||
// TODO: below I've assumed a one-to-one correspondance with output runs and input data; that's
|
||||
// obviously not completely sustainable. It's a latent bug.
|
||||
openGL_output_builder_.array_builder.flush(
|
||||
[=] (uint8_t *input_buffer, std::size_t input_size, uint8_t *output_buffer, std::size_t output_size) {
|
||||
openGL_output_builder_.texture_builder.flush(
|
||||
[=] (const std::vector<TextureBuilder::WriteArea> &write_areas, std::size_t number_of_write_areas) {
|
||||
// assert(number_of_write_areas * SourceVertexSize == input_size);
|
||||
if(number_of_write_areas * SourceVertexSize == input_size) {
|
||||
for(std::size_t run = 0; run < number_of_write_areas; run++) {
|
||||
*reinterpret_cast<uint16_t *>(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 0]) = write_areas[run].x;
|
||||
*reinterpret_cast<uint16_t *>(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 2]) = write_areas[run].y;
|
||||
*reinterpret_cast<uint16_t *>(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfEnds + 0]) = write_areas[run].x + write_areas[run].length;
|
||||
}
|
||||
}
|
||||
});
|
||||
for(std::size_t position = 0; position < input_size; position += SourceVertexSize) {
|
||||
(*reinterpret_cast<uint16_t *>(&input_buffer[position + SourceVertexOffsetOfOutputStart + 2])) = output_y;
|
||||
}
|
||||
});
|
||||
colour_burst_amplitude_ = 0;
|
||||
}
|
||||
is_writing_composite_run_ ^= true;
|
||||
// If retrace is starting, update phase if required and mark no colour burst spotted yet.
|
||||
if(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) {
|
||||
is_alernate_line_ ^= phase_alternates_;
|
||||
colour_burst_amplitude_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) {
|
||||
openGL_output_builder_.increment_composite_output_y();
|
||||
// Also announce vertical retrace events.
|
||||
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) {
|
||||
const auto event =
|
||||
(next_vertical_sync_event == Flywheel::SyncEvent::StartRetrace)
|
||||
? Outputs::Display::ScanTarget::Event::BeginVerticalRetrace : Outputs::Display::ScanTarget::Event::EndVerticalRetrace;
|
||||
scan_target_->announce(
|
||||
event,
|
||||
!(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()),
|
||||
end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)),
|
||||
colour_burst_amplitude_);
|
||||
}
|
||||
|
||||
// if this is vertical retrace then adcance a field
|
||||
@ -260,39 +272,34 @@ void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bo
|
||||
if(delegate_) {
|
||||
frames_since_last_delegate_call_++;
|
||||
if(frames_since_last_delegate_call_ == 20) {
|
||||
output_lock.unlock();
|
||||
delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises());
|
||||
output_lock.lock();
|
||||
frames_since_last_delegate_call_ = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(did_output) {
|
||||
scan_target_->submit();
|
||||
}
|
||||
}
|
||||
|
||||
#undef output_x1
|
||||
#undef output_x2
|
||||
#undef output_position_y
|
||||
#undef output_tex_y
|
||||
|
||||
#undef source_input_position_y
|
||||
#undef source_output_position_x1
|
||||
#undef source_output_position_x2
|
||||
#undef source_phase
|
||||
#undef source_amplitude
|
||||
|
||||
// MARK: - stream feeding methods
|
||||
|
||||
void CRT::output_scan(const Scan *const scan) {
|
||||
// simplified colour burst logic: if it's within the back porch we'll take it
|
||||
// Simplified colour burst logic: if it's within the back porch we'll take it.
|
||||
if(scan->type == Scan::Type::ColourBurst) {
|
||||
if(!colour_burst_amplitude_ && horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6) {
|
||||
unsigned int position_phase = (horizontal_flywheel_->get_current_time() * colour_cycle_numerator_ * 256) / phase_denominator_;
|
||||
colour_burst_phase_ = (position_phase + scan->phase) & 255;
|
||||
colour_burst_amplitude_ = scan->amplitude;
|
||||
|
||||
// Load phase_numerator_ as a fixed-point quantity in the range [0, 255].
|
||||
phase_numerator_ = scan->phase;
|
||||
if(colour_burst_phase_adjustment_ != 0xff)
|
||||
colour_burst_phase_ = (colour_burst_phase_ & ~63) + colour_burst_phase_adjustment_;
|
||||
phase_numerator_ = (phase_numerator_ & ~63) + colour_burst_phase_adjustment_;
|
||||
|
||||
// Multiply the phase_numerator_ up to be to the proper scale.
|
||||
phase_numerator_ = (phase_numerator_ * phase_denominator_) >> 8;
|
||||
|
||||
// Crib the colour burst amplitude.
|
||||
colour_burst_amplitude_ = scan->amplitude;
|
||||
}
|
||||
}
|
||||
// TODO: inspect raw data for potential colour burst if required; the DPLL and some zero crossing logic
|
||||
@ -303,18 +310,18 @@ void CRT::output_scan(const Scan *const scan) {
|
||||
const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync);
|
||||
is_receiving_sync_ = this_is_sync;
|
||||
|
||||
// horizontal sync is recognised on any leading edge that is not 'near' the expected vertical sync;
|
||||
// Horizontal sync is recognised on any leading edge that is not 'near' the expected vertical sync;
|
||||
// the second limb is to avoid slightly horizontal sync shifting from the common pattern of
|
||||
// equalisation pulses as the inverse of ordinary horizontal sync
|
||||
// equalisation pulses as the inverse of ordinary horizontal sync.
|
||||
bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync();
|
||||
|
||||
if(this_is_sync) {
|
||||
// if this is sync then either begin or continue a sync accumulation phase
|
||||
// If this is sync then either begin or continue a sync accumulation phase.
|
||||
is_accumulating_sync_ = true;
|
||||
cycles_since_sync_ = 0;
|
||||
} else {
|
||||
// if this is not sync then check how long it has been since sync. If it's more than
|
||||
// half a line then end sync accumulation and zero out the accumulating count
|
||||
// If this is not sync then check how long it has been since sync. If it's more than
|
||||
// half a line then end sync accumulation and zero out the accumulating count.
|
||||
cycles_since_sync_ += scan->number_of_cycles;
|
||||
if(cycles_since_sync_ > (cycles_per_line_ >> 2)) {
|
||||
cycles_of_sync_ = 0;
|
||||
@ -323,19 +330,19 @@ void CRT::output_scan(const Scan *const scan) {
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int number_of_cycles = scan->number_of_cycles;
|
||||
int number_of_cycles = scan->number_of_cycles;
|
||||
bool vsync_requested = false;
|
||||
|
||||
// if sync is being accumulated then accumulate it; if it crosses the vertical sync threshold then
|
||||
// divide this line at the crossing point and indicate vertical sync there
|
||||
// If sync is being accumulated then accumulate it; if it crosses the vertical sync threshold then
|
||||
// divide this line at the crossing point and indicate vertical sync there.
|
||||
if(is_accumulating_sync_ && !is_refusing_sync_) {
|
||||
cycles_of_sync_ += scan->number_of_cycles;
|
||||
|
||||
if(this_is_sync && cycles_of_sync_ >= sync_capacitor_charge_threshold_) {
|
||||
unsigned int overshoot = std::min(cycles_of_sync_ - sync_capacitor_charge_threshold_, number_of_cycles);
|
||||
const int overshoot = std::min(cycles_of_sync_ - sync_capacitor_charge_threshold_, number_of_cycles);
|
||||
if(overshoot) {
|
||||
number_of_cycles -= overshoot;
|
||||
advance_cycles(number_of_cycles, hsync_requested, false, scan->type);
|
||||
advance_cycles(number_of_cycles, hsync_requested, false, scan->type, 0);
|
||||
hsync_requested = false;
|
||||
number_of_cycles = overshoot;
|
||||
}
|
||||
@ -345,35 +352,36 @@ void CRT::output_scan(const Scan *const scan) {
|
||||
}
|
||||
}
|
||||
|
||||
advance_cycles(number_of_cycles, hsync_requested, vsync_requested, scan->type);
|
||||
advance_cycles(number_of_cycles, hsync_requested, vsync_requested, scan->type, scan->number_of_samples);
|
||||
}
|
||||
|
||||
/*
|
||||
These all merely channel into advance_cycles, supplying appropriate arguments
|
||||
*/
|
||||
void CRT::output_sync(unsigned int number_of_cycles) {
|
||||
void CRT::output_sync(int number_of_cycles) {
|
||||
Scan scan;
|
||||
scan.type = Scan::Type::Sync;
|
||||
scan.number_of_cycles = number_of_cycles;
|
||||
output_scan(&scan);
|
||||
}
|
||||
|
||||
void CRT::output_blank(unsigned int number_of_cycles) {
|
||||
void CRT::output_blank(int number_of_cycles) {
|
||||
Scan scan;
|
||||
scan.type = Scan::Type::Blank;
|
||||
scan.number_of_cycles = number_of_cycles;
|
||||
output_scan(&scan);
|
||||
}
|
||||
|
||||
void CRT::output_level(unsigned int number_of_cycles) {
|
||||
openGL_output_builder_.texture_builder.reduce_previous_allocation_to(1);
|
||||
void CRT::output_level(int number_of_cycles) {
|
||||
scan_target_->end_data(1);
|
||||
Scan scan;
|
||||
scan.type = Scan::Type::Level;
|
||||
scan.number_of_cycles = number_of_cycles;
|
||||
scan.number_of_samples = 1;
|
||||
output_scan(&scan);
|
||||
}
|
||||
|
||||
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude) {
|
||||
void CRT::output_colour_burst(int number_of_cycles, uint8_t phase, uint8_t amplitude) {
|
||||
Scan scan;
|
||||
scan.type = Scan::Type::ColourBurst;
|
||||
scan.number_of_cycles = number_of_cycles;
|
||||
@ -382,24 +390,26 @@ void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint
|
||||
output_scan(&scan);
|
||||
}
|
||||
|
||||
void CRT::output_default_colour_burst(unsigned int number_of_cycles) {
|
||||
output_colour_burst(number_of_cycles, static_cast<uint8_t>((phase_numerator_ * 256) / phase_denominator_));
|
||||
void CRT::output_default_colour_burst(int number_of_cycles, uint8_t amplitude) {
|
||||
// TODO: avoid applying a rounding error here?
|
||||
output_colour_burst(number_of_cycles, static_cast<uint8_t>((phase_numerator_ * 256) / phase_denominator_), amplitude);
|
||||
}
|
||||
|
||||
void CRT::set_immediate_default_phase(float phase) {
|
||||
phase = fmodf(phase, 1.0f);
|
||||
phase_numerator_ = static_cast<unsigned int>(phase * static_cast<float>(phase_denominator_));
|
||||
phase_numerator_ = static_cast<int>(phase * static_cast<float>(phase_denominator_));
|
||||
}
|
||||
|
||||
void CRT::output_data(unsigned int number_of_cycles, unsigned int number_of_samples) {
|
||||
openGL_output_builder_.texture_builder.reduce_previous_allocation_to(number_of_samples);
|
||||
void CRT::output_data(int number_of_cycles, size_t number_of_samples) {
|
||||
scan_target_->end_data(number_of_samples);
|
||||
Scan scan;
|
||||
scan.type = Scan::Type::Data;
|
||||
scan.number_of_cycles = number_of_cycles;
|
||||
scan.number_of_samples = int(number_of_samples);
|
||||
output_scan(&scan);
|
||||
}
|
||||
|
||||
Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) {
|
||||
Outputs::Display::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) {
|
||||
first_cycle_after_sync *= time_multiplier_;
|
||||
number_of_cycles *= time_multiplier_;
|
||||
|
||||
@ -407,34 +417,34 @@ Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_
|
||||
number_of_lines += 4;
|
||||
|
||||
// determine prima facie x extent
|
||||
unsigned int horizontal_period = horizontal_flywheel_->get_standard_period();
|
||||
unsigned int horizontal_scan_period = horizontal_flywheel_->get_scan_period();
|
||||
unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
|
||||
const int horizontal_period = horizontal_flywheel_->get_standard_period();
|
||||
const int horizontal_scan_period = horizontal_flywheel_->get_scan_period();
|
||||
const int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
|
||||
|
||||
// make sure that the requested range is visible
|
||||
if(static_cast<unsigned int>(first_cycle_after_sync) < horizontal_retrace_period) first_cycle_after_sync = static_cast<int>(horizontal_retrace_period);
|
||||
if(static_cast<unsigned int>(first_cycle_after_sync + number_of_cycles) > horizontal_scan_period) number_of_cycles = static_cast<int>(horizontal_scan_period - static_cast<unsigned int>(first_cycle_after_sync));
|
||||
if(static_cast<int>(first_cycle_after_sync) < horizontal_retrace_period) first_cycle_after_sync = static_cast<int>(horizontal_retrace_period);
|
||||
if(static_cast<int>(first_cycle_after_sync + number_of_cycles) > horizontal_scan_period) number_of_cycles = static_cast<int>(horizontal_scan_period - static_cast<int>(first_cycle_after_sync));
|
||||
|
||||
float start_x = static_cast<float>(static_cast<unsigned int>(first_cycle_after_sync) - horizontal_retrace_period) / static_cast<float>(horizontal_scan_period);
|
||||
float start_x = static_cast<float>(static_cast<int>(first_cycle_after_sync) - horizontal_retrace_period) / static_cast<float>(horizontal_scan_period);
|
||||
float width = static_cast<float>(number_of_cycles) / static_cast<float>(horizontal_scan_period);
|
||||
|
||||
// determine prima facie y extent
|
||||
unsigned int vertical_period = vertical_flywheel_->get_standard_period();
|
||||
unsigned int vertical_scan_period = vertical_flywheel_->get_scan_period();
|
||||
unsigned int vertical_retrace_period = vertical_period - vertical_scan_period;
|
||||
const int vertical_period = vertical_flywheel_->get_standard_period();
|
||||
const int vertical_scan_period = vertical_flywheel_->get_scan_period();
|
||||
const int vertical_retrace_period = vertical_period - vertical_scan_period;
|
||||
|
||||
// make sure that the requested range is visible
|
||||
// if(static_cast<unsigned int>(first_line_after_sync) * horizontal_period < vertical_retrace_period)
|
||||
// if(static_cast<int>(first_line_after_sync) * horizontal_period < vertical_retrace_period)
|
||||
// first_line_after_sync = (vertical_retrace_period + horizontal_period - 1) / horizontal_period;
|
||||
// if((first_line_after_sync + number_of_lines) * horizontal_period > vertical_scan_period)
|
||||
// number_of_lines = static_cast<int>(horizontal_scan_period - static_cast<unsigned int>(first_cycle_after_sync));
|
||||
// number_of_lines = static_cast<int>(horizontal_scan_period - static_cast<int>(first_cycle_after_sync));
|
||||
|
||||
float start_y = static_cast<float>((static_cast<unsigned int>(first_line_after_sync) * horizontal_period) - vertical_retrace_period) / static_cast<float>(vertical_scan_period);
|
||||
float height = static_cast<float>(static_cast<unsigned int>(number_of_lines) * horizontal_period) / vertical_scan_period;
|
||||
float start_y = static_cast<float>((static_cast<int>(first_line_after_sync) * horizontal_period) - vertical_retrace_period) / static_cast<float>(vertical_scan_period);
|
||||
float height = static_cast<float>(static_cast<int>(number_of_lines) * horizontal_period) / vertical_scan_period;
|
||||
|
||||
// adjust to ensure aspect ratio is correct
|
||||
float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f);
|
||||
float ideal_width = height * adjusted_aspect_ratio;
|
||||
const float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f);
|
||||
const float ideal_width = height * adjusted_aspect_ratio;
|
||||
if(ideal_width > width) {
|
||||
start_x -= (ideal_width - width) * 0.5f;
|
||||
width = ideal_width;
|
||||
@ -444,5 +454,5 @@ Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_
|
||||
height = ideal_height;
|
||||
}
|
||||
|
||||
return Rect(start_x, start_y, width, height);
|
||||
return Outputs::Display::Rect(start_x, start_y, width, height);
|
||||
}
|
||||
|
@ -10,12 +10,10 @@
|
||||
#define CRT_hpp
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "CRTTypes.hpp"
|
||||
#include "../ScanTarget.hpp"
|
||||
#include "Internals/Flywheel.hpp"
|
||||
#include "Internals/CRTOpenGL.hpp"
|
||||
#include "Internals/ArrayBuilder.hpp"
|
||||
#include "Internals/TextureBuilder.hpp"
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
@ -24,81 +22,66 @@ class CRT;
|
||||
|
||||
class Delegate {
|
||||
public:
|
||||
virtual void crt_did_end_batch_of_frames(CRT *crt, unsigned int number_of_frames, unsigned int number_of_unexpected_vertical_syncs) = 0;
|
||||
virtual void crt_did_end_batch_of_frames(CRT *crt, int number_of_frames, int number_of_unexpected_vertical_syncs) = 0;
|
||||
};
|
||||
|
||||
/*! Models a class 2d analogue output device, accepting a serial stream of data including syncs
|
||||
and generating the proper set of output spans. Attempts to act and react exactly as a real
|
||||
TV would have to things like irregular or off-spec sync, and includes logic properly to track
|
||||
colour phase for colour composite video.
|
||||
*/
|
||||
class CRT {
|
||||
private:
|
||||
CRT(unsigned int common_output_divisor, unsigned int buffer_depth);
|
||||
// The incoming clock lengths will be multiplied by @c time_multiplier_; this increases
|
||||
// precision across the line.
|
||||
int time_multiplier_ = 1;
|
||||
|
||||
// the incoming clock lengths will be multiplied by something to give at least 1000
|
||||
// sample points per line
|
||||
unsigned int time_multiplier_ = 1;
|
||||
const unsigned int common_output_divisor_ = 1;
|
||||
|
||||
// the two flywheels regulating scanning
|
||||
// Two flywheels regulate scanning; the vertical will have a range much greater than the horizontal;
|
||||
// the output divider is what that'll need to be divided by to reduce it into a 16-bit range as
|
||||
// posted on to the scan target.
|
||||
std::unique_ptr<Flywheel> horizontal_flywheel_, vertical_flywheel_;
|
||||
uint16_t vertical_flywheel_output_divider_ = 1;
|
||||
int vertical_flywheel_output_divider_ = 1;
|
||||
int cycles_since_horizontal_sync_ = 0;
|
||||
Display::ScanTarget::Scan::EndPoint end_point(uint16_t data_offset);
|
||||
|
||||
struct Scan {
|
||||
enum Type {
|
||||
Sync, Level, Data, Blank, ColourBurst
|
||||
} type;
|
||||
unsigned int number_of_cycles;
|
||||
union {
|
||||
struct {
|
||||
uint8_t phase, amplitude;
|
||||
};
|
||||
};
|
||||
} type = Scan::Blank;
|
||||
int number_of_cycles = 0, number_of_samples = 0;
|
||||
uint8_t phase = 0, amplitude = 0;
|
||||
};
|
||||
void output_scan(const Scan *scan);
|
||||
|
||||
uint8_t colour_burst_phase_ = 0, colour_burst_amplitude_ = 30, colour_burst_phase_adjustment_ = 0;
|
||||
int16_t colour_burst_angle_ = 0;
|
||||
uint8_t colour_burst_amplitude_ = 30;
|
||||
int colour_burst_phase_adjustment_ = 0xff;
|
||||
bool is_writing_composite_run_ = false;
|
||||
|
||||
unsigned int phase_denominator_ = 1, phase_numerator_ = 1, colour_cycle_numerator_ = 1;
|
||||
int64_t phase_denominator_ = 1;
|
||||
int64_t phase_numerator_ = 0;
|
||||
int64_t colour_cycle_numerator_ = 1;
|
||||
bool is_alernate_line_ = false, phase_alternates_ = false;
|
||||
|
||||
// the outer entry point for dispatching output_sync, output_blank, output_level and output_data
|
||||
void advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type);
|
||||
void advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type, int number_of_samples);
|
||||
Flywheel::SyncEvent get_next_vertical_sync_event(bool vsync_is_requested, int cycles_to_run_for, int *cycles_advanced);
|
||||
Flywheel::SyncEvent get_next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced);
|
||||
|
||||
// the inner entry point that determines whether and when the next sync event will occur within
|
||||
// the current output window
|
||||
Flywheel::SyncEvent get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced);
|
||||
Flywheel::SyncEvent get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced);
|
||||
|
||||
// OpenGL state
|
||||
OpenGLOutputBuilder openGL_output_builder_;
|
||||
|
||||
// temporary storage used during the construction of output runs
|
||||
struct {
|
||||
uint16_t x1, y;
|
||||
} output_run_;
|
||||
|
||||
// the delegate
|
||||
Delegate *delegate_ = nullptr;
|
||||
unsigned int frames_since_last_delegate_call_ = 0;
|
||||
int frames_since_last_delegate_call_ = 0;
|
||||
|
||||
// queued tasks for the OpenGL queue; performed before the next draw
|
||||
std::mutex function_mutex_;
|
||||
std::vector<std::function<void(void)>> enqueued_openGL_functions_;
|
||||
inline void enqueue_openGL_function(const std::function<void(void)> &function) {
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
enqueued_openGL_functions_.push_back(function);
|
||||
}
|
||||
bool is_receiving_sync_ = false; // @c true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync); @c false otherwise.
|
||||
bool is_accumulating_sync_ = false; // @c true if a sync level has triggered the suspicion that a vertical sync might be in progress; @c false otherwise.
|
||||
bool is_refusing_sync_ = false; // @c true once a vertical sync has been detected, until a prolonged period of non-sync has ended suspicion of an ongoing vertical sync.
|
||||
int sync_capacitor_charge_threshold_ = 0; // Charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync.
|
||||
int cycles_of_sync_ = 0; // The number of cycles since the potential vertical sync began.
|
||||
int cycles_since_sync_ = 0; // The number of cycles since last in sync, for defeating the possibility of this being a vertical sync.
|
||||
|
||||
// sync counter, for determining vertical sync
|
||||
bool is_receiving_sync_ = false; // true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync)
|
||||
bool is_accumulating_sync_ = false; // true if a sync level has triggered the suspicion that a vertical sync might be in progress
|
||||
bool is_refusing_sync_ = false; // true once a vertical sync has been detected, until a prolonged period of non-sync has ended suspicion of an ongoing vertical sync
|
||||
unsigned int sync_capacitor_charge_threshold_ = 0; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync
|
||||
unsigned int cycles_of_sync_ = 0; // the number of cycles since the potential vertical sync began
|
||||
unsigned int cycles_since_sync_ = 0; // the number of cycles since last in sync, for defeating the possibility of this being a vertical sync
|
||||
int cycles_per_line_ = 1;
|
||||
|
||||
unsigned int cycles_per_line_ = 1;
|
||||
|
||||
float input_gamma_ = 1.0f, output_gamma_ = 1.0f;
|
||||
void update_gamma();
|
||||
Outputs::Display::ScanTarget *scan_target_ = &Outputs::Display::NullScanTarget::singleton;
|
||||
Outputs::Display::ScanTarget::Modals scan_target_modals_;
|
||||
static const uint8_t DefaultAmplitude = 80;
|
||||
|
||||
public:
|
||||
/*! Constructs the CRT with a specified clock rate, height and colour subcarrier frequency.
|
||||
@ -108,10 +91,8 @@ class CRT {
|
||||
@param cycles_per_line The clock rate at which this CRT will be driven, specified as the number
|
||||
of cycles expected to take up one whole scanline of the display.
|
||||
|
||||
@param common_output_divisor The greatest a priori common divisor of all cycle counts that will be
|
||||
supplied to @c output_sync, @c output_data, etc; supply 1 if no greater divisor is known. For many
|
||||
machines output will run at a fixed multiple of the clock rate; knowing this divisor can improve
|
||||
internal precision.
|
||||
@param clocks_per_pixel_greatest_common_divisor The GCD of all potential lengths of a pixel
|
||||
in terms of the clock rate given as @c cycles_per_line.
|
||||
|
||||
@param height_of_display The number of lines that nominally form one field of the display, rounded
|
||||
up to the next whole integer.
|
||||
@ -124,76 +105,79 @@ class CRT {
|
||||
@param vertical_sync_half_lines The expected length of vertical synchronisation (equalisation pulses aside),
|
||||
in multiples of half a line.
|
||||
|
||||
@param buffer_depth The depth per pixel of source data buffers to create for this machine. Machines
|
||||
may provide per-clock-cycle data in the depth that they consider convenient, supplying a sampling
|
||||
function to convert between their data format and either a composite or RGB signal, allowing that
|
||||
work to be offloaded onto the GPU and allowing the output signal to be sampled at a rate appropriate
|
||||
to the display size.
|
||||
|
||||
@see @c set_rgb_sampling_function , @c set_composite_sampling_function
|
||||
@param data_type The format that the caller will use for input data.
|
||||
*/
|
||||
CRT(unsigned int cycles_per_line,
|
||||
unsigned int common_output_divisor,
|
||||
unsigned int height_of_display,
|
||||
ColourSpace colour_space,
|
||||
unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator,
|
||||
unsigned int vertical_sync_half_lines,
|
||||
CRT(int cycles_per_line,
|
||||
int clocks_per_pixel_greatest_common_divisor,
|
||||
int height_of_display,
|
||||
Outputs::Display::ColourSpace colour_space,
|
||||
int colour_cycle_numerator,
|
||||
int colour_cycle_denominator,
|
||||
int vertical_sync_half_lines,
|
||||
bool should_alternate,
|
||||
unsigned int buffer_depth);
|
||||
Outputs::Display::InputDataType data_type);
|
||||
|
||||
/*! Constructs the CRT with the specified clock rate, with the display height and colour
|
||||
subcarrier frequency dictated by a standard display type and with the requested number of
|
||||
buffers, each with the requested number of bytes per pixel.
|
||||
|
||||
Exactly identical to calling the designated constructor with colour subcarrier information
|
||||
/*! Exactly identical to calling the designated constructor with colour subcarrier information
|
||||
looked up by display type.
|
||||
*/
|
||||
CRT(unsigned int cycles_per_line,
|
||||
unsigned int common_output_divisor,
|
||||
DisplayType displayType,
|
||||
unsigned int buffer_depth);
|
||||
CRT(int cycles_per_line,
|
||||
int minimum_cycles_per_pixel,
|
||||
Outputs::Display::Type display_type,
|
||||
Outputs::Display::InputDataType data_type);
|
||||
|
||||
/*! Resets the CRT with new timing information. The CRT then continues as though the new timing had
|
||||
been provided at construction. */
|
||||
void set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int vertical_sync_half_lines, bool should_alternate);
|
||||
void set_new_timing(
|
||||
int cycles_per_line,
|
||||
int height_of_display,
|
||||
Outputs::Display::ColourSpace colour_space,
|
||||
int colour_cycle_numerator,
|
||||
int colour_cycle_denominator,
|
||||
int vertical_sync_half_lines,
|
||||
bool should_alternate);
|
||||
|
||||
/*! Resets the CRT with new timing information derived from a new display type. The CRT then continues
|
||||
as though the new timing had been provided at construction. */
|
||||
void set_new_display_type(unsigned int cycles_per_line, DisplayType displayType);
|
||||
void set_new_display_type(
|
||||
int cycles_per_line,
|
||||
Outputs::Display::Type display_type);
|
||||
|
||||
/*! Changes the type of data being supplied as input.
|
||||
*/
|
||||
void set_new_data_type(Outputs::Display::InputDataType data_type);
|
||||
|
||||
/*! Output at the sync level.
|
||||
|
||||
@param number_of_cycles The amount of time to putput sync for.
|
||||
*/
|
||||
void output_sync(unsigned int number_of_cycles);
|
||||
void output_sync(int number_of_cycles);
|
||||
|
||||
/*! Output at the blanking level.
|
||||
|
||||
@param number_of_cycles The amount of time to putput the blanking level for.
|
||||
*/
|
||||
void output_blank(unsigned int number_of_cycles);
|
||||
void output_blank(int number_of_cycles);
|
||||
|
||||
/*! Outputs the first written to the most-recently created run of data repeatedly for a prolonged period.
|
||||
|
||||
@param number_of_cycles The number of cycles to repeat the output for.
|
||||
*/
|
||||
void output_level(unsigned int number_of_cycles);
|
||||
void output_level(int number_of_cycles);
|
||||
|
||||
/*! Declares that the caller has created a run of data via @c allocate_write_area and @c get_write_target_for_buffer
|
||||
that is at least @c number_of_samples long, and that the first @c number_of_samples should be spread
|
||||
over @c number_of_cycles.
|
||||
/*! Declares that the caller has created a run of data via @c begin_data that is at least @c number_of_samples
|
||||
long, and that the first @c number_of_samples should be spread over @c number_of_cycles.
|
||||
|
||||
@param number_of_cycles The amount of data to output.
|
||||
|
||||
@param number_of_samples The number of samples of input data to output.
|
||||
|
||||
@see @c allocate_write_area , @c get_write_target_for_buffer
|
||||
@see @c begin_data
|
||||
*/
|
||||
void output_data(unsigned int number_of_cycles, unsigned int number_of_samples);
|
||||
void output_data(int number_of_cycles, size_t number_of_samples);
|
||||
|
||||
/*! A shorthand form for output_data that assumes the number of cycles to output for is the same as the number of samples. */
|
||||
void output_data(unsigned int number_of_cycles) {
|
||||
output_data(number_of_cycles, number_of_cycles);
|
||||
void output_data(int number_of_cycles) {
|
||||
output_data(number_of_cycles, size_t(number_of_cycles));
|
||||
}
|
||||
|
||||
/*! Outputs a colour burst.
|
||||
@ -203,16 +187,16 @@ class CRT {
|
||||
@param phase The initial phase of the colour burst in a measuring system with 256 units
|
||||
per circle, e.g. 0 = 0 degrees, 128 = 180 degrees, 256 = 360 degree.
|
||||
|
||||
@param amplitude The amplitude of the colour burst in 1/256ths of the amplitude of the
|
||||
@param amplitude The amplitude of the colour burst in 1/255ths of the amplitude of the
|
||||
positive portion of the wave.
|
||||
*/
|
||||
void output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude = 102);
|
||||
void output_colour_burst(int number_of_cycles, uint8_t phase, uint8_t amplitude = DefaultAmplitude);
|
||||
|
||||
/*! Outputs a colour burst exactly in phase with CRT expectations using the idiomatic amplitude.
|
||||
|
||||
@param number_of_cycles The length of the colour burst;
|
||||
*/
|
||||
void output_default_colour_burst(unsigned int number_of_cycles);
|
||||
void output_default_colour_burst(int number_of_cycles, uint8_t amplitude = DefaultAmplitude);
|
||||
|
||||
/*! Sets the current phase of the colour subcarrier used by output_default_colour_burst.
|
||||
|
||||
@ -232,64 +216,13 @@ class CRT {
|
||||
@param required_length The number of samples to allocate.
|
||||
@returns A pointer to the allocated area if room is available; @c nullptr otherwise.
|
||||
*/
|
||||
inline uint8_t *allocate_write_area(std::size_t required_length, std::size_t required_alignment = 1) {
|
||||
std::unique_lock<std::mutex> output_lock = openGL_output_builder_.get_output_lock();
|
||||
return openGL_output_builder_.texture_builder.allocate_write_area(required_length, required_alignment);
|
||||
}
|
||||
|
||||
/*! Causes appropriate OpenGL or OpenGL ES calls to be issued in order to draw the current CRT state.
|
||||
The caller is responsible for ensuring that a valid OpenGL context exists for the duration of this call.
|
||||
*/
|
||||
inline void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty) {
|
||||
{
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
for(std::function<void(void)> function : enqueued_openGL_functions_) {
|
||||
function();
|
||||
}
|
||||
enqueued_openGL_functions_.clear();
|
||||
}
|
||||
openGL_output_builder_.draw_frame(output_width, output_height, only_if_dirty);
|
||||
}
|
||||
|
||||
/*! Sets the OpenGL framebuffer to which output is drawn. */
|
||||
inline void set_target_framebuffer(GLint framebuffer) {
|
||||
enqueue_openGL_function( [framebuffer, this] {
|
||||
openGL_output_builder_.set_target_framebuffer(framebuffer);
|
||||
});
|
||||
inline uint8_t *begin_data(std::size_t required_length, std::size_t required_alignment = 1) {
|
||||
return scan_target_->begin_data(required_length, required_alignment);
|
||||
}
|
||||
|
||||
/*! Sets the gamma exponent for the simulated screen. */
|
||||
void set_input_gamma(float gamma);
|
||||
|
||||
/*! Sets the gamma exponent for the real, tangible screen on which content will be drawn. */
|
||||
void set_output_gamma(float gamma);
|
||||
|
||||
/*! Tells the CRT that the next call to draw_frame will occur on a different OpenGL context than
|
||||
the previous.
|
||||
|
||||
@param should_delete_resources If @c true then all resources, textures, vertex arrays, etc,
|
||||
currently held by the CRT will be deleted now via calls to glDeleteTexture and equivalent. If
|
||||
@c false then the references are simply marked as invalid.
|
||||
*/
|
||||
inline void set_openGL_context_will_change(bool should_delete_resources) {
|
||||
enqueue_openGL_function([should_delete_resources, this] {
|
||||
openGL_output_builder_.set_openGL_context_will_change(should_delete_resources);
|
||||
});
|
||||
}
|
||||
|
||||
/*! Sets a function that will map from whatever data the machine provided to a composite signal.
|
||||
|
||||
@param shader A GLSL fragment including a function with the signature
|
||||
`float composite_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)`
|
||||
that evaluates to the composite signal level as a function of a source buffer, sampling location, colour
|
||||
carrier phase and amplitude.
|
||||
*/
|
||||
inline void set_composite_sampling_function(const std::string &shader) {
|
||||
enqueue_openGL_function([shader, this] {
|
||||
openGL_output_builder_.set_composite_sampling_function(shader);
|
||||
});
|
||||
}
|
||||
|
||||
enum CompositeSourceType {
|
||||
/// The composite function provides continuous output.
|
||||
Continuous,
|
||||
@ -310,58 +243,36 @@ class CRT {
|
||||
*/
|
||||
void set_composite_function_type(CompositeSourceType type, float offset_of_first_sample = 0.0f);
|
||||
|
||||
/*! Sets a function that will map from whatever data the machine provided to an s-video signal.
|
||||
/*! Nominates a section of the display to crop to for output. */
|
||||
void set_visible_area(Outputs::Display::Rect visible_area);
|
||||
|
||||
If the output mode is composite then a default mapping from RGB to the display's
|
||||
output mode will be applied.
|
||||
|
||||
@param shader A GLSL fragment including a function with the signature
|
||||
`vec2 svideo_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)`
|
||||
that evaluates to the s-video signal level, luminance as the first component and chrominance
|
||||
as the second, as a function of a source buffer, sampling location and colour
|
||||
carrier phase; amplitude is supplied for its sign.
|
||||
*/
|
||||
inline void set_svideo_sampling_function(const std::string &shader) {
|
||||
enqueue_openGL_function([shader, this] {
|
||||
openGL_output_builder_.set_svideo_sampling_function(shader);
|
||||
});
|
||||
}
|
||||
|
||||
/*! Sets a function that will map from whatever data the machine provided to an RGB signal.
|
||||
|
||||
If the output mode is composite or svideo then a default mapping from RGB to the display's
|
||||
output mode will be applied.
|
||||
|
||||
@param shader A GLSL fragent including a function with the signature
|
||||
`vec3 rgb_sample(usampler2D sampler, vec2 coordinate)` that evaluates to an RGB colour
|
||||
as a function of:
|
||||
|
||||
* `usampler2D sampler` representing the source buffer; and
|
||||
* `vec2 coordinate` representing the source buffer location to sample from in the range [0, 1).
|
||||
*/
|
||||
inline void set_rgb_sampling_function(const std::string &shader) {
|
||||
enqueue_openGL_function([shader, this] {
|
||||
openGL_output_builder_.set_rgb_sampling_function(shader);
|
||||
});
|
||||
}
|
||||
|
||||
inline void set_video_signal(VideoSignal video_signal) {
|
||||
enqueue_openGL_function([video_signal, this] {
|
||||
openGL_output_builder_.set_video_signal(video_signal);
|
||||
});
|
||||
}
|
||||
|
||||
inline void set_visible_area(Rect visible_area) {
|
||||
enqueue_openGL_function([visible_area, this] {
|
||||
openGL_output_builder_.set_visible_area(visible_area);
|
||||
});
|
||||
}
|
||||
|
||||
Rect get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio);
|
||||
/*! @returns The rectangle describing a subset of the display, allowing for sync periods. */
|
||||
Outputs::Display::Rect get_rect_for_area(
|
||||
int first_line_after_sync,
|
||||
int number_of_lines,
|
||||
int first_cycle_after_sync,
|
||||
int number_of_cycles,
|
||||
float aspect_ratio);
|
||||
|
||||
/*! Sets the CRT delegate; set to @c nullptr if no delegate is desired. */
|
||||
inline void set_delegate(Delegate *delegate) {
|
||||
delegate_ = delegate;
|
||||
}
|
||||
|
||||
/*! Sets the scan target for CRT output. */
|
||||
void set_scan_target(Outputs::Display::ScanTarget *);
|
||||
|
||||
/*! Sets the display type that will be nominated to the scan target. */
|
||||
void set_display_type(Outputs::Display::DisplayType);
|
||||
|
||||
/*! Sets the offset to apply to phase when using the PhaseLinkedLuminance8 input data type. */
|
||||
void set_phase_linked_luminance_offset(float);
|
||||
|
||||
/*! Sets the input data type. */
|
||||
void set_input_data_type(Outputs::Display::InputDataType);
|
||||
|
||||
/*! Sets the output brightness. */
|
||||
void set_brightness(float);
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -1,48 +0,0 @@
|
||||
//
|
||||
// CRTTypes.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 08/03/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef CRTTypes_h
|
||||
#define CRTTypes_h
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
|
||||
struct Rect {
|
||||
struct {
|
||||
float x, y;
|
||||
} origin;
|
||||
|
||||
struct {
|
||||
float width, height;
|
||||
} size;
|
||||
|
||||
Rect() {}
|
||||
Rect(float x, float y, float width, float height) :
|
||||
origin({x, y}), size({width, height}) {}
|
||||
};
|
||||
|
||||
enum class DisplayType {
|
||||
PAL50,
|
||||
NTSC60
|
||||
};
|
||||
|
||||
enum class ColourSpace {
|
||||
YIQ,
|
||||
YUV
|
||||
};
|
||||
|
||||
enum class VideoSignal {
|
||||
RGB,
|
||||
SVideo,
|
||||
Composite
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CRTTypes_h */
|
@ -1,149 +0,0 @@
|
||||
//
|
||||
// ArrayBuilder.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 17/11/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "ArrayBuilder.hpp"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
using namespace Outputs::CRT;
|
||||
|
||||
ArrayBuilder::ArrayBuilder(std::size_t input_size, std::size_t output_size) :
|
||||
output_(output_size, nullptr),
|
||||
input_(input_size, nullptr) {}
|
||||
|
||||
ArrayBuilder::ArrayBuilder(std::size_t input_size, std::size_t output_size, std::function<void(bool is_input, uint8_t *, std::size_t)> submission_function) :
|
||||
output_(output_size, submission_function),
|
||||
input_(input_size, submission_function) {}
|
||||
|
||||
bool ArrayBuilder::is_full() {
|
||||
bool was_full;
|
||||
was_full = is_full_;
|
||||
return was_full;
|
||||
}
|
||||
|
||||
uint8_t *ArrayBuilder::get_input_storage(std::size_t size) {
|
||||
return get_storage(size, input_);
|
||||
}
|
||||
|
||||
uint8_t *ArrayBuilder::get_output_storage(std::size_t size) {
|
||||
return get_storage(size, output_);
|
||||
}
|
||||
|
||||
void ArrayBuilder::flush(const std::function<void(uint8_t *input, std::size_t input_size, uint8_t *output, std::size_t output_size)> &function) {
|
||||
if(!is_full_) {
|
||||
std::size_t input_size = 0, output_size = 0;
|
||||
uint8_t *input = input_.get_unflushed(input_size);
|
||||
uint8_t *output = output_.get_unflushed(output_size);
|
||||
function(input, input_size, output, output_size);
|
||||
|
||||
input_.flush();
|
||||
output_.flush();
|
||||
}
|
||||
}
|
||||
|
||||
void ArrayBuilder::bind_input() {
|
||||
input_.bind();
|
||||
}
|
||||
|
||||
void ArrayBuilder::bind_output() {
|
||||
output_.bind();
|
||||
}
|
||||
|
||||
ArrayBuilder::Submission ArrayBuilder::submit() {
|
||||
ArrayBuilder::Submission submission;
|
||||
|
||||
submission.input_size = input_.submit(true);
|
||||
submission.output_size = output_.submit(false);
|
||||
if(is_full_) {
|
||||
is_full_ = false;
|
||||
input_.reset();
|
||||
output_.reset();
|
||||
}
|
||||
|
||||
return submission;
|
||||
}
|
||||
|
||||
ArrayBuilder::Buffer::Buffer(std::size_t size, std::function<void(bool is_input, uint8_t *, std::size_t)> submission_function) :
|
||||
submission_function_(submission_function) {
|
||||
if(!submission_function_) {
|
||||
glGenBuffers(1, &buffer);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, buffer);
|
||||
glBufferData(GL_ARRAY_BUFFER, (GLsizeiptr)size, NULL, GL_STREAM_DRAW);
|
||||
}
|
||||
data.resize(size);
|
||||
}
|
||||
|
||||
ArrayBuilder::Buffer::~Buffer() {
|
||||
if(!submission_function_)
|
||||
glDeleteBuffers(1, &buffer);
|
||||
}
|
||||
|
||||
uint8_t *ArrayBuilder::get_storage(std::size_t size, Buffer &buffer) {
|
||||
uint8_t *pointer = buffer.get_storage(size);
|
||||
if(!pointer) is_full_ = true;
|
||||
return pointer;
|
||||
}
|
||||
|
||||
uint8_t *ArrayBuilder::Buffer::get_storage(std::size_t size) {
|
||||
if(is_full || allocated_data + size > data.size()) {
|
||||
is_full = true;
|
||||
return nullptr;
|
||||
}
|
||||
uint8_t *pointer = &data[allocated_data];
|
||||
allocated_data += size;
|
||||
return pointer;
|
||||
}
|
||||
|
||||
uint8_t *ArrayBuilder::Buffer::get_unflushed(std::size_t &size) {
|
||||
if(is_full) {
|
||||
return nullptr;
|
||||
}
|
||||
size = allocated_data - flushed_data;
|
||||
return &data[flushed_data];
|
||||
}
|
||||
|
||||
void ArrayBuilder::Buffer::flush() {
|
||||
if(submitted_data) {
|
||||
memmove(data.data(), &data[submitted_data], allocated_data - submitted_data);
|
||||
allocated_data -= submitted_data;
|
||||
flushed_data -= submitted_data;
|
||||
submitted_data = 0;
|
||||
}
|
||||
|
||||
flushed_data = allocated_data;
|
||||
}
|
||||
|
||||
std::size_t ArrayBuilder::Buffer::submit(bool is_input) {
|
||||
std::size_t length = flushed_data;
|
||||
if(submission_function_) {
|
||||
submission_function_(is_input, data.data(), length);
|
||||
} else {
|
||||
glBindBuffer(GL_ARRAY_BUFFER, buffer);
|
||||
uint8_t *destination = static_cast<uint8_t *>(glMapBufferRange(GL_ARRAY_BUFFER, 0, (GLsizeiptr)length, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT));
|
||||
if(!glGetError() && destination) {
|
||||
std::memcpy(destination, data.data(), length);
|
||||
glFlushMappedBufferRange(GL_ARRAY_BUFFER, 0, (GLsizeiptr)length);
|
||||
glUnmapBuffer(GL_ARRAY_BUFFER);
|
||||
} else {
|
||||
glBufferData(GL_ARRAY_BUFFER, (GLsizeiptr)length, data.data(), GL_STREAM_DRAW);
|
||||
}
|
||||
}
|
||||
submitted_data = flushed_data;
|
||||
return length;
|
||||
}
|
||||
|
||||
void ArrayBuilder::Buffer::bind() {
|
||||
glBindBuffer(GL_ARRAY_BUFFER, buffer);
|
||||
}
|
||||
|
||||
void ArrayBuilder::Buffer::reset() {
|
||||
is_full = false;
|
||||
allocated_data = 0;
|
||||
flushed_data = 0;
|
||||
submitted_data = 0;
|
||||
}
|
@ -1,101 +0,0 @@
|
||||
//
|
||||
// ArrayBuilder.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 17/11/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef ArrayBuilder_hpp
|
||||
#define ArrayBuilder_hpp
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
|
||||
/*!
|
||||
Owns two array buffers, an 'input' and an 'output' and vends pointers to allow an owner to write provisional data into those
|
||||
plus a flush function to lock provisional data into place. Also supplies a submit method to transfer all currently locked
|
||||
data to the GPU and bind_input/output methods to bind the internal buffers.
|
||||
|
||||
It is safe for one thread to communicate via the get_*_storage and flush inputs asynchronously from another that is making
|
||||
use of the bind and submit outputs.
|
||||
*/
|
||||
class ArrayBuilder {
|
||||
public:
|
||||
/// Creates an instance of ArrayBuilder with @c output_size bytes of storage for the output buffer and
|
||||
/// @c input_size bytes of storage for the input buffer.
|
||||
ArrayBuilder(std::size_t input_size, std::size_t output_size);
|
||||
|
||||
/// Creates an instance of ArrayBuilder with @c output_size bytes of storage for the output buffer and
|
||||
/// @c input_size bytes of storage for the input buffer that, rather than using OpenGL, will submit data
|
||||
/// to the @c submission_function. [Teleological: this is provided as a testing hook.]
|
||||
ArrayBuilder(std::size_t input_size, std::size_t output_size, std::function<void(bool is_input, uint8_t *, std::size_t)> submission_function);
|
||||
|
||||
/// Attempts to add @c size bytes to the input set.
|
||||
/// @returns a pointer to the allocated area if allocation was possible; @c nullptr otherwise.
|
||||
uint8_t *get_input_storage(std::size_t size);
|
||||
|
||||
/// Attempts to add @c size bytes to the output set.
|
||||
/// @returns a pointer to the allocated area if allocation was possible; @c nullptr otherwise.
|
||||
uint8_t *get_output_storage(std::size_t size);
|
||||
|
||||
/// @returns @c true if either of the input or output storage areas is currently exhausted; @c false otherwise.
|
||||
bool is_full();
|
||||
|
||||
/// If neither input nor output was exhausted since the last flush, atomically commits both input and output
|
||||
/// up to the currently allocated size for use upon the next @c submit, giving the supplied function a
|
||||
/// chance to perform last-minute processing. Otherwise acts as a no-op.
|
||||
void flush(const std::function<void(uint8_t *input, std::size_t input_size, uint8_t *output, std::size_t output_size)> &);
|
||||
|
||||
/// Binds the input array to GL_ARRAY_BUFFER.
|
||||
void bind_input();
|
||||
|
||||
/// Binds the output array to GL_ARRAY_BUFFER.
|
||||
void bind_output();
|
||||
|
||||
struct Submission {
|
||||
std::size_t input_size, output_size;
|
||||
};
|
||||
|
||||
/// Submits all flushed input and output data to the corresponding arrays.
|
||||
/// @returns A @c Submission record, indicating how much data of each type was submitted.
|
||||
Submission submit();
|
||||
|
||||
private:
|
||||
class Buffer {
|
||||
public:
|
||||
Buffer(std::size_t size, std::function<void(bool is_input, uint8_t *, std::size_t)> submission_function);
|
||||
~Buffer();
|
||||
|
||||
uint8_t *get_storage(std::size_t size);
|
||||
uint8_t *get_unflushed(std::size_t &size);
|
||||
|
||||
void flush();
|
||||
std::size_t submit(bool is_input);
|
||||
void bind();
|
||||
void reset();
|
||||
|
||||
private:
|
||||
bool is_full = false;
|
||||
GLuint buffer = 0;
|
||||
std::function<void(bool is_input, uint8_t *, std::size_t)> submission_function_;
|
||||
std::vector<uint8_t> data;
|
||||
std::size_t allocated_data = 0;
|
||||
std::size_t flushed_data = 0;
|
||||
std::size_t submitted_data = 0;
|
||||
} output_, input_;
|
||||
uint8_t *get_storage(std::size_t size, Buffer &buffer);
|
||||
|
||||
bool is_full_ = false;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ArrayBuilder_hpp */
|
@ -1,52 +0,0 @@
|
||||
//
|
||||
// CRTContants.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 19/03/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef CRTConstants_h
|
||||
#define CRTConstants_h
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include <cstddef>
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
|
||||
// Output vertices are those used to copy from an input buffer, whether it describes data that maps directly to RGB
|
||||
// or is one of the intermediate buffers that we've used to convert from composite towards RGB.
|
||||
const GLsizei OutputVertexOffsetOfHorizontal = 0;
|
||||
const GLsizei OutputVertexOffsetOfVertical = 4;
|
||||
|
||||
const GLsizei OutputVertexSize = 8;
|
||||
|
||||
// Input vertices, used only in composite mode, map from the input buffer to temporary buffer locations; such
|
||||
// remapping occurs to ensure a continous stream of data for each scan, giving correct out-of-bounds behaviour
|
||||
const GLsizei SourceVertexOffsetOfInputStart = 0;
|
||||
const GLsizei SourceVertexOffsetOfOutputStart = 4;
|
||||
const GLsizei SourceVertexOffsetOfEnds = 8;
|
||||
const GLsizei SourceVertexOffsetOfPhaseTimeAndAmplitude = 12;
|
||||
|
||||
const GLsizei SourceVertexSize = 16;
|
||||
|
||||
// These constants hold the size of the rolling buffer to which the CPU writes
|
||||
const GLsizei InputBufferBuilderWidth = 2048;
|
||||
const GLsizei InputBufferBuilderHeight = 512;
|
||||
|
||||
// This is the size of the intermediate buffers used during composite to RGB conversion
|
||||
const GLsizei IntermediateBufferWidth = 2048;
|
||||
const GLsizei IntermediateBufferHeight = 512;
|
||||
|
||||
// Some internal buffer sizes
|
||||
const GLsizeiptr OutputVertexBufferDataSize = OutputVertexSize * IntermediateBufferHeight; // i.e. the maximum number of scans of output that can be created between draws
|
||||
const GLsizeiptr SourceVertexBufferDataSize = SourceVertexSize * IntermediateBufferHeight * 10; // (the maximum number of scans) * conservative, high guess at a maximumum number of events likely to occur within a scan
|
||||
|
||||
// TODO: when SourceVertexBufferDataSize is exhausted, the CRT keeps filling OutputVertexBufferDataSize regardless,
|
||||
// leading to empty scanlines that nevertheless clear old contents.
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CRTContants_h */
|
@ -1,527 +0,0 @@
|
||||
// CRTOpenGL.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 03/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "../CRT.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "CRTOpenGL.hpp"
|
||||
#include "../../../SignalProcessing/FIRFilter.hpp"
|
||||
#include "Shaders/OutputShader.hpp"
|
||||
|
||||
using namespace Outputs::CRT;
|
||||
|
||||
namespace {
|
||||
static const GLenum source_data_texture_unit = GL_TEXTURE0;
|
||||
static const GLenum pixel_accumulation_texture_unit = GL_TEXTURE1;
|
||||
|
||||
static const GLenum composite_texture_unit = GL_TEXTURE2;
|
||||
static const GLenum separated_texture_unit = GL_TEXTURE3;
|
||||
static const GLenum filtered_texture_unit = GL_TEXTURE4;
|
||||
|
||||
static const GLenum work_texture_unit = GL_TEXTURE2;
|
||||
}
|
||||
|
||||
OpenGLOutputBuilder::OpenGLOutputBuilder(std::size_t bytes_per_pixel) :
|
||||
visible_area_(Rect(0, 0, 1, 1)),
|
||||
composite_src_output_y_(0),
|
||||
last_output_width_(0),
|
||||
last_output_height_(0),
|
||||
fence_(nullptr),
|
||||
texture_builder(bytes_per_pixel, source_data_texture_unit),
|
||||
array_builder(SourceVertexBufferDataSize, OutputVertexBufferDataSize) {
|
||||
glBlendFunc(GL_SRC_ALPHA, GL_CONSTANT_COLOR);
|
||||
glBlendColor(0.4f, 0.4f, 0.4f, 1.0f);
|
||||
|
||||
// create the output vertex array
|
||||
glGenVertexArrays(1, &output_vertex_array_);
|
||||
|
||||
// create the source vertex array
|
||||
glGenVertexArrays(1, &source_vertex_array_);
|
||||
|
||||
// bool supports_texture_barrier = false;
|
||||
#ifdef GL_NV_texture_barrier
|
||||
// GLint number_of_extensions;
|
||||
// glGetIntegerv(GL_NUM_EXTENSIONS, &number_of_extensions);
|
||||
//
|
||||
// for(GLuint c = 0; c < (GLuint)number_of_extensions; c++) {
|
||||
// const char *extension_name = (const char *)glGetStringi(GL_EXTENSIONS, c);
|
||||
// if(!std::strcmp(extension_name, "GL_NV_texture_barrier")) {
|
||||
// supports_texture_barrier = true;
|
||||
// }
|
||||
// }
|
||||
#endif
|
||||
|
||||
// if(supports_texture_barrier) {
|
||||
// work_texture_.reset(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight*2, work_texture_unit));
|
||||
// } else {
|
||||
composite_texture_.reset(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, composite_texture_unit, GL_NEAREST));
|
||||
separated_texture_.reset(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, separated_texture_unit, GL_NEAREST));
|
||||
filtered_texture_.reset(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, filtered_texture_unit, GL_LINEAR));
|
||||
// }
|
||||
}
|
||||
|
||||
OpenGLOutputBuilder::~OpenGLOutputBuilder() {
|
||||
glDeleteVertexArrays(1, &output_vertex_array_);
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_target_framebuffer(GLint target_framebuffer) {
|
||||
target_framebuffer_ = target_framebuffer;
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty) {
|
||||
// lock down any other draw_frames
|
||||
draw_mutex_.lock();
|
||||
|
||||
// establish essentials
|
||||
if(!output_shader_program_) {
|
||||
prepare_composite_input_shaders();
|
||||
prepare_svideo_input_shaders();
|
||||
prepare_rgb_input_shaders();
|
||||
prepare_source_vertex_array();
|
||||
|
||||
prepare_output_shader();
|
||||
prepare_output_vertex_array();
|
||||
|
||||
set_timing_uniforms();
|
||||
set_colour_space_uniforms();
|
||||
set_gamma();
|
||||
}
|
||||
|
||||
if(fence_ != nullptr) {
|
||||
// if the GPU is still busy, don't wait; we'll catch it next time
|
||||
if(glClientWaitSync(fence_, GL_SYNC_FLUSH_COMMANDS_BIT, only_if_dirty ? 0 : GL_TIMEOUT_IGNORED) == GL_TIMEOUT_EXPIRED) {
|
||||
draw_mutex_.unlock();
|
||||
return;
|
||||
}
|
||||
|
||||
glDeleteSync(fence_);
|
||||
}
|
||||
|
||||
// make sure everything is bound
|
||||
composite_texture_->bind_texture();
|
||||
separated_texture_->bind_texture();
|
||||
filtered_texture_->bind_texture();
|
||||
if(work_texture_) work_texture_->bind_texture();
|
||||
|
||||
// make sure there's a target to draw to
|
||||
if(!framebuffer_ || static_cast<unsigned int>(framebuffer_->get_height()) != output_height || static_cast<unsigned int>(framebuffer_->get_width()) != output_width) {
|
||||
std::unique_ptr<OpenGL::TextureTarget> new_framebuffer(new OpenGL::TextureTarget((GLsizei)output_width, (GLsizei)output_height, pixel_accumulation_texture_unit, GL_LINEAR));
|
||||
if(framebuffer_) {
|
||||
new_framebuffer->bind_framebuffer();
|
||||
glClear(GL_COLOR_BUFFER_BIT);
|
||||
|
||||
glActiveTexture(pixel_accumulation_texture_unit);
|
||||
framebuffer_->bind_texture();
|
||||
framebuffer_->draw(static_cast<float>(output_width) / static_cast<float>(output_height));
|
||||
|
||||
new_framebuffer->bind_texture();
|
||||
}
|
||||
framebuffer_ = std::move(new_framebuffer);
|
||||
}
|
||||
|
||||
// lock out the machine emulation until data is copied
|
||||
output_mutex_.lock();
|
||||
|
||||
// release the mapping, giving up on trying to draw if data has been lost
|
||||
ArrayBuilder::Submission array_submission = array_builder.submit();
|
||||
|
||||
// upload new source pixels, if any
|
||||
glActiveTexture(source_data_texture_unit);
|
||||
texture_builder.bind();
|
||||
texture_builder.submit();
|
||||
|
||||
// buffer usage restart from 0 for the next time around
|
||||
composite_src_output_y_ = 0;
|
||||
|
||||
// data having been grabbed, allow the machine to continue
|
||||
output_mutex_.unlock();
|
||||
|
||||
struct RenderStage {
|
||||
OpenGL::Shader *const shader;
|
||||
OpenGL::TextureTarget *const target;
|
||||
float clear_colour[3];
|
||||
};
|
||||
|
||||
// for composite video, go through four steps to get to something that can be painted to the output
|
||||
const RenderStage composite_render_stages[] = {
|
||||
{composite_input_shader_program_.get(), composite_texture_.get(), {0.0, 0.0, 0.0}},
|
||||
{composite_separation_filter_program_.get(), separated_texture_.get(), {0.0, 0.5, 0.5}},
|
||||
{composite_chrominance_filter_shader_program_.get(), filtered_texture_.get(), {0.0, 0.0, 0.0}},
|
||||
{nullptr, nullptr}
|
||||
};
|
||||
|
||||
// for s-video, there are two steps: it's like composite but skips separation
|
||||
const RenderStage svideo_render_stages[] = {
|
||||
{svideo_input_shader_program_.get(), separated_texture_.get(), {0.0, 0.5, 0.5}},
|
||||
{composite_chrominance_filter_shader_program_.get(), filtered_texture_.get(), {0.0, 0.0, 0.0}},
|
||||
{nullptr, nullptr}
|
||||
};
|
||||
|
||||
// for RGB video, there's also only two steps; a lowpass filter is still applied per physical reality
|
||||
const RenderStage rgb_render_stages[] = {
|
||||
{rgb_input_shader_program_.get(), composite_texture_.get(), {0.0, 0.0, 0.0}},
|
||||
{rgb_filter_shader_program_.get(), filtered_texture_.get(), {0.0, 0.0, 0.0}},
|
||||
{nullptr, nullptr}
|
||||
};
|
||||
|
||||
const RenderStage *active_pipeline;
|
||||
switch(video_signal_) {
|
||||
default:
|
||||
case VideoSignal::Composite: active_pipeline = composite_render_stages; break;
|
||||
case VideoSignal::SVideo: active_pipeline = svideo_render_stages; break;
|
||||
case VideoSignal::RGB: active_pipeline = rgb_render_stages; break;
|
||||
}
|
||||
|
||||
if(array_submission.input_size || array_submission.output_size) {
|
||||
// all drawing will be from the source vertex array and without blending
|
||||
glBindVertexArray(source_vertex_array_);
|
||||
glDisable(GL_BLEND);
|
||||
|
||||
#ifdef GL_NV_texture_barrier
|
||||
// if(work_texture_) {
|
||||
// work_texture_->bind_framebuffer();
|
||||
// glClear(GL_COLOR_BUFFER_BIT);
|
||||
// }
|
||||
#endif
|
||||
|
||||
while(active_pipeline->shader) {
|
||||
// switch to the framebuffer and shader associated with this stage
|
||||
active_pipeline->shader->bind();
|
||||
|
||||
if(!work_texture_) {
|
||||
active_pipeline->target->bind_framebuffer();
|
||||
|
||||
// if this is the final stage before painting to the CRT, clear the framebuffer before drawing in order to blank out
|
||||
// those portions for which no input was provided
|
||||
// if(!active_pipeline[1].shader) {
|
||||
glClearColor(active_pipeline->clear_colour[0], active_pipeline->clear_colour[1], active_pipeline->clear_colour[2], 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT);
|
||||
// }
|
||||
}
|
||||
|
||||
// draw
|
||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, (GLsizei)array_submission.input_size / SourceVertexSize);
|
||||
|
||||
active_pipeline++;
|
||||
#ifdef GL_NV_texture_barrier
|
||||
// glTextureBarrierNV();
|
||||
#endif
|
||||
}
|
||||
|
||||
// prepare to transfer to framebuffer
|
||||
framebuffer_->bind_framebuffer();
|
||||
|
||||
// draw from the output array buffer, with blending
|
||||
glBindVertexArray(output_vertex_array_);
|
||||
glEnable(GL_BLEND);
|
||||
|
||||
// update uniforms, then bind the target
|
||||
if(last_output_width_ != output_width || last_output_height_ != output_height) {
|
||||
output_shader_program_->set_output_size(output_width, output_height, visible_area_);
|
||||
last_output_width_ = output_width;
|
||||
last_output_height_ = output_height;
|
||||
|
||||
// Configure right and left gutters to crop the left- and right-hand 1% of the display.
|
||||
left_overlay_.reset(new OpenGL::Rectangle(output_shader_program_->get_left_extent() * 0.98f, -1.0f, -1.0f, 2.0f));
|
||||
right_overlay_.reset(new OpenGL::Rectangle(output_shader_program_->get_right_extent() * 0.98f, -1.0f, 1.0f, 2.0f));
|
||||
}
|
||||
output_shader_program_->bind();
|
||||
|
||||
// draw
|
||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, (GLsizei)array_submission.output_size / OutputVertexSize);
|
||||
|
||||
// mask off the gutter
|
||||
glDisable(GL_BLEND);
|
||||
left_overlay_->draw(0.0, 0.0, 0.0);
|
||||
right_overlay_->draw(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
#ifdef GL_NV_texture_barrier
|
||||
// glTextureBarrierNV();
|
||||
#endif
|
||||
|
||||
// Copy framebuffer to the intended place; apply a threshold so that any persistent errors in
|
||||
// the lower part of the colour channels are invisible.
|
||||
glDisable(GL_BLEND);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, static_cast<GLuint>(target_framebuffer_));
|
||||
glViewport(0, 0, (GLsizei)output_width, (GLsizei)output_height);
|
||||
|
||||
glActiveTexture(pixel_accumulation_texture_unit);
|
||||
framebuffer_->bind_texture();
|
||||
framebuffer_->draw(static_cast<float>(output_width) / static_cast<float>(output_height), 4.0f / 255.0f);
|
||||
|
||||
fence_ = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
|
||||
draw_mutex_.unlock();
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::reset_all_OpenGL_state() {
|
||||
composite_input_shader_program_ = nullptr;
|
||||
composite_separation_filter_program_ = nullptr;
|
||||
composite_chrominance_filter_shader_program_ = nullptr;
|
||||
svideo_input_shader_program_ = nullptr;
|
||||
rgb_input_shader_program_ = nullptr;
|
||||
rgb_filter_shader_program_ = nullptr;
|
||||
output_shader_program_ = nullptr;
|
||||
framebuffer_ = nullptr;
|
||||
last_output_width_ = last_output_height_ = 0;
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_openGL_context_will_change(bool should_delete_resources) {
|
||||
output_mutex_.lock();
|
||||
reset_all_OpenGL_state();
|
||||
output_mutex_.unlock();
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_composite_sampling_function(const std::string &shader) {
|
||||
std::lock_guard<std::mutex> lock_guard(output_mutex_);
|
||||
composite_shader_ = shader;
|
||||
reset_all_OpenGL_state();
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_svideo_sampling_function(const std::string &shader) {
|
||||
std::lock_guard<std::mutex> lock_guard(output_mutex_);
|
||||
svideo_shader_ = shader;
|
||||
reset_all_OpenGL_state();
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_rgb_sampling_function(const std::string &shader) {
|
||||
std::lock_guard<std::mutex> lock_guard(output_mutex_);
|
||||
rgb_shader_ = shader;
|
||||
reset_all_OpenGL_state();
|
||||
}
|
||||
|
||||
// MARK: - Program compilation
|
||||
|
||||
void OpenGLOutputBuilder::prepare_composite_input_shaders() {
|
||||
composite_input_shader_program_ = OpenGL::IntermediateShader::make_composite_source_shader(composite_shader_, svideo_shader_, rgb_shader_);
|
||||
composite_input_shader_program_->set_source_texture_unit(source_data_texture_unit);
|
||||
composite_input_shader_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
|
||||
composite_separation_filter_program_ = OpenGL::IntermediateShader::make_chroma_luma_separation_shader();
|
||||
composite_separation_filter_program_->set_source_texture_unit(work_texture_ ? work_texture_unit : composite_texture_unit);
|
||||
composite_separation_filter_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
|
||||
composite_chrominance_filter_shader_program_ = OpenGL::IntermediateShader::make_chroma_filter_shader();
|
||||
composite_chrominance_filter_shader_program_->set_source_texture_unit(work_texture_ ? work_texture_unit : separated_texture_unit);
|
||||
composite_chrominance_filter_shader_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
|
||||
// TODO: the below is related to texture fencing, which is not yet implemented correctly, so not yet enabled.
|
||||
if(work_texture_) {
|
||||
composite_input_shader_program_->set_is_double_height(true, 0.0f, 0.0f);
|
||||
composite_separation_filter_program_->set_is_double_height(true, 0.0f, 0.5f);
|
||||
composite_chrominance_filter_shader_program_->set_is_double_height(true, 0.5f, 0.0f);
|
||||
} else {
|
||||
composite_input_shader_program_->set_is_double_height(false);
|
||||
composite_separation_filter_program_->set_is_double_height(false);
|
||||
composite_chrominance_filter_shader_program_->set_is_double_height(false);
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::prepare_svideo_input_shaders() {
|
||||
if(!svideo_shader_.empty() || !rgb_shader_.empty()) {
|
||||
svideo_input_shader_program_ = OpenGL::IntermediateShader::make_svideo_source_shader(svideo_shader_, rgb_shader_);
|
||||
svideo_input_shader_program_->set_source_texture_unit(source_data_texture_unit);
|
||||
svideo_input_shader_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
|
||||
// TODO: the below is related to texture fencing, which is not yet implemented correctly, so not yet enabled.
|
||||
if(work_texture_) {
|
||||
svideo_input_shader_program_->set_is_double_height(true, 0.0f, 0.0f);
|
||||
} else {
|
||||
svideo_input_shader_program_->set_is_double_height(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::prepare_rgb_input_shaders() {
|
||||
if(!rgb_shader_.empty()) {
|
||||
rgb_input_shader_program_ = OpenGL::IntermediateShader::make_rgb_source_shader(rgb_shader_);
|
||||
rgb_input_shader_program_->set_source_texture_unit(source_data_texture_unit);
|
||||
rgb_input_shader_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
|
||||
rgb_filter_shader_program_ = OpenGL::IntermediateShader::make_rgb_filter_shader();
|
||||
rgb_filter_shader_program_->set_source_texture_unit(composite_texture_unit);
|
||||
rgb_filter_shader_program_->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight);
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::prepare_source_vertex_array() {
|
||||
if(composite_input_shader_program_ || svideo_input_shader_program_) {
|
||||
glBindVertexArray(source_vertex_array_);
|
||||
array_builder.bind_input();
|
||||
}
|
||||
|
||||
using Shader = OpenGL::IntermediateShader;
|
||||
OpenGL::IntermediateShader *const shaders[] = {
|
||||
composite_input_shader_program_.get(),
|
||||
svideo_input_shader_program_.get()
|
||||
};
|
||||
for(int c = 0; c < 2; ++c) {
|
||||
if(!shaders[c]) continue;
|
||||
|
||||
shaders[c]->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::InputStart),
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize,
|
||||
(void *)SourceVertexOffsetOfInputStart, 1);
|
||||
|
||||
shaders[c]->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::OutputStart),
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize,
|
||||
(void *)SourceVertexOffsetOfOutputStart, 1);
|
||||
|
||||
shaders[c]->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::Ends),
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize,
|
||||
(void *)SourceVertexOffsetOfEnds, 1);
|
||||
|
||||
shaders[c]->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::PhaseTimeAndAmplitude),
|
||||
3, GL_UNSIGNED_BYTE, GL_FALSE, SourceVertexSize,
|
||||
(void *)SourceVertexOffsetOfPhaseTimeAndAmplitude, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::prepare_output_shader() {
|
||||
output_shader_program_ = OpenGL::OutputShader::make_shader("", "texture(texID, srcCoordinatesVarying).rgb", false);
|
||||
output_shader_program_->set_source_texture_unit(work_texture_ ? work_texture_unit : filtered_texture_unit);
|
||||
// output_shader_program_->set_source_texture_unit(composite_texture_unit);
|
||||
output_shader_program_->set_origin_is_double_height(!!work_texture_);
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::prepare_output_vertex_array() {
|
||||
if(output_shader_program_) {
|
||||
glBindVertexArray(output_vertex_array_);
|
||||
array_builder.bind_output();
|
||||
|
||||
using Shader = OpenGL::OutputShader;
|
||||
output_shader_program_->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::Horizontal),
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE, OutputVertexSize,
|
||||
(void *)OutputVertexOffsetOfHorizontal, 1);
|
||||
|
||||
output_shader_program_->enable_vertex_attribute_with_pointer(
|
||||
Shader::get_input_name(Shader::Input::Vertical),
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE, OutputVertexSize,
|
||||
(void *)OutputVertexOffsetOfVertical, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// MARK: - Public Configuration
|
||||
|
||||
void OpenGLOutputBuilder::set_video_signal(VideoSignal video_signal) {
|
||||
if(video_signal_ != video_signal) {
|
||||
video_signal_ = video_signal;
|
||||
composite_src_output_y_ = 0;
|
||||
last_output_width_ = 0;
|
||||
last_output_height_ = 0;
|
||||
set_output_shader_width();
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider) {
|
||||
std::lock_guard<std::mutex> lock_guard(output_mutex_);
|
||||
input_frequency_ = input_frequency;
|
||||
cycles_per_line_ = cycles_per_line;
|
||||
height_of_display_ = height_of_display;
|
||||
horizontal_scan_period_ = horizontal_scan_period;
|
||||
vertical_scan_period_ = vertical_scan_period;
|
||||
vertical_period_divider_ = vertical_period_divider;
|
||||
|
||||
set_timing_uniforms();
|
||||
}
|
||||
|
||||
// MARK: - Internal Configuration
|
||||
|
||||
void OpenGLOutputBuilder::set_colour_space_uniforms() {
|
||||
GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
|
||||
GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
|
||||
|
||||
GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
|
||||
GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
|
||||
|
||||
GLfloat *fromRGB = nullptr, *toRGB = nullptr;
|
||||
|
||||
switch(colour_space_) {
|
||||
case ColourSpace::YIQ:
|
||||
fromRGB = rgbToYIQ;
|
||||
toRGB = yiqToRGB;
|
||||
break;
|
||||
|
||||
case ColourSpace::YUV:
|
||||
fromRGB = rgbToYUV;
|
||||
toRGB = yuvToRGB;
|
||||
break;
|
||||
|
||||
default: assert(false); break;
|
||||
}
|
||||
|
||||
if(composite_input_shader_program_) composite_input_shader_program_->set_colour_conversion_matrices(fromRGB, toRGB);
|
||||
if(composite_separation_filter_program_) composite_separation_filter_program_->set_colour_conversion_matrices(fromRGB, toRGB);
|
||||
if(composite_chrominance_filter_shader_program_) composite_chrominance_filter_shader_program_->set_colour_conversion_matrices(fromRGB, toRGB);
|
||||
if(svideo_input_shader_program_) svideo_input_shader_program_->set_colour_conversion_matrices(fromRGB, toRGB);
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_gamma() {
|
||||
if(output_shader_program_) output_shader_program_->set_gamma_ratio(gamma_);
|
||||
}
|
||||
|
||||
/*!
|
||||
@returns The multiplier to apply to x positions received at the shader in order to produce locations in the intermediate
|
||||
texture. Intermediate textures are in phase with the composite signal, so this is a function of (i) composite frequency
|
||||
(determining how much of the texture adds up to a single line); and (ii) input frequency (determining what the input
|
||||
positions mean as a fraction of a line).
|
||||
*/
|
||||
float OpenGLOutputBuilder::get_composite_output_width() const {
|
||||
return
|
||||
(static_cast<float>(colour_cycle_numerator_ * 4) / static_cast<float>(colour_cycle_denominator_ * IntermediateBufferWidth)) *
|
||||
(static_cast<float>(IntermediateBufferWidth) / static_cast<float>(cycles_per_line_));
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_output_shader_width() {
|
||||
if(output_shader_program_) {
|
||||
// For anything that isn't RGB, scale so that sampling is in-phase with the colour subcarrier.
|
||||
const float width = (video_signal_ == VideoSignal::RGB) ? 1.0f : get_composite_output_width();
|
||||
output_shader_program_->set_input_width_scaler(width);
|
||||
}
|
||||
}
|
||||
|
||||
void OpenGLOutputBuilder::set_timing_uniforms() {
|
||||
const float colour_subcarrier_frequency = static_cast<float>(colour_cycle_numerator_) / static_cast<float>(colour_cycle_denominator_);
|
||||
const float output_width = get_composite_output_width();
|
||||
const float sample_cycles_per_line = cycles_per_line_ / output_width;
|
||||
|
||||
if(composite_separation_filter_program_) {
|
||||
composite_separation_filter_program_->set_width_scalers(output_width, output_width);
|
||||
composite_separation_filter_program_->set_separation_frequency(sample_cycles_per_line, colour_subcarrier_frequency);
|
||||
composite_separation_filter_program_->set_extension(6.0f);
|
||||
}
|
||||
if(composite_chrominance_filter_shader_program_) {
|
||||
composite_chrominance_filter_shader_program_->set_width_scalers(output_width, output_width);
|
||||
composite_chrominance_filter_shader_program_->set_extension(5.0f);
|
||||
}
|
||||
if(rgb_filter_shader_program_) {
|
||||
rgb_filter_shader_program_->set_width_scalers(1.0f, 1.0f);
|
||||
rgb_filter_shader_program_->set_filter_coefficients(sample_cycles_per_line, static_cast<float>(input_frequency_) * 0.5f);
|
||||
}
|
||||
if(output_shader_program_) {
|
||||
set_output_shader_width();
|
||||
output_shader_program_->set_timing(height_of_display_, cycles_per_line_, horizontal_scan_period_, vertical_scan_period_, vertical_period_divider_);
|
||||
}
|
||||
if(composite_input_shader_program_) {
|
||||
composite_input_shader_program_->set_width_scalers(1.0f, output_width);
|
||||
composite_input_shader_program_->set_extension(0.0f);
|
||||
}
|
||||
if(svideo_input_shader_program_) {
|
||||
svideo_input_shader_program_->set_width_scalers(1.0f, output_width);
|
||||
svideo_input_shader_program_->set_extension(0.0f);
|
||||
}
|
||||
if(rgb_input_shader_program_) {
|
||||
rgb_input_shader_program_->set_width_scalers(1.0f, 1.0f);
|
||||
}
|
||||
}
|
@ -1,180 +0,0 @@
|
||||
//
|
||||
// CRTOpenGL.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 13/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef CRTOpenGL_h
|
||||
#define CRTOpenGL_h
|
||||
|
||||
#include "../CRTTypes.hpp"
|
||||
#include "CRTConstants.hpp"
|
||||
#include "OpenGL.hpp"
|
||||
#include "TextureTarget.hpp"
|
||||
#include "Shaders/Shader.hpp"
|
||||
|
||||
#include "ArrayBuilder.hpp"
|
||||
#include "TextureBuilder.hpp"
|
||||
|
||||
#include "Shaders/OutputShader.hpp"
|
||||
#include "Shaders/IntermediateShader.hpp"
|
||||
#include "Rectangle.hpp"
|
||||
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
|
||||
class OpenGLOutputBuilder {
|
||||
private:
|
||||
// colour information
|
||||
ColourSpace colour_space_;
|
||||
unsigned int colour_cycle_numerator_;
|
||||
unsigned int colour_cycle_denominator_;
|
||||
VideoSignal video_signal_;
|
||||
float gamma_;
|
||||
|
||||
// timing information to allow reasoning about input information
|
||||
unsigned int input_frequency_;
|
||||
unsigned int cycles_per_line_;
|
||||
unsigned int height_of_display_;
|
||||
unsigned int horizontal_scan_period_;
|
||||
unsigned int vertical_scan_period_;
|
||||
unsigned int vertical_period_divider_;
|
||||
|
||||
// The user-supplied visible area
|
||||
Rect visible_area_;
|
||||
|
||||
// Other things the caller may have provided.
|
||||
std::string composite_shader_;
|
||||
std::string svideo_shader_;
|
||||
std::string rgb_shader_;
|
||||
GLint target_framebuffer_ = 0;
|
||||
|
||||
// Methods used by the OpenGL code
|
||||
void prepare_output_shader();
|
||||
void prepare_rgb_input_shaders();
|
||||
void prepare_svideo_input_shaders();
|
||||
void prepare_composite_input_shaders();
|
||||
|
||||
void prepare_output_vertex_array();
|
||||
void prepare_source_vertex_array();
|
||||
|
||||
// the run and input data buffers
|
||||
std::mutex output_mutex_;
|
||||
std::mutex draw_mutex_;
|
||||
|
||||
// transient buffers indicating composite data not yet decoded
|
||||
GLsizei composite_src_output_y_;
|
||||
|
||||
std::unique_ptr<OpenGL::OutputShader> output_shader_program_;
|
||||
|
||||
std::unique_ptr<OpenGL::IntermediateShader> composite_input_shader_program_;
|
||||
std::unique_ptr<OpenGL::IntermediateShader> composite_separation_filter_program_;
|
||||
std::unique_ptr<OpenGL::IntermediateShader> composite_chrominance_filter_shader_program_;
|
||||
|
||||
std::unique_ptr<OpenGL::IntermediateShader> svideo_input_shader_program_;
|
||||
|
||||
std::unique_ptr<OpenGL::IntermediateShader> rgb_input_shader_program_;
|
||||
std::unique_ptr<OpenGL::IntermediateShader> rgb_filter_shader_program_;
|
||||
|
||||
std::unique_ptr<OpenGL::TextureTarget> composite_texture_; // receives raw composite levels
|
||||
std::unique_ptr<OpenGL::TextureTarget> separated_texture_; // receives filtered Y in the R channel plus unfiltered but demodulated chrominance in G and B
|
||||
std::unique_ptr<OpenGL::TextureTarget> filtered_texture_; // receives filtered YIQ or YUV
|
||||
|
||||
std::unique_ptr<OpenGL::TextureTarget> work_texture_; // used for all intermediate rendering if texture fences are supported
|
||||
|
||||
std::unique_ptr<OpenGL::TextureTarget> framebuffer_; // the current pixel output
|
||||
|
||||
GLuint output_vertex_array_;
|
||||
GLuint source_vertex_array_;
|
||||
|
||||
unsigned int last_output_width_, last_output_height_;
|
||||
|
||||
void set_timing_uniforms();
|
||||
void set_colour_space_uniforms();
|
||||
void set_gamma();
|
||||
|
||||
void establish_OpenGL_state();
|
||||
void reset_all_OpenGL_state();
|
||||
|
||||
GLsync fence_;
|
||||
float get_composite_output_width() const;
|
||||
void set_output_shader_width();
|
||||
|
||||
// Maintain a couple of rectangles for masking off the extreme edge of the display;
|
||||
// this is a bit of a cheat: there's some tolerance in when a sync pulse will be
|
||||
// generated. So it might be slightly later than expected. Which might cause a scan
|
||||
// that is slightly longer than expected. Which means that from then on, those scans
|
||||
// might have touched parts of the extreme edge of the display which are not rescanned.
|
||||
// Which because I've implemented persistence-of-vision as an in-buffer effect will
|
||||
// cause perpetual persistence.
|
||||
//
|
||||
// The fix: just always treat that area as invisible. This is acceptable thanks to
|
||||
// the concept of overscan. One is allowed not to display extreme ends of the image.
|
||||
std::unique_ptr<OpenGL::Rectangle> right_overlay_;
|
||||
std::unique_ptr<OpenGL::Rectangle> left_overlay_;
|
||||
|
||||
public:
|
||||
// These two are protected by output_mutex_.
|
||||
TextureBuilder texture_builder;
|
||||
ArrayBuilder array_builder;
|
||||
|
||||
OpenGLOutputBuilder(std::size_t bytes_per_pixel);
|
||||
~OpenGLOutputBuilder();
|
||||
|
||||
inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) {
|
||||
std::lock_guard<std::mutex> output_guard(output_mutex_);
|
||||
colour_space_ = colour_space;
|
||||
colour_cycle_numerator_ = colour_cycle_numerator;
|
||||
colour_cycle_denominator_ = colour_cycle_denominator;
|
||||
set_colour_space_uniforms();
|
||||
}
|
||||
|
||||
inline void set_visible_area(Rect visible_area) {
|
||||
visible_area_ = visible_area;
|
||||
}
|
||||
|
||||
inline void set_gamma(float gamma) {
|
||||
gamma_ = gamma;
|
||||
set_gamma();
|
||||
}
|
||||
|
||||
inline std::unique_lock<std::mutex> get_output_lock() {
|
||||
return std::unique_lock<std::mutex>(output_mutex_);
|
||||
}
|
||||
|
||||
inline VideoSignal get_output_device() {
|
||||
return video_signal_;
|
||||
}
|
||||
|
||||
inline uint16_t get_composite_output_y() {
|
||||
return static_cast<uint16_t>(composite_src_output_y_);
|
||||
}
|
||||
|
||||
inline bool composite_output_buffer_is_full() {
|
||||
return composite_src_output_y_ == IntermediateBufferHeight;
|
||||
}
|
||||
|
||||
inline void increment_composite_output_y() {
|
||||
if(!composite_output_buffer_is_full())
|
||||
composite_src_output_y_++;
|
||||
}
|
||||
|
||||
void set_target_framebuffer(GLint);
|
||||
void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty);
|
||||
void set_openGL_context_will_change(bool should_delete_resources);
|
||||
void set_composite_sampling_function(const std::string &);
|
||||
void set_svideo_sampling_function(const std::string &);
|
||||
void set_rgb_sampling_function(const std::string &);
|
||||
void set_video_signal(VideoSignal);
|
||||
void set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider);
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CRTOpenGL_h */
|
@ -9,7 +9,9 @@
|
||||
#ifndef Flywheel_hpp
|
||||
#define Flywheel_hpp
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <cstdint>
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
@ -29,14 +31,12 @@ struct Flywheel {
|
||||
@param retrace_time The amount of time it takes to complete a retrace.
|
||||
@param sync_error_window The permitted deviation of sync timings from the norm.
|
||||
*/
|
||||
Flywheel(unsigned int standard_period, unsigned int retrace_time, unsigned int sync_error_window) :
|
||||
Flywheel(int standard_period, int retrace_time, int sync_error_window) :
|
||||
standard_period_(standard_period),
|
||||
retrace_time_(retrace_time),
|
||||
sync_error_window_(sync_error_window),
|
||||
counter_(0),
|
||||
counter_before_retrace_(standard_period - retrace_time),
|
||||
expected_next_sync_(standard_period),
|
||||
number_of_surprises_(0) {}
|
||||
expected_next_sync_(standard_period) {}
|
||||
|
||||
enum SyncEvent {
|
||||
/// Indicates that no synchronisation events will occur in the queried window.
|
||||
@ -60,14 +60,14 @@ struct Flywheel {
|
||||
|
||||
@returns The next synchronisation event.
|
||||
*/
|
||||
inline SyncEvent get_next_event_in_period(bool sync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) {
|
||||
inline SyncEvent get_next_event_in_period(bool sync_is_requested, int cycles_to_run_for, int *cycles_advanced) {
|
||||
// do we recognise this hsync, thereby adjusting future time expectations?
|
||||
if(sync_is_requested) {
|
||||
if(counter_ < sync_error_window_ || counter_ > expected_next_sync_ - sync_error_window_) {
|
||||
unsigned int time_now = (counter_ < sync_error_window_) ? expected_next_sync_ + counter_ : counter_;
|
||||
const int time_now = (counter_ < sync_error_window_) ? expected_next_sync_ + counter_ : counter_;
|
||||
expected_next_sync_ = (3*expected_next_sync_ + time_now) >> 2;
|
||||
} else {
|
||||
number_of_surprises_++;
|
||||
++number_of_surprises_;
|
||||
|
||||
if(counter_ < retrace_time_ + (expected_next_sync_ >> 1)) {
|
||||
expected_next_sync_ = (3*expected_next_sync_ + standard_period_ + sync_error_window_) >> 2;
|
||||
@ -78,15 +78,15 @@ struct Flywheel {
|
||||
}
|
||||
|
||||
SyncEvent proposed_event = SyncEvent::None;
|
||||
unsigned int proposed_sync_time = cycles_to_run_for;
|
||||
int proposed_sync_time = cycles_to_run_for;
|
||||
|
||||
// will we end an ongoing retrace?
|
||||
// End an ongoing retrace?
|
||||
if(counter_ < retrace_time_ && counter_ + proposed_sync_time >= retrace_time_) {
|
||||
proposed_sync_time = retrace_time_ - counter_;
|
||||
proposed_event = SyncEvent::EndRetrace;
|
||||
}
|
||||
|
||||
// will we start a retrace?
|
||||
// Start a retrace?
|
||||
if(counter_ + proposed_sync_time >= expected_next_sync_) {
|
||||
proposed_sync_time = expected_next_sync_ - counter_;
|
||||
proposed_event = SyncEvent::StartRetrace;
|
||||
@ -104,8 +104,13 @@ struct Flywheel {
|
||||
|
||||
@param event The synchronisation event to apply after that period.
|
||||
*/
|
||||
inline void apply_event(unsigned int cycles_advanced, SyncEvent event) {
|
||||
inline void apply_event(int cycles_advanced, SyncEvent event) {
|
||||
// In debug builds, perform a sanity check for counter overflow.
|
||||
#ifndef NDEBUG
|
||||
const int old_counter = counter_;
|
||||
#endif
|
||||
counter_ += cycles_advanced;
|
||||
assert(old_counter <= counter_);
|
||||
|
||||
switch(event) {
|
||||
default: return;
|
||||
@ -122,9 +127,9 @@ struct Flywheel {
|
||||
|
||||
@returns The current output position.
|
||||
*/
|
||||
inline unsigned int get_current_output_position() {
|
||||
inline int get_current_output_position() {
|
||||
if(counter_ < retrace_time_) {
|
||||
unsigned int retrace_distance = (counter_ * standard_period_) / retrace_time_;
|
||||
const int retrace_distance = int((int64_t(counter_) * int64_t(standard_period_)) / int64_t(retrace_time_));
|
||||
if(retrace_distance > counter_before_retrace_) return 0;
|
||||
return counter_before_retrace_ - retrace_distance;
|
||||
}
|
||||
@ -135,7 +140,7 @@ struct Flywheel {
|
||||
/*!
|
||||
@returns the amount of time since retrace last began. Time then counts monotonically up from zero.
|
||||
*/
|
||||
inline unsigned int get_current_time() {
|
||||
inline int get_current_time() {
|
||||
return counter_;
|
||||
}
|
||||
|
||||
@ -149,14 +154,14 @@ struct Flywheel {
|
||||
/*!
|
||||
@returns the expected length of the scan period (excluding retrace).
|
||||
*/
|
||||
inline unsigned int get_scan_period() {
|
||||
inline int get_scan_period() {
|
||||
return standard_period_ - retrace_time_;
|
||||
}
|
||||
|
||||
/*!
|
||||
@returns the expected length of a complete scan and retrace cycle.
|
||||
*/
|
||||
inline unsigned int get_standard_period() {
|
||||
inline int get_standard_period() {
|
||||
return standard_period_;
|
||||
}
|
||||
|
||||
@ -164,29 +169,31 @@ struct Flywheel {
|
||||
@returns the number of synchronisation events that have seemed surprising since the last time this method was called;
|
||||
a low number indicates good synchronisation.
|
||||
*/
|
||||
inline unsigned int get_and_reset_number_of_surprises() {
|
||||
unsigned int result = number_of_surprises_;
|
||||
inline int get_and_reset_number_of_surprises() {
|
||||
const int result = number_of_surprises_;
|
||||
number_of_surprises_ = 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@returns `true` if a sync is expected soon or the time at which it was expected was recent.
|
||||
@returns `true` if a sync is expected soon or if the time at which it was expected (or received) was recent.
|
||||
*/
|
||||
inline bool is_near_expected_sync() {
|
||||
return abs(static_cast<int>(counter_) - static_cast<int>(expected_next_sync_)) < static_cast<int>(standard_period_) / 50;
|
||||
return
|
||||
(counter_ < (standard_period_ / 100)) ||
|
||||
(counter_ >= expected_next_sync_ - (standard_period_ / 100));
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int standard_period_; // the normal length of time between syncs
|
||||
const unsigned int retrace_time_; // a constant indicating the amount of time it takes to perform a retrace
|
||||
const unsigned int sync_error_window_; // a constant indicating the window either side of the next expected sync in which we'll accept other syncs
|
||||
const int standard_period_; // the normal length of time between syncs
|
||||
const int retrace_time_; // a constant indicating the amount of time it takes to perform a retrace
|
||||
const int sync_error_window_; // a constant indicating the window either side of the next expected sync in which we'll accept other syncs
|
||||
|
||||
unsigned int counter_; // time since the _start_ of the last sync
|
||||
unsigned int counter_before_retrace_; // the value of _counter immediately before retrace began
|
||||
unsigned int expected_next_sync_; // our current expection of when the next sync will be encountered (which implies velocity)
|
||||
int counter_ = 0; // time since the _start_ of the last sync
|
||||
int counter_before_retrace_; // the value of _counter immediately before retrace began
|
||||
int expected_next_sync_; // our current expection of when the next sync will be encountered (which implies velocity)
|
||||
|
||||
unsigned int number_of_surprises_; // a count of the surprising syncs
|
||||
int number_of_surprises_ = 0; // a count of the surprising syncs
|
||||
|
||||
/*
|
||||
Implementation notes:
|
||||
|
@ -1,25 +0,0 @@
|
||||
//
|
||||
// OpenGL.h
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef OpenGL_h
|
||||
#define OpenGL_h
|
||||
|
||||
// TODO: figure out correct include paths for other platforms.
|
||||
#ifdef __APPLE__
|
||||
#if TARGET_OS_IPHONE
|
||||
#else
|
||||
#include <OpenGL/OpenGL.h>
|
||||
#include <OpenGL/gl3.h>
|
||||
#include <OpenGL/gl3ext.h>
|
||||
#endif
|
||||
#else
|
||||
#define GL_GLEXT_PROTOTYPES
|
||||
#include <GL/gl.h>
|
||||
#endif
|
||||
|
||||
#endif /* OpenGL_h */
|
@ -1,435 +0,0 @@
|
||||
//
|
||||
// IntermediateShader.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 28/04/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "IntermediateShader.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
|
||||
#include "../../../../SignalProcessing/FIRFilter.hpp"
|
||||
|
||||
using namespace OpenGL;
|
||||
|
||||
std::string IntermediateShader::get_input_name(Input input) {
|
||||
switch(input) {
|
||||
case Input::InputStart: return "inputStart";
|
||||
case Input::OutputStart: return "outputStart";
|
||||
case Input::Ends: return "ends";
|
||||
case Input::PhaseTimeAndAmplitude: return "phaseTimeAndAmplitude";
|
||||
|
||||
// Intended to be unreachable.
|
||||
default: assert(false); return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_shader(const std::string &fragment_shader, bool use_usampler, bool input_is_inputPosition) {
|
||||
std::ostringstream vertex_shader;
|
||||
vertex_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 " << get_input_name(Input::InputStart) << ";"
|
||||
"in vec2 " << get_input_name(Input::OutputStart) << ";"
|
||||
"in vec2 " << get_input_name(Input::Ends) << ";"
|
||||
"in vec3 " << get_input_name(Input::PhaseTimeAndAmplitude) << ";"
|
||||
|
||||
"uniform ivec2 outputTextureSize;"
|
||||
"uniform float extension;"
|
||||
"uniform " << (use_usampler ? "usampler2D" : "sampler2D") << " texID;"
|
||||
"uniform float offsets[5];"
|
||||
"uniform vec2 widthScalers;"
|
||||
"uniform float inputVerticalOffset;"
|
||||
"uniform float outputVerticalOffset;"
|
||||
"uniform float textureHeightDivisor;"
|
||||
|
||||
"out vec3 phaseAndAmplitudeVarying;"
|
||||
"out vec2 inputPositionsVarying[11];"
|
||||
"out vec2 delayLinePositionVarying;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
// odd vertices are on the left, even on the right
|
||||
"float extent = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
|
||||
// inputPosition.x is either inputStart.x or ends.x, depending on whether it is on the left or the right;
|
||||
// outputPosition.x is either outputStart.x or ends.y;
|
||||
// .ys are inputStart.y and outputStart.y respectively
|
||||
"vec2 inputPosition = vec2(mix(inputStart.x, ends.x, extent)*widthScalers[0], inputStart.y + inputVerticalOffset);"
|
||||
"vec2 outputPosition = vec2(mix(outputStart.x, ends.y, extent)*widthScalers[1], outputStart.y + outputVerticalOffset);"
|
||||
|
||||
"inputPosition.y += longitudinal;"
|
||||
"outputPosition.y += longitudinal;"
|
||||
|
||||
// extension is the amount to extend both the input and output by to add a full colour cycle at each end
|
||||
"vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (extent - 0.5);"
|
||||
|
||||
// extended[Input/Output]Position are [input/output]Position with the necessary applied extension
|
||||
"vec2 extendedInputPosition = " << (input_is_inputPosition ? "inputPosition" : "outputPosition") << " + extensionVector;"
|
||||
"vec2 extendedOutputPosition = outputPosition + extensionVector;"
|
||||
|
||||
// scale mappedInputPosition to the ordinary normalised range
|
||||
"vec2 textureSize = vec2(textureSize(texID, 0));"
|
||||
"vec2 mappedInputPosition = extendedInputPosition / textureSize;"
|
||||
|
||||
// setup input positions spaced as per the supplied offsets; these are for filtering where required
|
||||
"inputPositionsVarying[0] = mappedInputPosition - (vec2(5.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[1] = mappedInputPosition - (vec2(4.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[2] = mappedInputPosition - (vec2(3.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[3] = mappedInputPosition - (vec2(2.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[4] = mappedInputPosition - (vec2(1.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[5] = mappedInputPosition;"
|
||||
"inputPositionsVarying[6] = mappedInputPosition + (vec2(1.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[7] = mappedInputPosition + (vec2(2.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[8] = mappedInputPosition + (vec2(3.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[9] = mappedInputPosition + (vec2(4.0, 0.0) / textureSize);"
|
||||
"inputPositionsVarying[10] = mappedInputPosition + (vec2(5.0, 0.0) / textureSize);"
|
||||
"delayLinePositionVarying = mappedInputPosition - vec2(0.0, 1.0);"
|
||||
|
||||
// setup phaseAndAmplitudeVarying.x as colour burst subcarrier phase, in radians;
|
||||
// setup phaseAndAmplitudeVarying.y as colour burst amplitude;
|
||||
// setup phaseAndAmplitudeVarying.z as 1 / abs(colour burst amplitude), or 0.0 if amplitude is 0.0;
|
||||
"phaseAndAmplitudeVarying.x = (extendedOutputPosition.x + (phaseTimeAndAmplitude.x / 64.0)) * 0.5 * 3.141592654;"
|
||||
"phaseAndAmplitudeVarying.y = (phaseTimeAndAmplitude.y - 128) / 127.0;"
|
||||
"phaseAndAmplitudeVarying.z = (abs(phaseAndAmplitudeVarying.y) > 0.05) ? 1.0 / abs(phaseAndAmplitudeVarying.y) : 0.0;"
|
||||
|
||||
// determine output position by scaling the output position according to the texture size
|
||||
"vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0);"
|
||||
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
|
||||
"}";
|
||||
|
||||
return std::unique_ptr<IntermediateShader>(new IntermediateShader(vertex_shader.str(), fragment_shader, {
|
||||
{get_input_name(Input::InputStart), 0},
|
||||
{get_input_name(Input::OutputStart), 1},
|
||||
{get_input_name(Input::Ends), 2},
|
||||
{get_input_name(Input::PhaseTimeAndAmplitude), 3}
|
||||
}));
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_composite_source_shader(const std::string &composite_shader, const std::string &svideo_shader, const std::string &rgb_shader) {
|
||||
std::ostringstream fragment_shader;
|
||||
fragment_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
"in vec3 phaseAndAmplitudeVarying;"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
|
||||
"uniform usampler2D texID;"
|
||||
<< composite_shader;
|
||||
|
||||
if(composite_shader.empty()) {
|
||||
if(!svideo_shader.empty()) {
|
||||
fragment_shader <<
|
||||
svideo_shader <<
|
||||
"float composite_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"vec2 svideoColour = svideo_sample(texID, coordinate, phase, amplitude);"
|
||||
"return mix(svideoColour.x, svideoColour.y, abs(amplitude));"
|
||||
"}";
|
||||
} else {
|
||||
fragment_shader <<
|
||||
rgb_shader <<
|
||||
"uniform mat3 rgbToLumaChroma;"
|
||||
"float composite_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"vec3 rgbColour = clamp(rgb_sample(texID, coordinate), vec3(0.0), vec3(1.0));"
|
||||
"vec3 lumaChromaColour = rgbToLumaChroma * rgbColour;"
|
||||
"vec2 quadrature = vec2(cos(phase), sin(phase)) * vec2(abs(amplitude), amplitude);"
|
||||
"return dot(lumaChromaColour, vec3(1.0 - abs(amplitude), quadrature));"
|
||||
"}";
|
||||
}
|
||||
}
|
||||
|
||||
fragment_shader <<
|
||||
"void main(void)"
|
||||
"{"
|
||||
"fragColour = vec4(composite_sample(texID, inputPositionsVarying[5], phaseAndAmplitudeVarying.x, phaseAndAmplitudeVarying.y));"
|
||||
"}";
|
||||
|
||||
return make_shader(fragment_shader.str(), true, true);
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_svideo_source_shader(const std::string &svideo_shader, const std::string &rgb_shader) {
|
||||
std::ostringstream fragment_shader;
|
||||
fragment_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
"in vec3 phaseAndAmplitudeVarying;"
|
||||
|
||||
"out vec3 fragColour;"
|
||||
|
||||
"uniform usampler2D texID;"
|
||||
<< svideo_shader;
|
||||
|
||||
if(svideo_shader.empty()) {
|
||||
fragment_shader
|
||||
<< rgb_shader <<
|
||||
"uniform mat3 rgbToLumaChroma;"
|
||||
"vec2 svideo_sample(usampler2D texID, vec2 coordinate, float phase, float amplitude)"
|
||||
"{"
|
||||
"vec3 rgbColour = clamp(rgb_sample(texID, coordinate), vec3(0.0), vec3(1.0));"
|
||||
"vec3 lumaChromaColour = rgbToLumaChroma * rgbColour;"
|
||||
"vec2 quadrature = vec2(cos(phase), sin(phase)) * vec2(1.0, sign(amplitude));"
|
||||
"return vec2(lumaChromaColour.x, 0.5 + dot(quadrature, lumaChromaColour.yz) * 0.5);"
|
||||
"}";
|
||||
}
|
||||
|
||||
fragment_shader <<
|
||||
"void main(void)"
|
||||
"{"
|
||||
"vec2 sample = svideo_sample(texID, inputPositionsVarying[5], phaseAndAmplitudeVarying.x, phaseAndAmplitudeVarying.y);"
|
||||
"vec2 quadrature = vec2(cos(phaseAndAmplitudeVarying.x), sin(phaseAndAmplitudeVarying.x)) * vec2(1.0, sign(phaseAndAmplitudeVarying.y)) * 0.5 * phaseAndAmplitudeVarying.z;"
|
||||
"fragColour = vec3(sample.x, vec2(0.5) + (sample.y * quadrature));"
|
||||
"}";
|
||||
|
||||
return make_shader(fragment_shader.str(), true, true);
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_rgb_source_shader(const std::string &rgb_shader) {
|
||||
std::ostringstream fragment_shader;
|
||||
fragment_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
"in vec3 phaseAndAmplitudeVarying;"
|
||||
|
||||
"out vec3 fragColour;"
|
||||
|
||||
"uniform usampler2D texID;"
|
||||
|
||||
<< rgb_shader <<
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"fragColour = rgb_sample(texID, inputPositionsVarying[5]);"
|
||||
"}";
|
||||
|
||||
return make_shader(fragment_shader.str(), true, true);
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_chroma_luma_separation_shader() {
|
||||
return make_shader(
|
||||
"#version 150\n"
|
||||
|
||||
"in vec3 phaseAndAmplitudeVarying;"
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
|
||||
"out vec3 fragColour;"
|
||||
|
||||
"uniform sampler2D texID;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"vec4 samples = vec4("
|
||||
"texture(texID, inputPositionsVarying[3]).r,"
|
||||
"texture(texID, inputPositionsVarying[4]).r,"
|
||||
"texture(texID, inputPositionsVarying[5]).r,"
|
||||
"texture(texID, inputPositionsVarying[6]).r"
|
||||
");"
|
||||
// calculate luminance as either the straight average of the samples, if a colour subcarrier
|
||||
// was present, or else a weighted sample around the third sample if not.
|
||||
"float luminance = mix(dot(samples, vec4(0.25)), dot(samples, vec4(0.0, 0.16, 0.66, 0.16)), step(phaseAndAmplitudeVarying.z, 0.0));"
|
||||
|
||||
// define chroma to be whatever was here, minus luma
|
||||
"float chrominance = 0.5 * (samples.z - luminance) * phaseAndAmplitudeVarying.z;"
|
||||
|
||||
// scale luminance up to the range [0, 1)
|
||||
"luminance /= (1.0 - abs(phaseAndAmplitudeVarying.y));"
|
||||
|
||||
// split choma colours here, as the most direct place, writing out
|
||||
// RGB = (luma, chroma.x, chroma.y)
|
||||
"vec2 quadrature = vec2(cos(phaseAndAmplitudeVarying.x), sin(phaseAndAmplitudeVarying.x)) * vec2(1.0, sign(phaseAndAmplitudeVarying.y));"
|
||||
"fragColour = vec3(luminance, vec2(0.5) + (chrominance * quadrature));"
|
||||
"}",false, false);
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_chroma_filter_shader() {
|
||||
return make_shader(
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
"uniform vec4 weights[3];"
|
||||
|
||||
"out vec3 fragColour;"
|
||||
|
||||
"uniform sampler2D texID;"
|
||||
"uniform mat3 lumaChromaToRGB;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"vec3 samples[] = vec3[]("
|
||||
"texture(texID, inputPositionsVarying[3]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[4]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[5]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[6]).rgb"
|
||||
");"
|
||||
|
||||
"vec4 chromaChannel1 = vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g);"
|
||||
"vec4 chromaChannel2 = vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b);"
|
||||
|
||||
"vec3 lumaChromaColour = vec3(samples[2].r,"
|
||||
"dot(chromaChannel1, vec4(0.25)),"
|
||||
"dot(chromaChannel2, vec4(0.25))"
|
||||
");"
|
||||
|
||||
"vec3 lumaChromaColourInRange = (lumaChromaColour - vec3(0.0, 0.5, 0.5)) * vec3(1.0, 2.0, 2.0);"
|
||||
"fragColour = lumaChromaToRGB * lumaChromaColourInRange;"
|
||||
"}", false, false);
|
||||
}
|
||||
|
||||
std::unique_ptr<IntermediateShader> IntermediateShader::make_rgb_filter_shader() {
|
||||
return make_shader(
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 inputPositionsVarying[11];"
|
||||
"uniform vec4 weights[3];"
|
||||
|
||||
"out vec3 fragColour;"
|
||||
|
||||
"uniform sampler2D texID;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"vec3 samples[] = vec3[]("
|
||||
"texture(texID, inputPositionsVarying[0]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[1]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[2]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[3]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[4]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[5]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[6]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[7]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[8]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[9]).rgb,"
|
||||
"texture(texID, inputPositionsVarying[10]).rgb"
|
||||
");"
|
||||
|
||||
"vec4 channel1[] = vec4[]("
|
||||
"vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
|
||||
"vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
|
||||
"vec4(samples[8].r, samples[9].r, samples[10].r, 0.0)"
|
||||
");"
|
||||
"vec4 channel2[] = vec4[]("
|
||||
"vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
|
||||
"vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
|
||||
"vec4(samples[8].g, samples[9].g, samples[10].g, 0.0)"
|
||||
");"
|
||||
"vec4 channel3[] = vec4[]("
|
||||
"vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
|
||||
"vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
|
||||
"vec4(samples[8].b, samples[9].b, samples[10].b, 0.0)"
|
||||
");"
|
||||
|
||||
"fragColour = vec3("
|
||||
"dot(vec3("
|
||||
"dot(channel1[0], weights[0]),"
|
||||
"dot(channel1[1], weights[1]),"
|
||||
"dot(channel1[2], weights[2])"
|
||||
"), vec3(1.0)),"
|
||||
"dot(vec3("
|
||||
"dot(channel2[0], weights[0]),"
|
||||
"dot(channel2[1], weights[1]),"
|
||||
"dot(channel2[2], weights[2])"
|
||||
"), vec3(1.0)),"
|
||||
"dot(vec3("
|
||||
"dot(channel3[0], weights[0]),"
|
||||
"dot(channel3[1], weights[1]),"
|
||||
"dot(channel3[2], weights[2])"
|
||||
"), vec3(1.0))"
|
||||
");"
|
||||
"}", false, false);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_output_size(unsigned int output_width, unsigned int output_height) {
|
||||
set_uniform("outputTextureSize", (GLint)output_width, (GLint)output_height);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_source_texture_unit(GLenum unit) {
|
||||
set_uniform("texID", (GLint)(unit - GL_TEXTURE0));
|
||||
}
|
||||
|
||||
void IntermediateShader::set_filter_coefficients(float sampling_rate, float cutoff_frequency) {
|
||||
// The process below: the source texture will have bilinear filtering enabled; so by
|
||||
// sampling at non-integral offsets from the centre the shader can get a weighted sum
|
||||
// of two source pixels, then scale that once, to do two taps per sample. However
|
||||
// that works only if the two coefficients being joined have the same sign. So the
|
||||
// number of usable taps is between 11 and 21 depending on the values that come out.
|
||||
// Perform a linear search for the highest number of taps we can use with 11 samples.
|
||||
GLfloat weights[12];
|
||||
GLfloat offsets[5];
|
||||
unsigned int taps = 11;
|
||||
// unsigned int taps = 21;
|
||||
// while(1) {
|
||||
// float coefficients[21];
|
||||
SignalProcessing::FIRFilter luminance_filter(taps, sampling_rate, 0.0f, cutoff_frequency, SignalProcessing::FIRFilter::DefaultAttenuation);
|
||||
std::vector<float> coefficients = luminance_filter.get_coefficients();
|
||||
|
||||
// int sample = 0;
|
||||
// int c = 0;
|
||||
std::memset(weights, 0, sizeof(float)*12);
|
||||
std::memset(offsets, 0, sizeof(float)*5);
|
||||
|
||||
unsigned int half_size = (taps >> 1);
|
||||
for(unsigned int c = 0; c < taps; c++) {
|
||||
if(c < 5) offsets[c] = (half_size - c);
|
||||
weights[c] = coefficients[c];
|
||||
}
|
||||
// break;
|
||||
|
||||
// int halfSize = (taps >> 1);
|
||||
// while(c < halfSize && sample < 5) {
|
||||
// offsets[sample] = static_cast<float>(halfSize - c);
|
||||
// if((coefficients[c] < 0.0f) == (coefficients[c+1] < 0.0f) && c+1 < (taps >> 1)) {
|
||||
// weights[sample] = coefficients[c] + coefficients[c+1];
|
||||
// offsets[sample] -= (coefficients[c+1] / weights[sample]);
|
||||
// c += 2;
|
||||
// } else {
|
||||
// weights[sample] = coefficients[c];
|
||||
// c++;
|
||||
// }
|
||||
// sample ++;
|
||||
// }
|
||||
// if(c == halfSize) { // i.e. we finished combining inputs before we ran out of space
|
||||
// weights[sample] = coefficients[c];
|
||||
// for(int c = 0; c < sample; c++) {
|
||||
// weights[sample+c+1] = weights[sample-c-1];
|
||||
// }
|
||||
// break;
|
||||
// }
|
||||
// taps -= 2;
|
||||
// }
|
||||
|
||||
set_uniform("weights", 4, 3, weights);
|
||||
set_uniform("offsets", 1, 5, offsets);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_separation_frequency(float sampling_rate, float colour_burst_frequency) {
|
||||
set_filter_coefficients(sampling_rate, colour_burst_frequency);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_extension(float extension) {
|
||||
set_uniform("extension", extension);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_colour_conversion_matrices(float *fromRGB, float *toRGB) {
|
||||
set_uniform_matrix("lumaChromaToRGB", 3, false, toRGB);
|
||||
set_uniform_matrix("rgbToLumaChroma", 3, false, fromRGB);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_width_scalers(float input_scaler, float output_scaler) {
|
||||
set_uniform("widthScalers", input_scaler, output_scaler);
|
||||
}
|
||||
|
||||
void IntermediateShader::set_is_double_height(bool is_double_height, float input_offset, float output_offset) {
|
||||
set_uniform("textureHeightDivisor", is_double_height ? 2.0f : 1.0f);
|
||||
set_uniform("inputVerticalOffset", input_offset);
|
||||
set_uniform("outputVerticalOffset", output_offset);
|
||||
}
|
@ -1,144 +0,0 @@
|
||||
//
|
||||
// IntermediateShader.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 28/04/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef IntermediateShader_hpp
|
||||
#define IntermediateShader_hpp
|
||||
|
||||
#include "Shader.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <memory>
|
||||
|
||||
namespace OpenGL {
|
||||
|
||||
class IntermediateShader: public Shader {
|
||||
public:
|
||||
using Shader::Shader;
|
||||
|
||||
enum class Input {
|
||||
/// Contains the 2d start position of this run's input data.
|
||||
InputStart,
|
||||
/// Contains the 2d start position of this run's output position.
|
||||
OutputStart,
|
||||
/// A 2d vector comprised of (the final x position for input, the final x position for output).
|
||||
Ends,
|
||||
/// A 3d vector recording the colour subcarrier's (phase, time, amplitude) at the start of this span of data.
|
||||
PhaseTimeAndAmplitude
|
||||
};
|
||||
|
||||
/*!
|
||||
Obtains the name of a designated input. Designated inputs are guaranteed to have the same attribute location
|
||||
across multiple instances of IntermediateShader. So binding a vertex array to these inputs for any instance of
|
||||
IntermediateShader allows that array to work with all instances of IntermediateShader.
|
||||
|
||||
@param input The input to query.
|
||||
@returns The name used in this shader's source for the nominated input.
|
||||
*/
|
||||
static std::string get_input_name(Input input);
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will take runs from the inputPositions,
|
||||
converting them to single-channel composite values using @c composite_shader if non-empty
|
||||
or a reference composite conversion of @c svideo_shader (first preference) or
|
||||
@c rgb_shader (second preference) otherwise.
|
||||
|
||||
[input format] => one-channel composite.
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_composite_source_shader(const std::string &composite_shader, const std::string &svideo_shader, const std::string &rgb_shader);
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will take runs from the inputPositions,
|
||||
converting them to two-channel svideo values using @c svideo_shader if non-empty
|
||||
or a reference svideo conversion of @c rgb_shader otherwise.
|
||||
|
||||
[input format] => three-channel Y, noisy (m, n).
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_svideo_source_shader(const std::string &svideo_shader, const std::string &rgb_shader);
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will take runs from the inputPositions,
|
||||
converting them to RGB values using @c rgb_shader.
|
||||
|
||||
[input format] => three-channel RGB.
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_rgb_source_shader(const std::string &rgb_shader);
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will read composite samples from the R channel,
|
||||
filter then to obtain luminance, stored to R, and to separate out unfiltered chrominance, store to G and B.
|
||||
|
||||
one-channel composite => three-channel Y, noisy (m, n).
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_chroma_luma_separation_shader();
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will pass R through unchanged while filtering G and B.
|
||||
|
||||
three-channel Y, noisy (m, n) => three-channel RGB.
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_chroma_filter_shader();
|
||||
|
||||
/*!
|
||||
Constructs and returns an intermediate shader that will filter R, G and B.
|
||||
|
||||
three-channel RGB => frequency-limited three-channel RGB.
|
||||
*/
|
||||
static std::unique_ptr<IntermediateShader> make_rgb_filter_shader();
|
||||
|
||||
/*!
|
||||
Queues the configuration of this shader for output to an area of `output_width` and `output_height` pixels
|
||||
to occur upon the next `bind`.
|
||||
*/
|
||||
void set_output_size(unsigned int output_width, unsigned int output_height);
|
||||
|
||||
/*!
|
||||
Queues setting the texture unit (as an enum, e.g. `GL_TEXTURE0`) for source data to occur upon the next `bind`.
|
||||
*/
|
||||
void set_source_texture_unit(GLenum unit);
|
||||
|
||||
/*!
|
||||
Queues setting filtering coefficients for a lowpass filter based on the cutoff frequency to occur upon the next `bind`.
|
||||
*/
|
||||
void set_filter_coefficients(float sampling_rate, float cutoff_frequency);
|
||||
|
||||
/*!
|
||||
Queues configuration of filtering to separate luminance and chrominance based on a colour
|
||||
subcarrier of the given frequency to occur upon the next `bind`.
|
||||
*/
|
||||
void set_separation_frequency(float sampling_rate, float colour_burst_frequency);
|
||||
|
||||
/*!
|
||||
Queues setting of the number of colour phase cycles per sample, indicating whether output
|
||||
geometry should be extended so that a complete colour cycle is included at both the beginning and end,
|
||||
to occur upon the next `bind`.
|
||||
*/
|
||||
void set_extension(float extension);
|
||||
|
||||
/*!
|
||||
Queues setting the matrices that convert between RGB and chrominance/luminance to occur on the next `bind`.
|
||||
*/
|
||||
void set_colour_conversion_matrices(float *fromRGB, float *toRGB);
|
||||
|
||||
/*!
|
||||
Sets the proportions of the input and output areas that should be considered the whole width: 1.0 means use all available
|
||||
space, 0.5 means use half, etc.
|
||||
*/
|
||||
void set_width_scalers(float input_scaler, float output_scaler);
|
||||
|
||||
/*!
|
||||
Sets source and target vertical offsets.
|
||||
*/
|
||||
void set_is_double_height(bool is_double_height, float input_offset = 0.0f, float output_offset = 0.0f);
|
||||
|
||||
private:
|
||||
static std::unique_ptr<IntermediateShader> make_shader(const std::string &fragment_shader, bool use_usampler, bool input_is_inputPosition);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* IntermediateShader_hpp */
|
@ -1,142 +0,0 @@
|
||||
//
|
||||
// OutputShader.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 27/04/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "OutputShader.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <sstream>
|
||||
|
||||
using namespace OpenGL;
|
||||
|
||||
std::string OutputShader::get_input_name(Input input) {
|
||||
switch(input) {
|
||||
case Input::Horizontal: return "horizontal";
|
||||
case Input::Vertical: return "vertical";
|
||||
|
||||
// Intended to be unreachable.
|
||||
default: assert(false); return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<OutputShader> OutputShader::make_shader(const char *fragment_methods, const char *colour_expression, bool use_usampler) {
|
||||
const std::string sampler_type = use_usampler ? "usampler2D" : "sampler2D";
|
||||
|
||||
std::ostringstream vertex_shader;
|
||||
vertex_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 " << get_input_name(Input::Horizontal) << ";"
|
||||
"in vec2 " << get_input_name(Input::Vertical) << ";"
|
||||
|
||||
"uniform vec2 boundsOrigin;"
|
||||
"uniform vec2 boundsSize;"
|
||||
"uniform vec2 positionConversion;"
|
||||
"uniform vec2 scanNormal;"
|
||||
"uniform " << sampler_type << " texID;"
|
||||
"uniform float inputScaler;"
|
||||
"uniform int textureHeightDivisor;"
|
||||
|
||||
"out float lateralVarying;"
|
||||
"out vec2 srcCoordinatesVarying;"
|
||||
"out vec2 iSrcCoordinatesVarying;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
"float x = mix(horizontal.x, horizontal.y, longitudinal);"
|
||||
|
||||
"lateralVarying = lateral - 0.5;"
|
||||
|
||||
"vec2 vSrcCoordinates = vec2(x, vertical.y);"
|
||||
"ivec2 textureSize = textureSize(texID, 0) * ivec2(1, textureHeightDivisor);"
|
||||
"iSrcCoordinatesVarying = vSrcCoordinates;"
|
||||
"srcCoordinatesVarying = vec2(inputScaler * vSrcCoordinates.x / textureSize.x, (vSrcCoordinates.y + 0.5) / textureSize.y);"
|
||||
"srcCoordinatesVarying.x = srcCoordinatesVarying.x - mod(srcCoordinatesVarying.x, 1.0 / textureSize.x);"
|
||||
|
||||
"vec2 vPosition = vec2(x, vertical.x);"
|
||||
"vec2 floatingPosition = (vPosition / positionConversion) + lateral * scanNormal;"
|
||||
"vec2 mappedPosition = (floatingPosition - boundsOrigin) / boundsSize;"
|
||||
"gl_Position = vec4(mappedPosition.x * 2.0 - 1.0, 1.0 - mappedPosition.y * 2.0, 0.0, 1.0);"
|
||||
"}";
|
||||
|
||||
std::ostringstream fragment_shader;
|
||||
fragment_shader <<
|
||||
"#version 150\n"
|
||||
|
||||
"in float lateralVarying;"
|
||||
"in vec2 srcCoordinatesVarying;"
|
||||
"in vec2 iSrcCoordinatesVarying;"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
|
||||
"uniform " << sampler_type << " texID;"
|
||||
"uniform float gamma;"
|
||||
|
||||
<< fragment_methods <<
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"fragColour = vec4(pow(" << colour_expression << ", vec3(gamma)), 0.64);"//*cos(lateralVarying)
|
||||
"}";
|
||||
|
||||
return std::unique_ptr<OutputShader>(new OutputShader(vertex_shader.str(), fragment_shader.str(), {
|
||||
{get_input_name(Input::Horizontal), 0},
|
||||
{get_input_name(Input::Vertical), 1}
|
||||
}));
|
||||
}
|
||||
|
||||
void OutputShader::set_output_size(unsigned int output_width, unsigned int output_height, Outputs::CRT::Rect visible_area) {
|
||||
GLfloat outputAspectRatioMultiplier = (static_cast<float>(output_width) / static_cast<float>(output_height)) / (4.0f / 3.0f);
|
||||
GLfloat bonusWidth = (outputAspectRatioMultiplier - 1.0f) * visible_area.size.width;
|
||||
|
||||
left_extent_ = (-1.0f / outputAspectRatioMultiplier) / visible_area.size.width;
|
||||
right_extent_ = (1.0f / outputAspectRatioMultiplier) / visible_area.size.width;
|
||||
|
||||
visible_area.origin.x -= bonusWidth * 0.5f;
|
||||
visible_area.size.width *= outputAspectRatioMultiplier;
|
||||
|
||||
set_uniform("boundsOrigin", (GLfloat)visible_area.origin.x, (GLfloat)visible_area.origin.y);
|
||||
set_uniform("boundsSize", (GLfloat)visible_area.size.width, (GLfloat)visible_area.size.height);
|
||||
}
|
||||
|
||||
float OutputShader::get_left_extent() {
|
||||
return left_extent_;
|
||||
}
|
||||
|
||||
float OutputShader::get_right_extent() {
|
||||
return right_extent_;
|
||||
}
|
||||
|
||||
void OutputShader::set_source_texture_unit(GLenum unit) {
|
||||
set_uniform("texID", (GLint)(unit - GL_TEXTURE0));
|
||||
}
|
||||
|
||||
void OutputShader::set_timing(unsigned int height_of_display, unsigned int cycles_per_line, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider) {
|
||||
GLfloat scan_angle = atan2f(1.0f / static_cast<float>(height_of_display), 1.0f);
|
||||
GLfloat scan_normal[] = { -sinf(scan_angle), cosf(scan_angle)};
|
||||
GLfloat multiplier = static_cast<float>(cycles_per_line) / (static_cast<float>(height_of_display) * static_cast<float>(horizontal_scan_period));
|
||||
scan_normal[0] *= multiplier;
|
||||
scan_normal[1] *= multiplier;
|
||||
|
||||
set_uniform("scanNormal", scan_normal[0], scan_normal[1]);
|
||||
set_uniform("positionConversion", (GLfloat)horizontal_scan_period, (GLfloat)vertical_scan_period / (GLfloat)vertical_period_divider);
|
||||
}
|
||||
|
||||
void OutputShader::set_gamma_ratio(float ratio) {
|
||||
set_uniform("gamma", ratio);
|
||||
}
|
||||
|
||||
void OutputShader::set_input_width_scaler(float input_scaler) {
|
||||
set_uniform("inputScaler", input_scaler);
|
||||
}
|
||||
|
||||
void OutputShader::set_origin_is_double_height(bool is_double_height) {
|
||||
set_uniform("textureHeightDivisor", is_double_height ? 2 : 1);
|
||||
}
|
@ -1,108 +0,0 @@
|
||||
//
|
||||
// OutputShader.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 27/04/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef OutputShader_hpp
|
||||
#define OutputShader_hpp
|
||||
|
||||
#include "Shader.hpp"
|
||||
#include "../../CRTTypes.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace OpenGL {
|
||||
|
||||
class OutputShader: public Shader {
|
||||
public:
|
||||
enum class Input {
|
||||
/// A 2d vector; the first element is the horizontal start of this scan, the second element is the end.
|
||||
Horizontal,
|
||||
/// A 2d vector; the first element is the vertical start of this scan, the second element is the end.
|
||||
Vertical
|
||||
};
|
||||
|
||||
/*!
|
||||
Obtains the name of a designated input. Designated inputs are guaranteed to have the same attribute location
|
||||
across multiple instances of OutputShader. So binding a vertex array to these inputs for any instance of
|
||||
OutputShader allows that array to work with all instances of OutputShader.
|
||||
|
||||
@param input The input to query.
|
||||
@returns The name used in this shader's source for the nominated input.
|
||||
*/
|
||||
static std::string get_input_name(Input input);
|
||||
|
||||
/*!
|
||||
Constructs and returns an instance of OutputShader. OutputShaders are intended to read source data
|
||||
from a texture and draw a single raster scan containing that data as output.
|
||||
|
||||
Does not catch any of the exceptions potentially thrown by `Shader::Shader`.
|
||||
|
||||
All instances of OutputShader are guaranteed to use the same attribute locations for their inputs.
|
||||
|
||||
@param fragment_methods A block of code that will appear within the global area of the fragment shader.
|
||||
|
||||
@param colour_expression An expression that should evaluate to a `vec3` indicating the colour at the current location. The
|
||||
decision should be a function of the uniform `texID`, which will be either a `usampler2D` or a `sampler2D` as per the
|
||||
`use_usampler` parameter, and the inputs `srcCoordinatesVarying` which is a location within the texture from which to
|
||||
take the source value, and `iSrcCoordinatesVarying` which is a value proportional to `srcCoordinatesVarying` but scaled
|
||||
so that one unit equals one source sample.
|
||||
|
||||
@param use_usampler Dictates the type of the `texID` uniform; will be a `usampler2D` if this parameter is `true`, a
|
||||
`sampler2D` otherwise.
|
||||
|
||||
@returns an instance of OutputShader.
|
||||
*/
|
||||
static std::unique_ptr<OutputShader> make_shader(const char *fragment_methods, const char *colour_expression, bool use_usampler);
|
||||
using Shader::Shader;
|
||||
|
||||
/*!
|
||||
Queues configuration for output to an area of `output_width` and `output_height` pixels, ensuring
|
||||
the largest possible drawing size that allows everything within `visible_area` to be visible, to
|
||||
occur upon the next `bind`.
|
||||
*/
|
||||
void set_output_size(unsigned int output_width, unsigned int output_height, Outputs::CRT::Rect visible_area);
|
||||
|
||||
/*!
|
||||
Queues setting of the texture unit (as an enum, e.g. `GL_TEXTURE0`) for source data upon the next `bind`.
|
||||
*/
|
||||
void set_source_texture_unit(GLenum unit);
|
||||
|
||||
/*!
|
||||
Queues configuring this shader's understanding of how to map from the source vertex stream to screen coordinates,
|
||||
to occur upon the next `bind`.
|
||||
*/
|
||||
void set_timing(unsigned int height_of_display, unsigned int cycles_per_line, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider);
|
||||
|
||||
/*!
|
||||
*/
|
||||
void set_origin_is_double_height(bool is_double_height);
|
||||
|
||||
void set_gamma_ratio(float ratio);
|
||||
|
||||
/*!
|
||||
Sets the proportion of the input area that should be considered the whole width: 1.0 means use all available
|
||||
space, 0.5 means use half, etc.
|
||||
*/
|
||||
void set_input_width_scaler(float input_scaler);
|
||||
|
||||
/*!
|
||||
@returns The location, in eye coordinates, of the left edge of the output area.
|
||||
*/
|
||||
float get_left_extent();
|
||||
|
||||
/*!
|
||||
@returns The location, in eye coordinates, of the right edge of the output area.
|
||||
*/
|
||||
float get_right_extent();
|
||||
|
||||
private:
|
||||
float left_extent_ = 0.0f;
|
||||
float right_extent_ = 0.0f;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* OutputShader_hpp */
|
@ -1,266 +0,0 @@
|
||||
//
|
||||
// Shader.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "Shader.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
|
||||
using namespace OpenGL;
|
||||
|
||||
namespace {
|
||||
// The below is disabled because it isn't context/thread-specific. Which makes it
|
||||
// fairly 'unuseful'.
|
||||
// Shader *bound_shader = nullptr;
|
||||
}
|
||||
|
||||
GLuint Shader::compile_shader(const std::string &source, GLenum type) {
|
||||
GLuint shader = glCreateShader(type);
|
||||
const char *c_str = source.c_str();
|
||||
glShaderSource(shader, 1, &c_str, NULL);
|
||||
glCompileShader(shader);
|
||||
|
||||
#ifdef DEBUG
|
||||
GLint isCompiled = 0;
|
||||
glGetShaderiv(shader, GL_COMPILE_STATUS, &isCompiled);
|
||||
if(isCompiled == GL_FALSE) {
|
||||
GLint logLength;
|
||||
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logLength);
|
||||
if(logLength > 0) {
|
||||
GLchar *log = new GLchar[static_cast<std::size_t>(logLength)];
|
||||
glGetShaderInfoLog(shader, logLength, &logLength, log);
|
||||
printf("Compile log:\n%s\n", log);
|
||||
delete[] log;
|
||||
}
|
||||
|
||||
throw (type == GL_VERTEX_SHADER) ? VertexShaderCompilationError : FragmentShaderCompilationError;
|
||||
}
|
||||
#endif
|
||||
|
||||
return shader;
|
||||
}
|
||||
|
||||
Shader::Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<AttributeBinding> &attribute_bindings) {
|
||||
shader_program_ = glCreateProgram();
|
||||
GLuint vertex = compile_shader(vertex_shader, GL_VERTEX_SHADER);
|
||||
GLuint fragment = compile_shader(fragment_shader, GL_FRAGMENT_SHADER);
|
||||
|
||||
glAttachShader(shader_program_, vertex);
|
||||
glAttachShader(shader_program_, fragment);
|
||||
|
||||
for(const auto &binding : attribute_bindings) {
|
||||
glBindAttribLocation(shader_program_, binding.index, binding.name.c_str());
|
||||
}
|
||||
|
||||
glLinkProgram(shader_program_);
|
||||
|
||||
#ifdef DEBUG
|
||||
GLint didLink = 0;
|
||||
glGetProgramiv(shader_program_, GL_LINK_STATUS, &didLink);
|
||||
if(didLink == GL_FALSE) {
|
||||
GLint logLength;
|
||||
glGetProgramiv(shader_program_, GL_INFO_LOG_LENGTH, &logLength);
|
||||
if(logLength > 0) {
|
||||
GLchar *log = new GLchar[static_cast<std::size_t>(logLength)];
|
||||
glGetProgramInfoLog(shader_program_, logLength, &logLength, log);
|
||||
printf("Link log:\n%s\n", log);
|
||||
delete[] log;
|
||||
}
|
||||
throw ProgramLinkageError;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Shader::~Shader() {
|
||||
// if(bound_shader == this) Shader::unbind();
|
||||
glDeleteProgram(shader_program_);
|
||||
}
|
||||
|
||||
void Shader::bind() {
|
||||
// if(bound_shader != this) {
|
||||
glUseProgram(shader_program_);
|
||||
// bound_shader = this;
|
||||
// }
|
||||
flush_functions();
|
||||
}
|
||||
|
||||
void Shader::unbind() {
|
||||
// bound_shader = nullptr;
|
||||
glUseProgram(0);
|
||||
}
|
||||
|
||||
GLint Shader::get_attrib_location(const std::string &name) {
|
||||
return glGetAttribLocation(shader_program_, name.c_str());
|
||||
}
|
||||
|
||||
GLint Shader::get_uniform_location(const std::string &name) {
|
||||
return glGetUniformLocation(shader_program_, name.c_str());
|
||||
}
|
||||
|
||||
void Shader::enable_vertex_attribute_with_pointer(const std::string &name, GLint size, GLenum type, GLboolean normalised, GLsizei stride, const GLvoid *pointer, GLuint divisor) {
|
||||
GLint location = get_attrib_location(name);
|
||||
glEnableVertexAttribArray((GLuint)location);
|
||||
glVertexAttribPointer((GLuint)location, size, type, normalised, stride, pointer);
|
||||
glVertexAttribDivisor((GLuint)location, divisor);
|
||||
}
|
||||
|
||||
// The various set_uniforms...
|
||||
#define location() glGetUniformLocation(shader_program_, name.c_str())
|
||||
void Shader::set_uniform(const std::string &name, GLint value) {
|
||||
enqueue_function([name, value, this] {
|
||||
glUniform1i(location(), value);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value) {
|
||||
enqueue_function([name, value, this] {
|
||||
glUniform1ui(location(), value);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value) {
|
||||
enqueue_function([name, value, this] {
|
||||
glUniform1f(location(), value);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
glUniform2i(location(), value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
GLint location = location();
|
||||
glUniform2f(location, value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
glUniform2ui(location(), value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2, GLint value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
glUniform3i(location(), value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2, GLfloat value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
glUniform3f(location(), value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2, GLuint value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
glUniform3ui(location(), value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2, GLint value3, GLint value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
glUniform4i(location(), value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2, GLfloat value3, GLfloat value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
glUniform4f(location(), value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2, GLuint value3, GLuint value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
glUniform4ui(location(), value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLint *values) {
|
||||
std::size_t number_of_values = static_cast<std::size_t>(count) * static_cast<std::size_t>(size);
|
||||
GLint *values_copy = new GLint[number_of_values];
|
||||
std::memcpy(values_copy, values, sizeof(*values) * static_cast<std::size_t>(number_of_values));
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: glUniform1iv(location(), count, values_copy); break;
|
||||
case 2: glUniform2iv(location(), count, values_copy); break;
|
||||
case 3: glUniform3iv(location(), count, values_copy); break;
|
||||
case 4: glUniform4iv(location(), count, values_copy); break;
|
||||
}
|
||||
delete[] values_copy;
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLfloat *values) {
|
||||
std::size_t number_of_values = static_cast<std::size_t>(count) * static_cast<std::size_t>(size);
|
||||
GLfloat *values_copy = new GLfloat[number_of_values];
|
||||
std::memcpy(values_copy, values, sizeof(*values) * static_cast<std::size_t>(number_of_values));
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: glUniform1fv(location(), count, values_copy); break;
|
||||
case 2: glUniform2fv(location(), count, values_copy); break;
|
||||
case 3: glUniform3fv(location(), count, values_copy); break;
|
||||
case 4: glUniform4fv(location(), count, values_copy); break;
|
||||
}
|
||||
delete[] values_copy;
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLuint *values) {
|
||||
std::size_t number_of_values = static_cast<std::size_t>(count) * static_cast<std::size_t>(size);
|
||||
GLuint *values_copy = new GLuint[number_of_values];
|
||||
std::memcpy(values_copy, values, sizeof(*values) * static_cast<std::size_t>(number_of_values));
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: glUniform1uiv(location(), count, values_copy); break;
|
||||
case 2: glUniform2uiv(location(), count, values_copy); break;
|
||||
case 3: glUniform3uiv(location(), count, values_copy); break;
|
||||
case 4: glUniform4uiv(location(), count, values_copy); break;
|
||||
}
|
||||
delete[] values_copy;
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform_matrix(const std::string &name, GLint size, bool transpose, const GLfloat *values) {
|
||||
set_uniform_matrix(name, size, 1, transpose, values);
|
||||
}
|
||||
|
||||
void Shader::set_uniform_matrix(const std::string &name, GLint size, GLsizei count, bool transpose, const GLfloat *values) {
|
||||
std::size_t number_of_values = static_cast<std::size_t>(count) * static_cast<std::size_t>(size) * static_cast<std::size_t>(size);
|
||||
std::vector<GLfloat> values_copy(number_of_values);
|
||||
std::memcpy(values_copy.data(), values, sizeof(*values) * number_of_values);
|
||||
|
||||
enqueue_function([name, size, count, transpose, values_copy, this] {
|
||||
GLboolean glTranspose = transpose ? GL_TRUE : GL_FALSE;
|
||||
switch(size) {
|
||||
case 2: glUniformMatrix2fv(location(), count, glTranspose, values_copy.data()); break;
|
||||
case 3: glUniformMatrix3fv(location(), count, glTranspose, values_copy.data()); break;
|
||||
case 4: glUniformMatrix4fv(location(), count, glTranspose, values_copy.data()); break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::enqueue_function(std::function<void(void)> function) {
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
enqueued_functions_.push_back(function);
|
||||
}
|
||||
|
||||
void Shader::flush_functions() {
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
for(std::function<void(void)> function : enqueued_functions_) {
|
||||
function();
|
||||
}
|
||||
enqueued_functions_.clear();
|
||||
}
|
@ -1,179 +0,0 @@
|
||||
//
|
||||
// TextureBuilder.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 08/03/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "TextureBuilder.hpp"
|
||||
#include "CRTOpenGL.hpp"
|
||||
#include "OpenGL.hpp"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
using namespace Outputs::CRT;
|
||||
|
||||
namespace {
|
||||
|
||||
const GLint internalFormatForDepth(std::size_t depth) {
|
||||
switch(depth) {
|
||||
default: return GL_FALSE;
|
||||
case 1: return GL_R8UI;
|
||||
case 2: return GL_RG8UI;
|
||||
case 3: return GL_RGB8UI;
|
||||
case 4: return GL_RGBA8UI;
|
||||
}
|
||||
}
|
||||
|
||||
const GLenum formatForDepth(std::size_t depth) {
|
||||
switch(depth) {
|
||||
default: return GL_FALSE;
|
||||
case 1: return GL_RED_INTEGER;
|
||||
case 2: return GL_RG_INTEGER;
|
||||
case 3: return GL_RGB_INTEGER;
|
||||
case 4: return GL_RGBA_INTEGER;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TextureBuilder::TextureBuilder(std::size_t bytes_per_pixel, GLenum texture_unit) :
|
||||
bytes_per_pixel_(bytes_per_pixel), texture_unit_(texture_unit) {
|
||||
image_.resize(bytes_per_pixel * InputBufferBuilderWidth * InputBufferBuilderHeight);
|
||||
glGenTextures(1, &texture_name_);
|
||||
|
||||
bind();
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, internalFormatForDepth(bytes_per_pixel), InputBufferBuilderWidth, InputBufferBuilderHeight, 0, formatForDepth(bytes_per_pixel), GL_UNSIGNED_BYTE, nullptr);
|
||||
}
|
||||
|
||||
TextureBuilder::~TextureBuilder() {
|
||||
glDeleteTextures(1, &texture_name_);
|
||||
}
|
||||
|
||||
void TextureBuilder::bind() {
|
||||
glActiveTexture(texture_unit_);
|
||||
glBindTexture(GL_TEXTURE_2D, texture_name_);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
}
|
||||
|
||||
inline uint8_t *TextureBuilder::pointer_to_location(uint16_t x, uint16_t y) {
|
||||
return &image_[((y * InputBufferBuilderWidth) + x) * bytes_per_pixel_];
|
||||
}
|
||||
|
||||
uint8_t *TextureBuilder::allocate_write_area(std::size_t required_length, std::size_t required_alignment) {
|
||||
// Keep a flag to indicate whether the buffer was full at allocate_write_area; if it was then
|
||||
// don't return anything now, and decline to act upon follow-up methods. is_full_ may be reset
|
||||
// by asynchronous calls to submit. was_full_ will not be touched by it.
|
||||
was_full_ = is_full_;
|
||||
if(is_full_) return nullptr;
|
||||
|
||||
// If there's not enough space on this line, move to the next. If the next is where the current
|
||||
// submission group started, trigger is/was_full_ and return nothing.
|
||||
std::size_t alignment_offset = (required_alignment - ((write_areas_start_x_ + 1) % required_alignment)) % required_alignment;
|
||||
if(write_areas_start_x_ + required_length + 2 + alignment_offset > InputBufferBuilderWidth) {
|
||||
write_areas_start_x_ = 0;
|
||||
alignment_offset = required_alignment - 1;
|
||||
write_areas_start_y_ = (write_areas_start_y_ + 1) % InputBufferBuilderHeight;
|
||||
|
||||
if(write_areas_start_y_ == first_unsubmitted_y_) {
|
||||
was_full_ = is_full_ = true;
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// Queue up the latest write area.
|
||||
write_areas_start_x_ += static_cast<uint16_t>(alignment_offset);
|
||||
write_area_.x = write_areas_start_x_ + 1;
|
||||
write_area_.y = write_areas_start_y_;
|
||||
write_area_.length = static_cast<uint16_t>(required_length);
|
||||
|
||||
// Return a video pointer.
|
||||
return pointer_to_location(write_area_.x, write_area_.y);
|
||||
}
|
||||
|
||||
void TextureBuilder::reduce_previous_allocation_to(std::size_t actual_length) {
|
||||
// If the previous allocate_write_area declined to act, decline also.
|
||||
if(was_full_) return;
|
||||
|
||||
// Update the length of the current write area.
|
||||
write_area_.length = static_cast<uint16_t>(actual_length);
|
||||
|
||||
// Bookend the allocation with duplicates of the first and last pixel, to protect
|
||||
// against rounding errors when this run is drawn.
|
||||
uint8_t *start_pointer = pointer_to_location(write_area_.x, write_area_.y) - bytes_per_pixel_;
|
||||
std::memcpy(start_pointer, &start_pointer[bytes_per_pixel_], bytes_per_pixel_);
|
||||
std::memcpy(&start_pointer[(actual_length + 1) * bytes_per_pixel_], &start_pointer[actual_length * bytes_per_pixel_], bytes_per_pixel_);
|
||||
}
|
||||
|
||||
bool TextureBuilder::retain_latest() {
|
||||
// If the previous allocate_write_area declined to act, decline also.
|
||||
if(was_full_) return false;
|
||||
|
||||
// Account for the most recently written area as taken.
|
||||
write_areas_start_x_ += write_area_.length + 2;
|
||||
|
||||
// Store into the vector directly if there's already room, otherwise grow the vector.
|
||||
// Probably I don't need to mess about with this myself; it's unnecessary second-guessing.
|
||||
// TODO: profile and prove.
|
||||
if(number_of_write_areas_ < write_areas_.size())
|
||||
write_areas_[number_of_write_areas_] = write_area_;
|
||||
else
|
||||
write_areas_.push_back(write_area_);
|
||||
number_of_write_areas_++;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void TextureBuilder::discard_latest() {
|
||||
if(was_full_) return;
|
||||
number_of_write_areas_--;
|
||||
}
|
||||
|
||||
bool TextureBuilder::is_full() {
|
||||
return is_full_;
|
||||
}
|
||||
|
||||
void TextureBuilder::submit() {
|
||||
if(write_areas_start_y_ < first_unsubmitted_y_) {
|
||||
// A write area start y less than the first line on which submissions began implies it must have wrapped
|
||||
// around. So the submission set is everything back to zero before the current write area plus everything
|
||||
// from the first unsubmitted y downward.
|
||||
uint16_t height = write_areas_start_y_ + (write_areas_start_x_ ? 1 : 0);
|
||||
glTexSubImage2D( GL_TEXTURE_2D, 0,
|
||||
0, 0,
|
||||
InputBufferBuilderWidth, height,
|
||||
formatForDepth(bytes_per_pixel_), GL_UNSIGNED_BYTE,
|
||||
image_.data());
|
||||
|
||||
glTexSubImage2D( GL_TEXTURE_2D, 0,
|
||||
0, first_unsubmitted_y_,
|
||||
InputBufferBuilderWidth, InputBufferBuilderHeight - first_unsubmitted_y_,
|
||||
formatForDepth(bytes_per_pixel_), GL_UNSIGNED_BYTE,
|
||||
image_.data() + first_unsubmitted_y_ * bytes_per_pixel_ * InputBufferBuilderWidth);
|
||||
} else {
|
||||
// If the current write area start y is after the first unsubmitted line, just submit the region in between.
|
||||
uint16_t height = write_areas_start_y_ + (write_areas_start_x_ ? 1 : 0) - first_unsubmitted_y_;
|
||||
glTexSubImage2D( GL_TEXTURE_2D, 0,
|
||||
0, first_unsubmitted_y_,
|
||||
InputBufferBuilderWidth, height,
|
||||
formatForDepth(bytes_per_pixel_), GL_UNSIGNED_BYTE,
|
||||
image_.data() + first_unsubmitted_y_ * bytes_per_pixel_ * InputBufferBuilderWidth);
|
||||
}
|
||||
|
||||
// Update the starting location for the next submission, and mark definitively that the buffer is once again not full.
|
||||
first_unsubmitted_y_ = write_areas_start_y_;
|
||||
is_full_ = false;
|
||||
}
|
||||
|
||||
void TextureBuilder::flush(const std::function<void(const std::vector<WriteArea> &write_areas, std::size_t count)> &function) {
|
||||
// Just throw everything currently in the flush queue to the provided function, and note that
|
||||
// the queue is now empty.
|
||||
if(number_of_write_areas_) {
|
||||
function(write_areas_, number_of_write_areas_);
|
||||
}
|
||||
number_of_write_areas_ = 0;
|
||||
}
|
@ -1,132 +0,0 @@
|
||||
//
|
||||
// TextureBuilder.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 08/03/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef Outputs_CRT_Internals_TextureBuilder_hpp
|
||||
#define Outputs_CRT_Internals_TextureBuilder_hpp
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include "CRTConstants.hpp"
|
||||
|
||||
namespace Outputs {
|
||||
namespace CRT {
|
||||
|
||||
/*!
|
||||
Owns an OpenGL texture resource and provides mechanisms to fill it from bottom left to top right
|
||||
with runs of data, ensuring each run is neighboured immediately to the left and right by copies of its
|
||||
first and last pixels.
|
||||
|
||||
Although this class is not itself inherently thread safe, it is built to permit one serialised stream
|
||||
of calls to provide source data, with an interceding (but also serialised) submission to the GPU at any time.
|
||||
|
||||
|
||||
Intended usage by the data generator:
|
||||
|
||||
(i) allocate a write area with allocate_write_area, supplying a maximum size.
|
||||
(ii) call reduce_previous_allocation_to to announce the actual size written.
|
||||
|
||||
This will cause you to have added source data to the target texture. You can then either use that data
|
||||
or allow it to expire.
|
||||
|
||||
(iii) call retain_latest to add the most recently written write area to the flush queue.
|
||||
|
||||
The flush queue contains provisional data, that can sit in the CPU's memory space indefinitely. This facility
|
||||
is provided because it is expected that a texture will be built alontside some other collection of data;
|
||||
that data in the flush queue is expected to become useful in coordination with something else but should
|
||||
be retained at least until then.
|
||||
|
||||
(iv) call flush to move data to the submit queue.
|
||||
|
||||
When you flush, you'll receive a record of the bounds of all newly-flushed areas of source data. That gives
|
||||
an opportunity to correlate the data with whatever else it is being tied to. It will continue to sit in
|
||||
the CPU's memory space but has now passed beyond any further modification or reporting.
|
||||
|
||||
|
||||
Intended usage by the GPU owner:
|
||||
|
||||
(i) call submit to move data to the GPU and free up its CPU-side resources.
|
||||
|
||||
The latest data is now on the GPU, regardless of where the data provider may be in its process; only data
|
||||
that has entered the submission queue is uploaded.
|
||||
|
||||
*/
|
||||
class TextureBuilder {
|
||||
public:
|
||||
/// Constructs an instance of InputTextureBuilder that contains a texture of colour depth @c bytes_per_pixel;
|
||||
/// this creates a new texture and binds it to the current active texture unit.
|
||||
TextureBuilder(std::size_t bytes_per_pixel, GLenum texture_unit);
|
||||
virtual ~TextureBuilder();
|
||||
|
||||
/// Finds the first available space of at least @c required_length pixels in size which is suitably aligned
|
||||
/// for writing of @c required_alignment number of pixels at a time.
|
||||
/// Calls must be paired off with calls to @c reduce_previous_allocation_to.
|
||||
/// @returns a pointer to the allocated space if any was available; @c nullptr otherwise.
|
||||
uint8_t *allocate_write_area(std::size_t required_length, std::size_t required_alignment = 1);
|
||||
|
||||
/// Announces that the owner is finished with the region created by the most recent @c allocate_write_area
|
||||
/// and indicates that its actual final size was @c actual_length.
|
||||
void reduce_previous_allocation_to(std::size_t actual_length);
|
||||
|
||||
/// Allocated runs are provisional; they will not appear in the next flush queue unless retained.
|
||||
/// @returns @c true if a retain succeeded; @c false otherwise.
|
||||
bool retain_latest();
|
||||
|
||||
// Undoes the most recent retain_latest. Undefined behaviour if a submission has occurred in the interim.
|
||||
void discard_latest();
|
||||
|
||||
/// @returns @c true if all future calls to @c allocate_write_area will fail on account of the input texture
|
||||
/// being full; @c false if calls may succeed.
|
||||
bool is_full();
|
||||
|
||||
/// Updates the currently-bound texture with all new data provided since the last @c submit.
|
||||
void submit();
|
||||
|
||||
struct WriteArea {
|
||||
uint16_t x = 0, y = 0, length = 0;
|
||||
};
|
||||
/// Finalises all write areas allocated since the last call to @c flush. Only finalised areas will be
|
||||
/// submitted upon the next @c submit. The supplied function will be called with a list of write areas
|
||||
/// allocated, indicating their final resting locations and their lengths.
|
||||
void flush(const std::function<void(const std::vector<WriteArea> &write_areas, std::size_t count)> &);
|
||||
|
||||
/// Binds this texture to the unit supplied at instantiation.
|
||||
void bind();
|
||||
|
||||
private:
|
||||
// the buffer size and target unit
|
||||
std::size_t bytes_per_pixel_;
|
||||
GLenum texture_unit_;
|
||||
|
||||
// the buffer
|
||||
std::vector<uint8_t> image_;
|
||||
GLuint texture_name_;
|
||||
|
||||
// the current write area
|
||||
WriteArea write_area_;
|
||||
|
||||
// the list of write areas that have ascended to the flush queue
|
||||
std::vector<WriteArea> write_areas_;
|
||||
std::size_t number_of_write_areas_ = 0;
|
||||
bool is_full_ = false, was_full_ = false;
|
||||
uint16_t first_unsubmitted_y_ = 0;
|
||||
inline uint8_t *pointer_to_location(uint16_t x, uint16_t y);
|
||||
|
||||
// Usually: the start position for the current batch of write areas.
|
||||
// Caveat: reset to the origin upon a submit. So used in comparison by flush to
|
||||
// determine whether the current batch of write areas needs to be relocated.
|
||||
uint16_t write_areas_start_x_ = 0, write_areas_start_y_ = 0;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* Outputs_CRT_Internals_TextureBuilder_hpp */
|
@ -1,146 +0,0 @@
|
||||
//
|
||||
// TextureTarget.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "TextureTarget.hpp"
|
||||
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
using namespace OpenGL;
|
||||
|
||||
TextureTarget::TextureTarget(GLsizei width, GLsizei height, GLenum texture_unit, GLint mag_filter) :
|
||||
width_(width),
|
||||
height_(height),
|
||||
texture_unit_(texture_unit) {
|
||||
glGenFramebuffers(1, &framebuffer_);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer_);
|
||||
|
||||
expanded_width_ = 1;
|
||||
while(expanded_width_ < width) expanded_width_ <<= 1;
|
||||
expanded_height_ = 1;
|
||||
while(expanded_height_ < height) expanded_height_ <<= 1;
|
||||
|
||||
glGenTextures(1, &texture_);
|
||||
bind_texture();
|
||||
|
||||
std::vector<uint8_t> blank_buffer(static_cast<size_t>(expanded_width_ * expanded_height_ * 4), 0);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, static_cast<GLsizei>(expanded_width_), static_cast<GLsizei>(expanded_height_), 0, GL_RGBA, GL_UNSIGNED_BYTE, blank_buffer.data());
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, mag_filter);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_, 0);
|
||||
|
||||
if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
throw ErrorFramebufferIncomplete;
|
||||
}
|
||||
|
||||
TextureTarget::~TextureTarget() {
|
||||
glDeleteFramebuffers(1, &framebuffer_);
|
||||
glDeleteTextures(1, &texture_);
|
||||
if(drawing_vertex_array_) glDeleteVertexArrays(1, &drawing_vertex_array_);
|
||||
if(drawing_array_buffer_) glDeleteBuffers(1, &drawing_array_buffer_);
|
||||
}
|
||||
|
||||
void TextureTarget::bind_framebuffer() {
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer_);
|
||||
glViewport(0, 0, width_, height_);
|
||||
}
|
||||
|
||||
void TextureTarget::bind_texture() {
|
||||
glActiveTexture(texture_unit_);
|
||||
glBindTexture(GL_TEXTURE_2D, texture_);
|
||||
}
|
||||
|
||||
void TextureTarget::draw(float aspect_ratio, float colour_threshold) {
|
||||
if(!pixel_shader_) {
|
||||
const char *vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 texCoord;"
|
||||
"in vec2 position;"
|
||||
|
||||
"out vec2 texCoordVarying;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"texCoordVarying = texCoord;"
|
||||
"gl_Position = vec4(position, 0.0, 1.0);"
|
||||
"}";
|
||||
const char *fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 texCoordVarying;"
|
||||
|
||||
"uniform sampler2D texID;"
|
||||
"uniform float threshold;"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"fragColour = clamp(texture(texID, texCoordVarying), threshold, 1.0);"
|
||||
"}";
|
||||
pixel_shader_.reset(new Shader(vertex_shader, fragment_shader));
|
||||
pixel_shader_->bind();
|
||||
|
||||
glGenVertexArrays(1, &drawing_vertex_array_);
|
||||
glGenBuffers(1, &drawing_array_buffer_);
|
||||
|
||||
glBindVertexArray(drawing_vertex_array_);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
|
||||
GLint position_attribute = pixel_shader_->get_attrib_location("position");
|
||||
GLint tex_coord_attribute = pixel_shader_->get_attrib_location("texCoord");
|
||||
|
||||
glEnableVertexAttribArray(static_cast<GLuint>(position_attribute));
|
||||
glEnableVertexAttribArray(static_cast<GLuint>(tex_coord_attribute));
|
||||
|
||||
const GLsizei vertex_stride = 4 * sizeof(GLfloat);
|
||||
glVertexAttribPointer((GLuint)position_attribute, 2, GL_FLOAT, GL_FALSE, vertex_stride, (void *)0);
|
||||
glVertexAttribPointer((GLuint)tex_coord_attribute, 2, GL_FLOAT, GL_FALSE, vertex_stride, (void *)(2 * sizeof(GLfloat)));
|
||||
|
||||
GLint texIDUniform = pixel_shader_->get_uniform_location("texID");
|
||||
glUniform1i(texIDUniform, static_cast<GLint>(texture_unit_ - GL_TEXTURE0));
|
||||
|
||||
threshold_uniform_ = pixel_shader_->get_uniform_location("threshold");
|
||||
}
|
||||
|
||||
if(set_aspect_ratio_ != aspect_ratio) {
|
||||
set_aspect_ratio_ = aspect_ratio;
|
||||
float buffer[4*4];
|
||||
|
||||
// establish texture coordinates
|
||||
buffer[2] = 0.0f;
|
||||
buffer[3] = 0.0f;
|
||||
buffer[6] = 0.0f;
|
||||
buffer[7] = static_cast<float>(height_) / static_cast<float>(expanded_height_);
|
||||
buffer[10] = static_cast<float>(width_) / static_cast<float>(expanded_width_);
|
||||
buffer[11] = 0.0f;
|
||||
buffer[14] = buffer[10];
|
||||
buffer[15] = buffer[7];
|
||||
|
||||
// determine positions; rule is to keep the same height and centre
|
||||
float internal_aspect_ratio = static_cast<float>(width_) / static_cast<float>(height_);
|
||||
float aspect_ratio_ratio = internal_aspect_ratio / aspect_ratio;
|
||||
|
||||
buffer[0] = -aspect_ratio_ratio; buffer[1] = -1.0f;
|
||||
buffer[4] = -aspect_ratio_ratio; buffer[5] = 1.0f;
|
||||
buffer[8] = aspect_ratio_ratio; buffer[9] = -1.0f;
|
||||
buffer[12] = aspect_ratio_ratio; buffer[13] = 1.0f;
|
||||
|
||||
// upload buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(buffer), buffer, GL_STATIC_DRAW);
|
||||
}
|
||||
|
||||
pixel_shader_->bind();
|
||||
glUniform1f(threshold_uniform_, colour_threshold);
|
||||
|
||||
glBindVertexArray(drawing_vertex_array_);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
}
|
57
Outputs/OpenGL/OpenGL.hpp
Normal file
57
Outputs/OpenGL/OpenGL.hpp
Normal file
@ -0,0 +1,57 @@
|
||||
//
|
||||
// OpenGL.h
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef OpenGL_h
|
||||
#define OpenGL_h
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
// TODO: figure out correct include paths for other platforms.
|
||||
#ifdef __APPLE__
|
||||
#if TARGET_OS_IPHONE
|
||||
#else
|
||||
#include <OpenGL/OpenGL.h>
|
||||
#include <OpenGL/gl3.h>
|
||||
#include <OpenGL/gl3ext.h>
|
||||
#endif
|
||||
#else
|
||||
#define GL_GLEXT_PROTOTYPES
|
||||
#include <GL/gl.h>
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
|
||||
#define test_gl_error() { \
|
||||
const auto error = glGetError(); \
|
||||
if(error) { \
|
||||
switch(error) { \
|
||||
default: std::cerr << "Error " << error; break; \
|
||||
case GL_INVALID_ENUM: std::cerr << "GL_INVALID_ENUM"; break; \
|
||||
case GL_INVALID_VALUE: std::cerr << "GL_INVALID_VALUE"; break; \
|
||||
case GL_INVALID_OPERATION: std::cerr << "GL_INVALID_OPERATION"; break; \
|
||||
case GL_INVALID_FRAMEBUFFER_OPERATION: std::cerr << "GL_INVALID_FRAMEBUFFER_OPERATION"; break; \
|
||||
case GL_OUT_OF_MEMORY: std::cerr << "GL_OUT_OF_MEMORY"; break; \
|
||||
}; \
|
||||
std::cerr << " at line " << __LINE__ << " in " << __FILE__ << std::endl; \
|
||||
assert(false); \
|
||||
} \
|
||||
\
|
||||
}
|
||||
|
||||
#else
|
||||
#define test_gl_error() while(false) {}
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define test_gl(command, ...) do { command(__VA_ARGS__); test_gl_error(); } while(false);
|
||||
#else
|
||||
#define test_gl(command, ...) command(__VA_ARGS__)
|
||||
#endif
|
||||
|
||||
#endif /* OpenGL_h */
|
@ -8,10 +8,10 @@
|
||||
|
||||
#include "Rectangle.hpp"
|
||||
|
||||
using namespace OpenGL;
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
Rectangle::Rectangle(float x, float y, float width, float height):
|
||||
pixel_shader_(
|
||||
pixel_shader_(
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 position;"
|
||||
@ -33,16 +33,16 @@ Rectangle::Rectangle(float x, float y, float width, float height):
|
||||
){
|
||||
pixel_shader_.bind();
|
||||
|
||||
glGenVertexArrays(1, &drawing_vertex_array_);
|
||||
glGenBuffers(1, &drawing_array_buffer_);
|
||||
test_gl(glGenVertexArrays, 1, &drawing_vertex_array_);
|
||||
test_gl(glGenBuffers, 1, &drawing_array_buffer_);
|
||||
|
||||
glBindVertexArray(drawing_vertex_array_);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
test_gl(glBindVertexArray, drawing_vertex_array_);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
|
||||
GLint position_attribute = pixel_shader_.get_attrib_location("position");
|
||||
glEnableVertexAttribArray(static_cast<GLuint>(position_attribute));
|
||||
test_gl(glEnableVertexAttribArray, GLuint(position_attribute));
|
||||
|
||||
glVertexAttribPointer(
|
||||
test_gl(glVertexAttribPointer,
|
||||
(GLuint)position_attribute,
|
||||
2,
|
||||
GL_FLOAT,
|
||||
@ -61,14 +61,14 @@ Rectangle::Rectangle(float x, float y, float width, float height):
|
||||
buffer[6] = x + width; buffer[7] = y + height;
|
||||
|
||||
// Upload buffer.
|
||||
glBindBuffer(GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(buffer), buffer, GL_STATIC_DRAW);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
test_gl(glBufferData, GL_ARRAY_BUFFER, sizeof(buffer), buffer, GL_STATIC_DRAW);
|
||||
}
|
||||
|
||||
void Rectangle::draw(float red, float green, float blue) {
|
||||
pixel_shader_.bind();
|
||||
glUniform4f(colour_uniform_, red, green, blue, 1.0);
|
||||
test_gl(glUniform4f, colour_uniform_, red, green, blue, 1.0);
|
||||
|
||||
glBindVertexArray(drawing_vertex_array_);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
test_gl(glBindVertexArray, drawing_vertex_array_);
|
||||
test_gl(glDrawArrays, GL_TRIANGLE_STRIP, 0, 4);
|
||||
}
|
@ -9,10 +9,12 @@
|
||||
#ifndef Rectangle_hpp
|
||||
#define Rectangle_hpp
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include "Shaders/Shader.hpp"
|
||||
#include "../OpenGL.hpp"
|
||||
#include "Shader.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace Outputs {
|
||||
namespace Display {
|
||||
namespace OpenGL {
|
||||
|
||||
/*!
|
||||
@ -36,6 +38,8 @@ class Rectangle {
|
||||
GLint colour_uniform_;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* Rectangle_hpp */
|
301
Outputs/OpenGL/Primitives/Shader.cpp
Normal file
301
Outputs/OpenGL/Primitives/Shader.cpp
Normal file
@ -0,0 +1,301 @@
|
||||
//
|
||||
// Shader.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "Shader.hpp"
|
||||
|
||||
#include "../../Log.hpp"
|
||||
#include <vector>
|
||||
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
namespace {
|
||||
// The below is disabled because it isn't context/thread-specific. Which makes it
|
||||
// fairly 'unuseful'.
|
||||
// Shader *bound_shader = nullptr;
|
||||
}
|
||||
|
||||
GLuint Shader::compile_shader(const std::string &source, GLenum type) {
|
||||
GLuint shader = glCreateShader(type);
|
||||
const char *c_str = source.c_str();
|
||||
test_gl(glShaderSource, shader, 1, &c_str, NULL);
|
||||
test_gl(glCompileShader, shader);
|
||||
|
||||
#ifndef NDEBUG
|
||||
GLint isCompiled = 0;
|
||||
test_gl(glGetShaderiv, shader, GL_COMPILE_STATUS, &isCompiled);
|
||||
if(isCompiled == GL_FALSE) {
|
||||
GLint logLength;
|
||||
test_gl(glGetShaderiv, shader, GL_INFO_LOG_LENGTH, &logLength);
|
||||
if(logLength > 0) {
|
||||
const auto length = std::vector<GLchar>::size_type(logLength);
|
||||
std::vector<GLchar> log(length);
|
||||
test_gl(glGetShaderInfoLog, shader, logLength, &logLength, log.data());
|
||||
LOG("Compile log:\n" << log.data());
|
||||
}
|
||||
|
||||
throw (type == GL_VERTEX_SHADER) ? VertexShaderCompilationError : FragmentShaderCompilationError;
|
||||
}
|
||||
#endif
|
||||
|
||||
return shader;
|
||||
}
|
||||
|
||||
Shader::Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<AttributeBinding> &attribute_bindings) {
|
||||
init(vertex_shader, fragment_shader, attribute_bindings);
|
||||
}
|
||||
|
||||
Shader::Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<std::string> &binding_names) {
|
||||
std::vector<AttributeBinding> bindings;
|
||||
GLuint index = 0;
|
||||
for(const auto &name: binding_names) {
|
||||
bindings.emplace_back(name, index);
|
||||
++index;
|
||||
}
|
||||
init(vertex_shader, fragment_shader, bindings);
|
||||
}
|
||||
|
||||
void Shader::init(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<AttributeBinding> &attribute_bindings) {
|
||||
shader_program_ = glCreateProgram();
|
||||
const GLuint vertex = compile_shader(vertex_shader, GL_VERTEX_SHADER);
|
||||
const GLuint fragment = compile_shader(fragment_shader, GL_FRAGMENT_SHADER);
|
||||
|
||||
test_gl(glAttachShader, shader_program_, vertex);
|
||||
test_gl(glAttachShader, shader_program_, fragment);
|
||||
|
||||
for(const auto &binding : attribute_bindings) {
|
||||
test_gl(glBindAttribLocation, shader_program_, binding.index, binding.name.c_str());
|
||||
#ifndef NDEBUG
|
||||
const auto error = glGetError();
|
||||
switch(error) {
|
||||
case 0: break;
|
||||
case GL_INVALID_VALUE:
|
||||
LOG("GL_INVALID_VALUE when attempting to bind " << binding.name << " to index " << binding.index << " (i.e. index is greater than or equal to GL_MAX_VERTEX_ATTRIBS)");
|
||||
break;
|
||||
case GL_INVALID_OPERATION:
|
||||
LOG("GL_INVALID_OPERATION when attempting to bind " << binding.name << " to index " << binding.index << " (i.e. name begins with gl_)");
|
||||
break;
|
||||
default:
|
||||
LOG("Error " << error << " when attempting to bind " << binding.name << " to index " << binding.index);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
test_gl(glLinkProgram, shader_program_);
|
||||
|
||||
#ifndef NDEBUG
|
||||
GLint logLength;
|
||||
test_gl(glGetProgramiv, shader_program_, GL_INFO_LOG_LENGTH, &logLength);
|
||||
if(logLength > 0) {
|
||||
GLchar *log = new GLchar[std::size_t(logLength)];
|
||||
test_gl(glGetProgramInfoLog, shader_program_, logLength, &logLength, log);
|
||||
LOG("Link log:\n" << log);
|
||||
delete[] log;
|
||||
}
|
||||
|
||||
GLint didLink = 0;
|
||||
test_gl(glGetProgramiv, shader_program_, GL_LINK_STATUS, &didLink);
|
||||
if(didLink == GL_FALSE) {
|
||||
throw ProgramLinkageError;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Shader::~Shader() {
|
||||
// if(bound_shader == this) Shader::unbind();
|
||||
glDeleteProgram(shader_program_);
|
||||
}
|
||||
|
||||
void Shader::bind() const {
|
||||
// if(bound_shader != this) {
|
||||
test_gl(glUseProgram, shader_program_);
|
||||
// bound_shader = this;
|
||||
// }
|
||||
flush_functions();
|
||||
}
|
||||
|
||||
void Shader::unbind() {
|
||||
// bound_shader = nullptr;
|
||||
test_gl(glUseProgram, 0);
|
||||
}
|
||||
|
||||
GLint Shader::get_attrib_location(const std::string &name) const {
|
||||
return glGetAttribLocation(shader_program_, name.c_str());
|
||||
}
|
||||
|
||||
GLint Shader::get_uniform_location(const std::string &name) const {
|
||||
return glGetUniformLocation(shader_program_, name.c_str());
|
||||
}
|
||||
|
||||
void Shader::enable_vertex_attribute_with_pointer(const std::string &name, GLint size, GLenum type, GLboolean normalised, GLsizei stride, const GLvoid *pointer, GLuint divisor) {
|
||||
GLint location = get_attrib_location(name);
|
||||
if(location >= 0) {
|
||||
test_gl(glEnableVertexAttribArray, GLuint(location));
|
||||
test_gl(glVertexAttribPointer, GLuint(location), size, type, normalised, stride, pointer);
|
||||
test_gl(glVertexAttribDivisor, GLuint(location), divisor);
|
||||
} else {
|
||||
LOG("Couldn't enable vertex attribute " << name);
|
||||
}
|
||||
}
|
||||
|
||||
// The various set_uniforms...
|
||||
#define with_location(func, ...) {\
|
||||
const GLint location = glGetUniformLocation(shader_program_, name.c_str()); \
|
||||
if(location == -1) { \
|
||||
LOG("Couldn't get location for uniform " << name); \
|
||||
} else { \
|
||||
func(location, __VA_ARGS__); \
|
||||
if(glGetError()) LOG("Error setting uniform " << name << " via " << #func); \
|
||||
} \
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value) {
|
||||
enqueue_function([name, value, this] {
|
||||
with_location(glUniform1i, value);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value) {
|
||||
enqueue_function([name, value, this] {
|
||||
with_location(glUniform1ui, value);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value) {
|
||||
enqueue_function([name, value, this] {
|
||||
with_location(glUniform1f, value);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
with_location(glUniform2i, value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
with_location(glUniform2f, value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2) {
|
||||
enqueue_function([name, value1, value2, this] {
|
||||
with_location(glUniform2ui, value1, value2);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2, GLint value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
with_location(glUniform3i, value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2, GLfloat value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
with_location(glUniform3f, value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2, GLuint value3) {
|
||||
enqueue_function([name, value1, value2, value3, this] {
|
||||
with_location(glUniform3ui, value1, value2, value3);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint value1, GLint value2, GLint value3, GLint value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
with_location(glUniform4i, value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLfloat value1, GLfloat value2, GLfloat value3, GLfloat value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
with_location(glUniform4f, value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLuint value1, GLuint value2, GLuint value3, GLuint value4) {
|
||||
enqueue_function([name, value1, value2, value3, value4, this] {
|
||||
with_location(glUniform4ui, value1, value2, value3, value4);
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLint *values) {
|
||||
std::size_t number_of_values = std::size_t(count) * std::size_t(size);
|
||||
std::vector<GLint> values_copy(values, values + number_of_values);
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: with_location(glUniform1iv, count, values_copy.data()); break;
|
||||
case 2: with_location(glUniform2iv, count, values_copy.data()); break;
|
||||
case 3: with_location(glUniform3iv, count, values_copy.data()); break;
|
||||
case 4: with_location(glUniform4iv, count, values_copy.data()); break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLfloat *values) {
|
||||
std::size_t number_of_values = std::size_t(count) * std::size_t(size);
|
||||
std::vector<GLfloat> values_copy(values, values + number_of_values);
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: with_location(glUniform1fv, count, values_copy.data()); break;
|
||||
case 2: with_location(glUniform2fv, count, values_copy.data()); break;
|
||||
case 3: with_location(glUniform3fv, count, values_copy.data()); break;
|
||||
case 4: with_location(glUniform4fv, count, values_copy.data()); break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform(const std::string &name, GLint size, GLsizei count, const GLuint *values) {
|
||||
std::size_t number_of_values = std::size_t(count) * std::size_t(size);
|
||||
std::vector<GLuint> values_copy(values, values + number_of_values);
|
||||
|
||||
enqueue_function([name, size, count, values_copy, this] {
|
||||
switch(size) {
|
||||
case 1: with_location(glUniform1uiv, count, values_copy.data()); break;
|
||||
case 2: with_location(glUniform2uiv, count, values_copy.data()); break;
|
||||
case 3: with_location(glUniform3uiv, count, values_copy.data()); break;
|
||||
case 4: with_location(glUniform4uiv, count, values_copy.data()); break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::set_uniform_matrix(const std::string &name, GLint size, bool transpose, const GLfloat *values) {
|
||||
set_uniform_matrix(name, size, 1, transpose, values);
|
||||
}
|
||||
|
||||
void Shader::set_uniform_matrix(const std::string &name, GLint size, GLsizei count, bool transpose, const GLfloat *values) {
|
||||
std::size_t number_of_values = std::size_t(count) * std::size_t(size) * std::size_t(size);
|
||||
std::vector<GLfloat> values_copy(values, values + number_of_values);
|
||||
|
||||
enqueue_function([name, size, count, transpose, values_copy, this] {
|
||||
GLboolean glTranspose = transpose ? GL_TRUE : GL_FALSE;
|
||||
switch(size) {
|
||||
case 2: with_location(glUniformMatrix2fv, count, glTranspose, values_copy.data()); break;
|
||||
case 3: with_location(glUniformMatrix3fv, count, glTranspose, values_copy.data()); break;
|
||||
case 4: with_location(glUniformMatrix4fv, count, glTranspose, values_copy.data()); break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void Shader::enqueue_function(std::function<void(void)> function) {
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
enqueued_functions_.push_back(function);
|
||||
}
|
||||
|
||||
void Shader::flush_functions() const {
|
||||
std::lock_guard<std::mutex> function_guard(function_mutex_);
|
||||
for(std::function<void(void)> function : enqueued_functions_) {
|
||||
function();
|
||||
}
|
||||
enqueued_functions_.clear();
|
||||
}
|
@ -16,6 +16,8 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace Outputs {
|
||||
namespace Display {
|
||||
namespace OpenGL {
|
||||
|
||||
/*!
|
||||
@ -32,6 +34,7 @@ public:
|
||||
};
|
||||
|
||||
struct AttributeBinding {
|
||||
AttributeBinding(const std::string &name, GLuint index) : name(name), index(index) {}
|
||||
const std::string name;
|
||||
const GLuint index;
|
||||
};
|
||||
@ -43,6 +46,13 @@ public:
|
||||
@param attribute_bindings A vector of attribute bindings.
|
||||
*/
|
||||
Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<AttributeBinding> &attribute_bindings = {});
|
||||
/*!
|
||||
Attempts to compile a shader, throwing @c VertexShaderCompilationError, @c FragmentShaderCompilationError or @c ProgramLinkageError upon failure.
|
||||
@param vertex_shader The vertex shader source code.
|
||||
@param fragment_shader The fragment shader source code.
|
||||
@param binding_names A list of attributes to generate bindings for; these will be given indices 0, 1, 2 ... n-1.
|
||||
*/
|
||||
Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<std::string> &binding_names);
|
||||
~Shader();
|
||||
|
||||
/*!
|
||||
@ -52,7 +62,7 @@ public:
|
||||
|
||||
Subsequently performs all work queued up for the next bind irrespective of whether a @c glUseProgram call occurred.
|
||||
*/
|
||||
void bind();
|
||||
void bind() const;
|
||||
|
||||
/*!
|
||||
Unbinds the current instance of Shader, if one is bound.
|
||||
@ -64,14 +74,14 @@ public:
|
||||
@param name The name of the attribute to locate.
|
||||
@returns The location of the requested attribute.
|
||||
*/
|
||||
GLint get_attrib_location(const std::string &name);
|
||||
GLint get_attrib_location(const std::string &name) const;
|
||||
|
||||
/*!
|
||||
Performs a @c glGetUniformLocation call.
|
||||
@param name The name of the uniform to locate.
|
||||
@returns The location of the requested uniform.
|
||||
*/
|
||||
GLint get_uniform_location(const std::string &name);
|
||||
GLint get_uniform_location(const std::string &name) const;
|
||||
|
||||
/*!
|
||||
Shorthand for an appropriate sequence of:
|
||||
@ -107,17 +117,21 @@ public:
|
||||
void set_uniform_matrix(const std::string &name, GLint size, GLsizei count, bool transpose, const GLfloat *values);
|
||||
|
||||
private:
|
||||
void init(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<AttributeBinding> &attribute_bindings);
|
||||
|
||||
GLuint compile_shader(const std::string &source, GLenum type);
|
||||
GLuint shader_program_;
|
||||
|
||||
void flush_functions();
|
||||
std::vector<std::function<void(void)>> enqueued_functions_;
|
||||
std::mutex function_mutex_;
|
||||
void flush_functions() const;
|
||||
mutable std::vector<std::function<void(void)>> enqueued_functions_;
|
||||
mutable std::mutex function_mutex_;
|
||||
|
||||
protected:
|
||||
void enqueue_function(std::function<void(void)> function);
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* Shader_hpp */
|
183
Outputs/OpenGL/Primitives/TextureTarget.cpp
Normal file
183
Outputs/OpenGL/Primitives/TextureTarget.cpp
Normal file
@ -0,0 +1,183 @@
|
||||
//
|
||||
// TextureTarget.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 07/02/2016.
|
||||
// Copyright 2016 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "TextureTarget.hpp"
|
||||
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
TextureTarget::TextureTarget(GLsizei width, GLsizei height, GLenum texture_unit, GLint mag_filter, bool has_stencil_buffer) :
|
||||
width_(width),
|
||||
height_(height),
|
||||
texture_unit_(texture_unit) {
|
||||
// Generate and bind a frame buffer.
|
||||
test_gl(glGenFramebuffers, 1, &framebuffer_);
|
||||
test_gl(glBindFramebuffer, GL_FRAMEBUFFER, framebuffer_);
|
||||
|
||||
// Round the width and height up to the next power of two.
|
||||
expanded_width_ = 1;
|
||||
while(expanded_width_ < width) expanded_width_ <<= 1;
|
||||
expanded_height_ = 1;
|
||||
while(expanded_height_ < height) expanded_height_ <<= 1;
|
||||
|
||||
// Generate a texture and bind it to the nominated texture unit.
|
||||
test_gl(glGenTextures, 1, &texture_);
|
||||
bind_texture();
|
||||
|
||||
// Set dimensions and set the user-supplied magnification filter.
|
||||
test_gl(glTexImage2D, GL_TEXTURE_2D, 0, GL_RGBA, GLsizei(expanded_width_), GLsizei(expanded_height_), 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, mag_filter);
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
|
||||
// Set the texture as colour attachment 0 on the frame buffer.
|
||||
test_gl(glFramebufferTexture2D, GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_, 0);
|
||||
|
||||
// Also add a stencil buffer if requested.
|
||||
if(has_stencil_buffer) {
|
||||
test_gl(glGenRenderbuffers, 1, &renderbuffer_);
|
||||
test_gl(glBindRenderbuffer, GL_RENDERBUFFER, renderbuffer_);
|
||||
test_gl(glRenderbufferStorage, GL_RENDERBUFFER, GL_STENCIL_INDEX1, expanded_width_, expanded_height_);
|
||||
test_gl(glFramebufferRenderbuffer, GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, renderbuffer_);
|
||||
}
|
||||
|
||||
// Check for successful construction.
|
||||
const auto framebuffer_status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
||||
if(framebuffer_status != GL_FRAMEBUFFER_COMPLETE) {
|
||||
switch(framebuffer_status) {
|
||||
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
|
||||
throw std::runtime_error("GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT");
|
||||
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
|
||||
throw std::runtime_error("GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER");
|
||||
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
|
||||
throw std::runtime_error("GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER");
|
||||
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
|
||||
throw std::runtime_error("GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT");
|
||||
case GL_FRAMEBUFFER_UNSUPPORTED:
|
||||
throw std::runtime_error("GL_FRAMEBUFFER_UNSUPPORTED");
|
||||
default:
|
||||
throw std::runtime_error("Framebuffer status incomplete: " + std::to_string(framebuffer_status));
|
||||
|
||||
case 0:
|
||||
test_gl_error();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Clear the framebuffer.
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT);
|
||||
}
|
||||
|
||||
TextureTarget::~TextureTarget() {
|
||||
glDeleteFramebuffers(1, &framebuffer_);
|
||||
glDeleteTextures(1, &texture_);
|
||||
if(renderbuffer_) glDeleteRenderbuffers(1, &renderbuffer_);
|
||||
if(drawing_vertex_array_) glDeleteVertexArrays(1, &drawing_vertex_array_);
|
||||
if(drawing_array_buffer_) glDeleteBuffers(1, &drawing_array_buffer_);
|
||||
}
|
||||
|
||||
void TextureTarget::bind_framebuffer() {
|
||||
test_gl(glBindFramebuffer, GL_FRAMEBUFFER, framebuffer_);
|
||||
test_gl(glViewport, 0, 0, width_, height_);
|
||||
}
|
||||
|
||||
void TextureTarget::bind_texture() const {
|
||||
test_gl(glActiveTexture, texture_unit_);
|
||||
test_gl(glBindTexture, GL_TEXTURE_2D, texture_);
|
||||
}
|
||||
|
||||
void TextureTarget::draw(float aspect_ratio, float colour_threshold) const {
|
||||
if(!pixel_shader_) {
|
||||
const char *vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 texCoord;"
|
||||
"in vec2 position;"
|
||||
|
||||
"out vec2 texCoordVarying;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"texCoordVarying = texCoord;"
|
||||
"gl_Position = vec4(position, 0.0, 1.0);"
|
||||
"}";
|
||||
const char *fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in vec2 texCoordVarying;"
|
||||
|
||||
"uniform sampler2D texID;"
|
||||
"uniform float threshold;"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
|
||||
"void main(void)"
|
||||
"{"
|
||||
"fragColour = clamp(texture(texID, texCoordVarying), threshold, 1.0);"
|
||||
"}";
|
||||
pixel_shader_.reset(new Shader(vertex_shader, fragment_shader));
|
||||
pixel_shader_->bind();
|
||||
|
||||
test_gl(glGenVertexArrays, 1, &drawing_vertex_array_);
|
||||
test_gl(glGenBuffers, 1, &drawing_array_buffer_);
|
||||
|
||||
test_gl(glBindVertexArray, drawing_vertex_array_);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
|
||||
const GLint position_attribute = pixel_shader_->get_attrib_location("position");
|
||||
const GLint tex_coord_attribute = pixel_shader_->get_attrib_location("texCoord");
|
||||
|
||||
test_gl(glEnableVertexAttribArray, GLuint(position_attribute));
|
||||
test_gl(glEnableVertexAttribArray, GLuint(tex_coord_attribute));
|
||||
|
||||
const GLsizei vertex_stride = 4 * sizeof(GLfloat);
|
||||
test_gl(glVertexAttribPointer, GLuint(position_attribute), 2, GL_FLOAT, GL_FALSE, vertex_stride, (void *)0);
|
||||
test_gl(glVertexAttribPointer, GLuint(tex_coord_attribute), 2, GL_FLOAT, GL_FALSE, vertex_stride, (void *)(2 * sizeof(GLfloat)));
|
||||
|
||||
const GLint texIDUniform = pixel_shader_->get_uniform_location("texID");
|
||||
test_gl(glUniform1i, texIDUniform, GLint(texture_unit_ - GL_TEXTURE0));
|
||||
|
||||
threshold_uniform_ = pixel_shader_->get_uniform_location("threshold");
|
||||
}
|
||||
|
||||
if(set_aspect_ratio_ != aspect_ratio) {
|
||||
set_aspect_ratio_ = aspect_ratio;
|
||||
float buffer[4*4];
|
||||
|
||||
// establish texture coordinates
|
||||
buffer[2] = 0.0f;
|
||||
buffer[3] = 0.0f;
|
||||
buffer[6] = 0.0f;
|
||||
buffer[7] = float(height_) / float(expanded_height_);
|
||||
buffer[10] = float(width_) / float(expanded_width_);
|
||||
buffer[11] = 0.0f;
|
||||
buffer[14] = buffer[10];
|
||||
buffer[15] = buffer[7];
|
||||
|
||||
// determine positions; rule is to keep the same height and centre
|
||||
float internal_aspect_ratio = float(width_) / float(height_);
|
||||
float aspect_ratio_ratio = internal_aspect_ratio / aspect_ratio;
|
||||
|
||||
buffer[0] = -aspect_ratio_ratio; buffer[1] = -1.0f;
|
||||
buffer[4] = -aspect_ratio_ratio; buffer[5] = 1.0f;
|
||||
buffer[8] = aspect_ratio_ratio; buffer[9] = -1.0f;
|
||||
buffer[12] = aspect_ratio_ratio; buffer[13] = 1.0f;
|
||||
|
||||
// upload buffer
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, drawing_array_buffer_);
|
||||
test_gl(glBufferData, GL_ARRAY_BUFFER, sizeof(buffer), buffer, GL_STATIC_DRAW);
|
||||
}
|
||||
|
||||
pixel_shader_->bind();
|
||||
test_gl(glUniform1f, threshold_uniform_, colour_threshold);
|
||||
|
||||
test_gl(glBindVertexArray, drawing_vertex_array_);
|
||||
test_gl(glDrawArrays, GL_TRIANGLE_STRIP, 0, 4);
|
||||
}
|
@ -9,10 +9,12 @@
|
||||
#ifndef TextureTarget_hpp
|
||||
#define TextureTarget_hpp
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include "Shaders/Shader.hpp"
|
||||
#include "../OpenGL.hpp"
|
||||
#include "Shader.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace Outputs {
|
||||
namespace Display {
|
||||
namespace OpenGL {
|
||||
|
||||
/*!
|
||||
@ -22,15 +24,18 @@ namespace OpenGL {
|
||||
class TextureTarget {
|
||||
public:
|
||||
/*!
|
||||
Creates a new texture target.
|
||||
Creates a new texture target. Contents are initially undefined.
|
||||
|
||||
Throws ErrorFramebufferIncomplete if creation fails. Leaves both the generated texture and framebuffer bound.
|
||||
Leaves both the generated texture and framebuffer bound.
|
||||
|
||||
@throws std::runtime_error if creation fails.
|
||||
|
||||
@param width The width of target to create.
|
||||
@param height The height of target to create.
|
||||
@param texture_unit A texture unit on which to bind the texture.
|
||||
@param has_stencil_buffer A 1-bit stencil buffer is attached if this is @c true; no stencil buffer is attached otherwise.
|
||||
*/
|
||||
TextureTarget(GLsizei width, GLsizei height, GLenum texture_unit, GLint mag_filter);
|
||||
TextureTarget(GLsizei width, GLsizei height, GLenum texture_unit, GLint mag_filter, bool has_stencil_buffer);
|
||||
~TextureTarget();
|
||||
|
||||
/*!
|
||||
@ -41,19 +46,19 @@ class TextureTarget {
|
||||
/*!
|
||||
Binds this target as a texture.
|
||||
*/
|
||||
void bind_texture();
|
||||
void bind_texture() const;
|
||||
|
||||
/*!
|
||||
@returns the width of the texture target.
|
||||
*/
|
||||
GLsizei get_width() {
|
||||
GLsizei get_width() const {
|
||||
return width_;
|
||||
}
|
||||
|
||||
/*!
|
||||
@returns the height of the texture target.
|
||||
*/
|
||||
GLsizei get_height() {
|
||||
GLsizei get_height() const {
|
||||
return height_;
|
||||
}
|
||||
|
||||
@ -68,25 +73,23 @@ class TextureTarget {
|
||||
0.5f being substituted elsewhere. This provides a way to ensure that the sort of
|
||||
persistent low-value errors that can result from an IIR are hidden.
|
||||
*/
|
||||
void draw(float aspect_ratio, float colour_threshold = 0.0f);
|
||||
|
||||
enum {
|
||||
ErrorFramebufferIncomplete
|
||||
};
|
||||
void draw(float aspect_ratio, float colour_threshold = 0.0f) const;
|
||||
|
||||
private:
|
||||
GLuint framebuffer_ = 0, texture_ = 0;
|
||||
GLsizei width_ = 0, height_ = 0;
|
||||
GLuint framebuffer_ = 0, texture_ = 0, renderbuffer_ = 0;
|
||||
const GLsizei width_ = 0, height_ = 0;
|
||||
GLsizei expanded_width_ = 0, expanded_height_ = 0;
|
||||
GLenum texture_unit_ = 0;
|
||||
const GLenum texture_unit_ = 0;
|
||||
|
||||
std::unique_ptr<Shader> pixel_shader_;
|
||||
GLuint drawing_vertex_array_ = 0, drawing_array_buffer_ = 0;
|
||||
float set_aspect_ratio_ = 0.0f;
|
||||
mutable std::unique_ptr<Shader> pixel_shader_;
|
||||
mutable GLuint drawing_vertex_array_ = 0, drawing_array_buffer_ = 0;
|
||||
mutable float set_aspect_ratio_ = 0.0f;
|
||||
|
||||
GLint threshold_uniform_;
|
||||
mutable GLint threshold_uniform_;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* TextureTarget_hpp */
|
686
Outputs/OpenGL/ScanTarget.cpp
Normal file
686
Outputs/OpenGL/ScanTarget.cpp
Normal file
@ -0,0 +1,686 @@
|
||||
//
|
||||
// ScanTarget.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 05/11/2018.
|
||||
// Copyright © 2018 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "ScanTarget.hpp"
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include "Primitives/Rectangle.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
#ifndef NDEBUG
|
||||
//#define LOG_LINES
|
||||
//#define LOG_SCANS
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
/// The texture unit from which to source input data.
|
||||
constexpr GLenum SourceDataTextureUnit = GL_TEXTURE0;
|
||||
|
||||
/// The texture unit which contains raw line-by-line composite, S-Video or RGB data.
|
||||
constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE1;
|
||||
|
||||
/// The texture unit that contains a pre-lowpass-filtered but fixed-resolution version of the chroma signal;
|
||||
/// this is used when processing composite video only, and for chroma information only. Luminance is calculated
|
||||
/// at the fidelity permitted by the output target, but my efforts to separate, demodulate and filter
|
||||
/// chrominance during output without either massively sampling or else incurring significant high-frequency
|
||||
/// noise that sampling reduces into a Moire, have proven to be unsuccessful for the time being.
|
||||
constexpr GLenum QAMChromaTextureUnit = GL_TEXTURE2;
|
||||
|
||||
/// The texture unit that contains the current display.
|
||||
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE3;
|
||||
|
||||
#define TextureAddress(x, y) (((y) << 11) | (x))
|
||||
#define TextureAddressGetY(v) uint16_t((v) >> 11)
|
||||
#define TextureAddressGetX(v) uint16_t((v) & 0x7ff)
|
||||
#define TextureSub(a, b) (((a) - (b)) & 0x3fffff)
|
||||
|
||||
const GLint internalFormatForDepth(std::size_t depth) {
|
||||
switch(depth) {
|
||||
default: return GL_FALSE;
|
||||
case 1: return GL_R8UI;
|
||||
case 2: return GL_RG8UI;
|
||||
case 3: return GL_RGB8UI;
|
||||
case 4: return GL_RGBA8UI;
|
||||
}
|
||||
}
|
||||
|
||||
const GLenum formatForDepth(std::size_t depth) {
|
||||
switch(depth) {
|
||||
default: return GL_FALSE;
|
||||
case 1: return GL_RED_INTEGER;
|
||||
case 2: return GL_RG_INTEGER;
|
||||
case 3: return GL_RGB_INTEGER;
|
||||
case 4: return GL_RGBA_INTEGER;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename T> void ScanTarget::allocate_buffer(const T &array, GLuint &buffer_name, GLuint &vertex_array_name) {
|
||||
const auto buffer_size = array.size() * sizeof(array[0]);
|
||||
test_gl(glGenBuffers, 1, &buffer_name);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, buffer_name);
|
||||
test_gl(glBufferData, GL_ARRAY_BUFFER, GLsizeiptr(buffer_size), NULL, GL_STREAM_DRAW);
|
||||
|
||||
test_gl(glGenVertexArrays, 1, &vertex_array_name);
|
||||
test_gl(glBindVertexArray, vertex_array_name);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, buffer_name);
|
||||
}
|
||||
|
||||
ScanTarget::ScanTarget(GLuint target_framebuffer, float output_gamma) :
|
||||
target_framebuffer_(target_framebuffer),
|
||||
output_gamma_(output_gamma),
|
||||
unprocessed_line_texture_(LineBufferWidth, LineBufferHeight, UnprocessedLineBufferTextureUnit, GL_NEAREST, false),
|
||||
full_display_rectangle_(-1.0f, -1.0f, 2.0f, 2.0f) {
|
||||
|
||||
// Ensure proper initialisation of the two atomic pointer sets.
|
||||
read_pointers_.store(write_pointers_);
|
||||
submit_pointers_.store(write_pointers_);
|
||||
|
||||
// Allocate space for the scans and lines.
|
||||
allocate_buffer(scan_buffer_, scan_buffer_name_, scan_vertex_array_);
|
||||
allocate_buffer(line_buffer_, line_buffer_name_, line_vertex_array_);
|
||||
|
||||
// TODO: if this is OpenGL 4.4 or newer, use glBufferStorage rather than glBufferData
|
||||
// and specify GL_MAP_PERSISTENT_BIT. Then map the buffer now, and let the client
|
||||
// write straight into it.
|
||||
|
||||
test_gl(glGenTextures, 1, &write_area_texture_name_);
|
||||
|
||||
test_gl(glBlendFunc, GL_SRC_ALPHA, GL_CONSTANT_COLOR);
|
||||
test_gl(glBlendColor, 0.4f, 0.4f, 0.4f, 1.0f);
|
||||
|
||||
is_drawing_.clear();
|
||||
}
|
||||
|
||||
ScanTarget::~ScanTarget() {
|
||||
while(is_drawing_.test_and_set());
|
||||
glDeleteBuffers(1, &scan_buffer_name_);
|
||||
glDeleteTextures(1, &write_area_texture_name_);
|
||||
glDeleteVertexArrays(1, &scan_vertex_array_);
|
||||
}
|
||||
|
||||
void ScanTarget::set_target_framebuffer(GLuint target_framebuffer) {
|
||||
while(is_drawing_.test_and_set());
|
||||
target_framebuffer_ = target_framebuffer;
|
||||
is_drawing_.clear();
|
||||
}
|
||||
|
||||
void ScanTarget::set_modals(Modals modals) {
|
||||
// Don't change the modals while drawing is ongoing; a previous set might be
|
||||
// in the process of being established.
|
||||
while(is_drawing_.test_and_set());
|
||||
modals_ = modals;
|
||||
modals_are_dirty_ = true;
|
||||
is_drawing_.clear();
|
||||
}
|
||||
|
||||
Outputs::Display::ScanTarget::Scan *ScanTarget::begin_scan() {
|
||||
if(allocation_has_failed_) return nullptr;
|
||||
|
||||
const auto result = &scan_buffer_[write_pointers_.scan_buffer];
|
||||
const auto read_pointers = read_pointers_.load();
|
||||
|
||||
// Advance the pointer.
|
||||
const auto next_write_pointer = decltype(write_pointers_.scan_buffer)((write_pointers_.scan_buffer + 1) % scan_buffer_.size());
|
||||
|
||||
// Check whether that's too many.
|
||||
if(next_write_pointer == read_pointers.scan_buffer) {
|
||||
allocation_has_failed_ = true;
|
||||
return nullptr;
|
||||
}
|
||||
write_pointers_.scan_buffer = next_write_pointer;
|
||||
++provided_scans_;
|
||||
|
||||
// Fill in extra OpenGL-specific details.
|
||||
result->line = write_pointers_.line;
|
||||
|
||||
vended_scan_ = result;
|
||||
return &result->scan;
|
||||
}
|
||||
|
||||
void ScanTarget::end_scan() {
|
||||
if(vended_scan_) {
|
||||
vended_scan_->data_y = TextureAddressGetY(vended_write_area_pointer_);
|
||||
vended_scan_->line = write_pointers_.line;
|
||||
vended_scan_->scan.end_points[0].data_offset += TextureAddressGetX(vended_write_area_pointer_);
|
||||
vended_scan_->scan.end_points[1].data_offset += TextureAddressGetX(vended_write_area_pointer_);
|
||||
|
||||
#ifdef LOG_SCANS
|
||||
if(vended_scan_->scan.composite_amplitude) {
|
||||
std::cout << "S: ";
|
||||
std::cout << vended_scan_->scan.end_points[0].composite_angle << "/" << vended_scan_->scan.end_points[0].data_offset << "/" << vended_scan_->scan.end_points[0].cycles_since_end_of_horizontal_retrace << " -> ";
|
||||
std::cout << vended_scan_->scan.end_points[1].composite_angle << "/" << vended_scan_->scan.end_points[1].data_offset << "/" << vended_scan_->scan.end_points[1].cycles_since_end_of_horizontal_retrace << " => ";
|
||||
std::cout << double(vended_scan_->scan.end_points[1].composite_angle - vended_scan_->scan.end_points[0].composite_angle) / (double(vended_scan_->scan.end_points[1].data_offset - vended_scan_->scan.end_points[0].data_offset) * 64.0f) << "/";
|
||||
std::cout << double(vended_scan_->scan.end_points[1].composite_angle - vended_scan_->scan.end_points[0].composite_angle) / (double(vended_scan_->scan.end_points[1].cycles_since_end_of_horizontal_retrace - vended_scan_->scan.end_points[0].cycles_since_end_of_horizontal_retrace) * 64.0f);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
vended_scan_ = nullptr;
|
||||
}
|
||||
|
||||
uint8_t *ScanTarget::begin_data(size_t required_length, size_t required_alignment) {
|
||||
if(allocation_has_failed_) return nullptr;
|
||||
if(!write_area_texture_.size()) {
|
||||
allocation_has_failed_ = true;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Determine where the proposed write area would start and end.
|
||||
uint16_t output_y = TextureAddressGetY(write_pointers_.write_area);
|
||||
|
||||
uint16_t aligned_start_x = TextureAddressGetX(write_pointers_.write_area & 0xffff) + 1;
|
||||
aligned_start_x += uint16_t((required_alignment - aligned_start_x%required_alignment)%required_alignment);
|
||||
|
||||
uint16_t end_x = aligned_start_x + uint16_t(1 + required_length);
|
||||
|
||||
if(end_x > WriteAreaWidth) {
|
||||
output_y = (output_y + 1) % WriteAreaHeight;
|
||||
aligned_start_x = uint16_t(required_alignment);
|
||||
end_x = aligned_start_x + uint16_t(1 + required_length);
|
||||
}
|
||||
|
||||
// Check whether that steps over the read pointer.
|
||||
const auto end_address = TextureAddress(end_x, output_y);
|
||||
const auto read_pointers = read_pointers_.load();
|
||||
|
||||
const auto end_distance = TextureSub(end_address, read_pointers.write_area);
|
||||
const auto previous_distance = TextureSub(write_pointers_.write_area, read_pointers.write_area);
|
||||
|
||||
// If allocating this would somehow make the write pointer back away from the read pointer,
|
||||
// there must not be enough space left.
|
||||
if(end_distance < previous_distance) {
|
||||
allocation_has_failed_ = true;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Everything checks out, return the pointer.
|
||||
vended_write_area_pointer_ = write_pointers_.write_area = TextureAddress(aligned_start_x, output_y);
|
||||
return &write_area_texture_[size_t(write_pointers_.write_area) * data_type_size_];
|
||||
|
||||
// Note state at exit:
|
||||
// write_pointers_.write_area points to the first pixel the client is expected to draw to.
|
||||
}
|
||||
|
||||
void ScanTarget::end_data(size_t actual_length) {
|
||||
if(allocation_has_failed_) return;
|
||||
|
||||
// Bookend the start of the new data, to safeguard for precision errors in sampling.
|
||||
memcpy(
|
||||
&write_area_texture_[size_t(write_pointers_.write_area - 1) * data_type_size_],
|
||||
&write_area_texture_[size_t(write_pointers_.write_area) * data_type_size_],
|
||||
data_type_size_);
|
||||
|
||||
// The write area was allocated in the knowledge that there's sufficient
|
||||
// distance left on the current line, so there's no need to worry about carry.
|
||||
write_pointers_.write_area += actual_length + 1;
|
||||
|
||||
// Also bookend the end.
|
||||
memcpy(
|
||||
&write_area_texture_[size_t(write_pointers_.write_area - 1) * data_type_size_],
|
||||
&write_area_texture_[size_t(write_pointers_.write_area - 2) * data_type_size_],
|
||||
data_type_size_);
|
||||
}
|
||||
|
||||
void ScanTarget::will_change_owner() {
|
||||
allocation_has_failed_ = true;
|
||||
vended_scan_ = nullptr;
|
||||
}
|
||||
|
||||
void ScanTarget::submit() {
|
||||
if(allocation_has_failed_) {
|
||||
// Reset all pointers to where they were; this also means
|
||||
// the stencil won't be properly populated.
|
||||
write_pointers_ = submit_pointers_.load();
|
||||
frame_is_complete_ = false;
|
||||
} else {
|
||||
// Advance submit pointer.
|
||||
submit_pointers_.store(write_pointers_);
|
||||
}
|
||||
|
||||
// Continue defaulting to a failed allocation for as long as there isn't a line available.
|
||||
allocation_has_failed_ = line_allocation_has_failed_;
|
||||
}
|
||||
|
||||
void ScanTarget::announce(Event event, bool is_visible, const Outputs::Display::ScanTarget::Scan::EndPoint &location, uint8_t composite_amplitude) {
|
||||
if(event == ScanTarget::Event::EndVerticalRetrace) {
|
||||
// The previous-frame-is-complete flag is subject to a two-slot queue because
|
||||
// measurement for *this* frame needs to begin now, meaning that the previous
|
||||
// result needs to be put somewhere. Setting frame_is_complete_ back to true
|
||||
// only after it has been put somewhere also doesn't work, since if the first
|
||||
// few lines of a frame are skipped for any reason, there'll be nowhere to
|
||||
// put it.
|
||||
is_first_in_frame_ = true;
|
||||
previous_frame_was_complete_ = frame_is_complete_;
|
||||
frame_is_complete_ = true;
|
||||
}
|
||||
|
||||
if(output_is_visible_ == is_visible) return;
|
||||
if(is_visible) {
|
||||
const auto read_pointers = read_pointers_.load();
|
||||
|
||||
// Commit the most recent line only if any scans fell on it.
|
||||
// Otherwise there's no point outputting it, it'll contribute nothing.
|
||||
if(provided_scans_) {
|
||||
// Store metadata if concluding a previous line.
|
||||
if(active_line_) {
|
||||
line_metadata_buffer_[size_t(write_pointers_.line)].is_first_in_frame = is_first_in_frame_;
|
||||
line_metadata_buffer_[size_t(write_pointers_.line)].previous_frame_was_complete = previous_frame_was_complete_;
|
||||
is_first_in_frame_ = false;
|
||||
}
|
||||
|
||||
// Attempt to allocate a new line; note allocation failure if necessary.
|
||||
const auto next_line = uint16_t((write_pointers_.line + 1) % LineBufferHeight);
|
||||
if(next_line == read_pointers.line) {
|
||||
line_allocation_has_failed_ = allocation_has_failed_ = true;
|
||||
active_line_ = nullptr;
|
||||
} else {
|
||||
line_allocation_has_failed_ = false;
|
||||
write_pointers_.line = next_line;
|
||||
active_line_ = &line_buffer_[size_t(write_pointers_.line)];
|
||||
}
|
||||
provided_scans_ = 0;
|
||||
} else {
|
||||
// Just check whether a new line is available now, if waiting.
|
||||
if(line_allocation_has_failed_) {
|
||||
const auto next_line = uint16_t((write_pointers_.line + 1) % LineBufferHeight);
|
||||
if(next_line != read_pointers.line) {
|
||||
line_allocation_has_failed_ = false;
|
||||
write_pointers_.line = next_line;
|
||||
active_line_ = &line_buffer_[size_t(write_pointers_.line)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(active_line_) {
|
||||
active_line_->end_points[0].x = location.x;
|
||||
active_line_->end_points[0].y = location.y;
|
||||
active_line_->end_points[0].cycles_since_end_of_horizontal_retrace = location.cycles_since_end_of_horizontal_retrace;
|
||||
active_line_->end_points[0].composite_angle = location.composite_angle;
|
||||
active_line_->line = write_pointers_.line;
|
||||
active_line_->composite_amplitude = composite_amplitude;
|
||||
}
|
||||
} else {
|
||||
if(active_line_) {
|
||||
active_line_->end_points[1].x = location.x;
|
||||
active_line_->end_points[1].y = location.y;
|
||||
active_line_->end_points[1].cycles_since_end_of_horizontal_retrace = location.cycles_since_end_of_horizontal_retrace;
|
||||
active_line_->end_points[1].composite_angle = location.composite_angle;
|
||||
|
||||
#ifdef LOG_LINES
|
||||
if(active_line_->composite_amplitude) {
|
||||
std::cout << "L: ";
|
||||
std::cout << active_line_->end_points[0].composite_angle << "/" << active_line_->end_points[0].cycles_since_end_of_horizontal_retrace << " -> ";
|
||||
std::cout << active_line_->end_points[1].composite_angle << "/" << active_line_->end_points[1].cycles_since_end_of_horizontal_retrace << " => ";
|
||||
std::cout << (active_line_->end_points[1].composite_angle - active_line_->end_points[0].composite_angle) << "/" << (active_line_->end_points[1].cycles_since_end_of_horizontal_retrace - active_line_->end_points[0].cycles_since_end_of_horizontal_retrace) << " => ";
|
||||
std::cout << double(active_line_->end_points[1].composite_angle - active_line_->end_points[0].composite_angle) / (double(active_line_->end_points[1].cycles_since_end_of_horizontal_retrace - active_line_->end_points[0].cycles_since_end_of_horizontal_retrace) * 64.0f);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
output_is_visible_ = is_visible;
|
||||
}
|
||||
|
||||
void ScanTarget::setup_pipeline() {
|
||||
const auto data_type_size = Outputs::Display::size_for_data_type(modals_.input_data_type);
|
||||
if(data_type_size != data_type_size_) {
|
||||
// TODO: flush output.
|
||||
|
||||
data_type_size_ = data_type_size;
|
||||
write_area_texture_.resize(2048*2048*data_type_size_);
|
||||
|
||||
write_pointers_.scan_buffer = 0;
|
||||
write_pointers_.write_area = 0;
|
||||
}
|
||||
|
||||
// Prepare to bind line shaders.
|
||||
test_gl(glBindVertexArray, line_vertex_array_);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, line_buffer_name_);
|
||||
|
||||
// Destroy or create a QAM buffer and shader, if appropriate.
|
||||
const bool needs_qam_buffer = (modals_.display_type == DisplayType::CompositeColour || modals_.display_type == DisplayType::SVideo);
|
||||
if(needs_qam_buffer) {
|
||||
if(!qam_chroma_texture_) {
|
||||
qam_chroma_texture_.reset(new TextureTarget(LineBufferWidth, LineBufferHeight, QAMChromaTextureUnit, GL_NEAREST, false));
|
||||
}
|
||||
|
||||
qam_separation_shader_ = qam_separation_shader();
|
||||
enable_vertex_attributes(ShaderType::QAMSeparation, *qam_separation_shader_);
|
||||
set_uniforms(ShaderType::QAMSeparation, *qam_separation_shader_);
|
||||
qam_separation_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
|
||||
} else {
|
||||
qam_chroma_texture_.reset();
|
||||
qam_separation_shader_.reset();
|
||||
}
|
||||
|
||||
// Establish an output shader.
|
||||
output_shader_ = conversion_shader();
|
||||
enable_vertex_attributes(ShaderType::Conversion, *output_shader_);
|
||||
set_uniforms(ShaderType::Conversion, *output_shader_);
|
||||
output_shader_->set_uniform("origin", modals_.visible_area.origin.x, modals_.visible_area.origin.y);
|
||||
output_shader_->set_uniform("size", modals_.visible_area.size.width, modals_.visible_area.size.height);
|
||||
output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
|
||||
output_shader_->set_uniform("qamTextureName", GLint(QAMChromaTextureUnit - GL_TEXTURE0));
|
||||
|
||||
// Establish an input shader.
|
||||
input_shader_ = composition_shader();
|
||||
test_gl(glBindVertexArray, scan_vertex_array_);
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, scan_buffer_name_);
|
||||
enable_vertex_attributes(ShaderType::Composition, *input_shader_);
|
||||
set_uniforms(ShaderType::Composition, *input_shader_);
|
||||
input_shader_->set_uniform("textureName", GLint(SourceDataTextureUnit - GL_TEXTURE0));
|
||||
}
|
||||
|
||||
void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
||||
if(fence_ != nullptr) {
|
||||
// if the GPU is still busy, don't wait; we'll catch it next time
|
||||
if(glClientWaitSync(fence_, GL_SYNC_FLUSH_COMMANDS_BIT, synchronous ? GL_TIMEOUT_IGNORED : 0) == GL_TIMEOUT_EXPIRED) {
|
||||
return;
|
||||
}
|
||||
fence_ = nullptr;
|
||||
}
|
||||
|
||||
// Spin until the is-drawing flag is reset; the wait sync above will deal
|
||||
// with instances where waiting is inappropriate.
|
||||
while(is_drawing_.test_and_set());
|
||||
|
||||
// Establish the pipeline if necessary.
|
||||
const bool did_setup_pipeline = modals_are_dirty_;
|
||||
if(modals_are_dirty_) {
|
||||
setup_pipeline();
|
||||
modals_are_dirty_ = false;
|
||||
}
|
||||
|
||||
// Grab the current read and submit pointers.
|
||||
const auto submit_pointers = submit_pointers_.load();
|
||||
const auto read_pointers = read_pointers_.load();
|
||||
|
||||
// Submit scans; only the new ones need to be communicated.
|
||||
size_t new_scans = (submit_pointers.scan_buffer + scan_buffer_.size() - read_pointers.scan_buffer) % scan_buffer_.size();
|
||||
if(new_scans) {
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, scan_buffer_name_);
|
||||
|
||||
// Map only the required portion of the buffer.
|
||||
const size_t new_scans_size = new_scans * sizeof(Scan);
|
||||
uint8_t *const destination = static_cast<uint8_t *>(
|
||||
glMapBufferRange(GL_ARRAY_BUFFER, 0, GLsizeiptr(new_scans_size), GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT)
|
||||
);
|
||||
test_gl_error();
|
||||
|
||||
if(read_pointers.scan_buffer < submit_pointers.scan_buffer) {
|
||||
memcpy(destination, &scan_buffer_[read_pointers.scan_buffer], new_scans_size);
|
||||
} else {
|
||||
const size_t first_portion_length = (scan_buffer_.size() - read_pointers.scan_buffer) * sizeof(Scan);
|
||||
memcpy(destination, &scan_buffer_[read_pointers.scan_buffer], first_portion_length);
|
||||
memcpy(&destination[first_portion_length], &scan_buffer_[0], new_scans_size - first_portion_length);
|
||||
}
|
||||
|
||||
// Flush and unmap the buffer.
|
||||
test_gl(glFlushMappedBufferRange, GL_ARRAY_BUFFER, 0, GLsizeiptr(new_scans_size));
|
||||
test_gl(glUnmapBuffer, GL_ARRAY_BUFFER);
|
||||
}
|
||||
|
||||
// Submit texture.
|
||||
if(submit_pointers.write_area != read_pointers.write_area) {
|
||||
test_gl(glActiveTexture, SourceDataTextureUnit);
|
||||
test_gl(glBindTexture, GL_TEXTURE_2D, write_area_texture_name_);
|
||||
|
||||
// Create storage for the texture if it doesn't yet exist; this was deferred until here
|
||||
// because the pixel format wasn't initially known.
|
||||
if(!texture_exists_) {
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
test_gl(glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
test_gl(glTexImage2D,
|
||||
GL_TEXTURE_2D,
|
||||
0,
|
||||
internalFormatForDepth(data_type_size_),
|
||||
WriteAreaWidth,
|
||||
WriteAreaHeight,
|
||||
0,
|
||||
formatForDepth(data_type_size_),
|
||||
GL_UNSIGNED_BYTE,
|
||||
nullptr);
|
||||
texture_exists_ = true;
|
||||
}
|
||||
|
||||
const auto start_y = TextureAddressGetY(read_pointers.write_area);
|
||||
const auto end_y = TextureAddressGetY(submit_pointers.write_area);
|
||||
if(end_y >= start_y) {
|
||||
// Submit the direct region from the submit pointer to the read pointer.
|
||||
test_gl(glTexSubImage2D,
|
||||
GL_TEXTURE_2D, 0,
|
||||
0, start_y,
|
||||
WriteAreaWidth,
|
||||
1 + end_y - start_y,
|
||||
formatForDepth(data_type_size_),
|
||||
GL_UNSIGNED_BYTE,
|
||||
&write_area_texture_[size_t(TextureAddress(0, start_y)) * data_type_size_]);
|
||||
} else {
|
||||
// The circular buffer wrapped around; submit the data from the read pointer to the end of
|
||||
// the buffer and from the start of the buffer to the submit pointer.
|
||||
test_gl(glTexSubImage2D,
|
||||
GL_TEXTURE_2D, 0,
|
||||
0, 0,
|
||||
WriteAreaWidth,
|
||||
1 + end_y,
|
||||
formatForDepth(data_type_size_),
|
||||
GL_UNSIGNED_BYTE,
|
||||
&write_area_texture_[0]);
|
||||
test_gl(glTexSubImage2D,
|
||||
GL_TEXTURE_2D, 0,
|
||||
0, start_y,
|
||||
WriteAreaWidth,
|
||||
WriteAreaHeight - start_y,
|
||||
formatForDepth(data_type_size_),
|
||||
GL_UNSIGNED_BYTE,
|
||||
&write_area_texture_[size_t(TextureAddress(0, start_y)) * data_type_size_]);
|
||||
}
|
||||
}
|
||||
|
||||
// Push new input to the unprocessed line buffer.
|
||||
if(new_scans) {
|
||||
unprocessed_line_texture_.bind_framebuffer();
|
||||
|
||||
// Clear newly-touched lines; that is everything from (read+1) to submit.
|
||||
const uint16_t first_line_to_clear = (read_pointers.line+1)%line_buffer_.size();
|
||||
const uint16_t final_line_to_clear = submit_pointers.line;
|
||||
if(first_line_to_clear != final_line_to_clear) {
|
||||
test_gl(glEnable, GL_SCISSOR_TEST);
|
||||
|
||||
// Determine the proper clear colour — this needs to be anything that describes black
|
||||
// in the input colour encoding at use.
|
||||
if(modals_.input_data_type == InputDataType::Luminance8Phase8) {
|
||||
// Supply both a zero luminance and a colour-subcarrier-disengaging phase.
|
||||
test_gl(glClearColor, 0.0f, 1.0f, 0.0f, 0.0f);
|
||||
} else {
|
||||
test_gl(glClearColor, 0.0f, 0.0f, 0.0f, 0.0f);
|
||||
}
|
||||
|
||||
if(first_line_to_clear < final_line_to_clear) {
|
||||
test_gl(glScissor, 0, first_line_to_clear, unprocessed_line_texture_.get_width(), final_line_to_clear - first_line_to_clear);
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT);
|
||||
} else {
|
||||
test_gl(glScissor, 0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear);
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT);
|
||||
test_gl(glScissor, 0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear);
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT);
|
||||
}
|
||||
|
||||
test_gl(glDisable, GL_SCISSOR_TEST);
|
||||
}
|
||||
|
||||
// Apply new spans. They definitely always go to the first buffer.
|
||||
test_gl(glBindVertexArray, scan_vertex_array_);
|
||||
input_shader_->bind();
|
||||
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans));
|
||||
}
|
||||
|
||||
// Ensure the accumulation buffer is properly sized.
|
||||
// TODO: based on a decision about host speed, potentially switch to the std::min fragment as shown below,
|
||||
// which would limit total output buffer size to 1440x1080.
|
||||
const int framebuffer_height = output_height;//std::min(output_height, 1080);
|
||||
const int proportional_width = (framebuffer_height * 4) / 3;
|
||||
const bool did_create_accumulation_texture = !accumulation_texture_ || ( /* !synchronous && */ (accumulation_texture_->get_width() != proportional_width || accumulation_texture_->get_height() != framebuffer_height));
|
||||
if(did_create_accumulation_texture) {
|
||||
std::unique_ptr<OpenGL::TextureTarget> new_framebuffer(
|
||||
new TextureTarget(
|
||||
GLsizei(proportional_width),
|
||||
GLsizei(framebuffer_height),
|
||||
AccumulationTextureUnit,
|
||||
GL_NEAREST,
|
||||
true));
|
||||
if(accumulation_texture_) {
|
||||
new_framebuffer->bind_framebuffer();
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
|
||||
|
||||
test_gl(glActiveTexture, AccumulationTextureUnit);
|
||||
accumulation_texture_->bind_texture();
|
||||
accumulation_texture_->draw(float(output_width) / float(output_height));
|
||||
|
||||
test_gl(glClear, GL_STENCIL_BUFFER_BIT);
|
||||
|
||||
new_framebuffer->bind_texture();
|
||||
}
|
||||
accumulation_texture_ = std::move(new_framebuffer);
|
||||
|
||||
// In the absence of a way to resize a stencil buffer, just mark
|
||||
// what's currently present as invalid to avoid an improper clear
|
||||
// for this frame.
|
||||
stencil_is_valid_ = false;
|
||||
}
|
||||
|
||||
if(did_setup_pipeline || did_create_accumulation_texture) {
|
||||
set_sampling_window(proportional_width, framebuffer_height, *output_shader_);
|
||||
}
|
||||
|
||||
// Figure out how many new lines are ready.
|
||||
uint16_t new_lines = (submit_pointers.line + LineBufferHeight - read_pointers.line) % LineBufferHeight;
|
||||
if(new_lines) {
|
||||
// Prepare to output lines.
|
||||
test_gl(glBindVertexArray, line_vertex_array_);
|
||||
|
||||
// Bind the accumulation framebuffer, unless there's going to be QAM work first.
|
||||
if(!qam_separation_shader_ || line_metadata_buffer_[read_pointers.line].is_first_in_frame) {
|
||||
accumulation_texture_->bind_framebuffer();
|
||||
output_shader_->bind();
|
||||
|
||||
// Enable blending and stenciling.
|
||||
test_gl(glEnable, GL_BLEND);
|
||||
test_gl(glEnable, GL_STENCIL_TEST);
|
||||
}
|
||||
|
||||
// Set the proper stencil function regardless.
|
||||
test_gl(glStencilFunc, GL_EQUAL, 0, GLuint(~0));
|
||||
test_gl(glStencilOp, GL_KEEP, GL_KEEP, GL_INCR);
|
||||
|
||||
// Prepare to upload data that will consitute lines.
|
||||
test_gl(glBindBuffer, GL_ARRAY_BUFFER, line_buffer_name_);
|
||||
|
||||
// Divide spans by which frame they're in.
|
||||
uint16_t start_line = read_pointers.line;
|
||||
while(new_lines) {
|
||||
uint16_t end_line = (start_line + 1) % LineBufferHeight;
|
||||
|
||||
// Find the limit of spans to draw in this cycle.
|
||||
size_t lines = 1;
|
||||
while(end_line != submit_pointers.line && !line_metadata_buffer_[end_line].is_first_in_frame) {
|
||||
end_line = (end_line + 1) % LineBufferHeight;
|
||||
++lines;
|
||||
}
|
||||
|
||||
// If this is start-of-frame, clear any untouched pixels and flush the stencil buffer
|
||||
if(line_metadata_buffer_[start_line].is_first_in_frame) {
|
||||
if(stencil_is_valid_ && line_metadata_buffer_[start_line].previous_frame_was_complete) {
|
||||
full_display_rectangle_.draw(0.0f, 0.0f, 0.0f);
|
||||
}
|
||||
stencil_is_valid_ = true;
|
||||
test_gl(glClear, GL_STENCIL_BUFFER_BIT);
|
||||
|
||||
// Rebind the program for span output.
|
||||
test_gl(glBindVertexArray, line_vertex_array_);
|
||||
if(!qam_separation_shader_) {
|
||||
output_shader_->bind();
|
||||
}
|
||||
}
|
||||
|
||||
// Upload.
|
||||
const auto buffer_size = lines * sizeof(Line);
|
||||
if(!end_line || end_line > start_line) {
|
||||
test_gl(glBufferSubData, GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size), &line_buffer_[start_line]);
|
||||
} else {
|
||||
uint8_t *destination = static_cast<uint8_t *>(
|
||||
glMapBufferRange(GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size), GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT)
|
||||
);
|
||||
assert(destination);
|
||||
test_gl_error();
|
||||
|
||||
const size_t buffer_length = line_buffer_.size() * sizeof(Line);
|
||||
const size_t start_position = start_line * sizeof(Line);
|
||||
memcpy(&destination[0], &line_buffer_[start_line], buffer_length - start_position);
|
||||
memcpy(&destination[buffer_length - start_position], &line_buffer_[0], end_line * sizeof(Line));
|
||||
|
||||
test_gl(glFlushMappedBufferRange, GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size));
|
||||
test_gl(glUnmapBuffer, GL_ARRAY_BUFFER);
|
||||
}
|
||||
|
||||
// Produce colour information, if required.
|
||||
if(qam_separation_shader_) {
|
||||
qam_separation_shader_->bind();
|
||||
qam_chroma_texture_->bind_framebuffer();
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT); // TODO: this is here as a hint that the old framebuffer doesn't need reloading;
|
||||
// test whether that's a valid optimisation on desktop OpenGL.
|
||||
|
||||
test_gl(glDisable, GL_BLEND);
|
||||
test_gl(glDisable, GL_STENCIL_TEST);
|
||||
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
|
||||
|
||||
accumulation_texture_->bind_framebuffer();
|
||||
output_shader_->bind();
|
||||
test_gl(glEnable, GL_BLEND);
|
||||
test_gl(glEnable, GL_STENCIL_TEST);
|
||||
}
|
||||
|
||||
// Render to the output.
|
||||
test_gl(glDrawArraysInstanced, GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
|
||||
|
||||
start_line = end_line;
|
||||
new_lines -= lines;
|
||||
}
|
||||
|
||||
// Disable blending and the stencil test again.
|
||||
test_gl(glDisable, GL_STENCIL_TEST);
|
||||
test_gl(glDisable, GL_BLEND);
|
||||
}
|
||||
|
||||
// Copy the accumulatiion texture to the target.
|
||||
test_gl(glBindFramebuffer, GL_FRAMEBUFFER, target_framebuffer_);
|
||||
test_gl(glViewport, 0, 0, (GLsizei)output_width, (GLsizei)output_height);
|
||||
|
||||
test_gl(glClearColor, 0.0f, 0.0f, 0.0f, 0.0f);
|
||||
test_gl(glClear, GL_COLOR_BUFFER_BIT);
|
||||
accumulation_texture_->bind_texture();
|
||||
accumulation_texture_->draw(float(output_width) / float(output_height), 4.0f / 255.0f);
|
||||
|
||||
// All data now having been spooled to the GPU, update the read pointers to
|
||||
// the submit pointer location.
|
||||
read_pointers_.store(submit_pointers);
|
||||
|
||||
// Grab a fence sync object to avoid busy waiting upon the next extry into this
|
||||
// function, and reset the is_drawing_ flag.
|
||||
fence_ = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
|
||||
is_drawing_.clear();
|
||||
}
|
231
Outputs/OpenGL/ScanTarget.hpp
Normal file
231
Outputs/OpenGL/ScanTarget.hpp
Normal file
@ -0,0 +1,231 @@
|
||||
//
|
||||
// ScanTarget.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 05/11/2018.
|
||||
// Copyright © 2018 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef ScanTarget_hpp
|
||||
#define ScanTarget_hpp
|
||||
|
||||
#include "../ScanTarget.hpp"
|
||||
#include "../Log.hpp"
|
||||
|
||||
#include "OpenGL.hpp"
|
||||
#include "Primitives/TextureTarget.hpp"
|
||||
#include "Primitives/Rectangle.hpp"
|
||||
|
||||
#include "../../SignalProcessing/FIRFilter.hpp"
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace Outputs {
|
||||
namespace Display {
|
||||
namespace OpenGL {
|
||||
|
||||
/*!
|
||||
Provides a ScanTarget that uses OpenGL to render its output;
|
||||
this uses various internal buffers so that the only geometry
|
||||
drawn to the target framebuffer is a quad.
|
||||
*/
|
||||
class ScanTarget: public Outputs::Display::ScanTarget {
|
||||
public:
|
||||
ScanTarget(GLuint target_framebuffer = 0, float output_gamma = 2.2f);
|
||||
~ScanTarget();
|
||||
|
||||
void set_target_framebuffer(GLuint);
|
||||
|
||||
void draw(bool synchronous, int output_width, int output_height);
|
||||
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
struct OpenGLVersionDumper {
|
||||
OpenGLVersionDumper() {
|
||||
// Note the OpenGL version, as the first thing this class does prior to construction.
|
||||
LOG("Constructing scan target with OpenGL " << glGetString(GL_VERSION) << "; shading language version " << glGetString(GL_SHADING_LANGUAGE_VERSION));
|
||||
}
|
||||
} dumper_;
|
||||
#endif
|
||||
|
||||
static constexpr int WriteAreaWidth = 2048;
|
||||
static constexpr int WriteAreaHeight = 2048;
|
||||
|
||||
static constexpr int LineBufferWidth = 2048;
|
||||
static constexpr int LineBufferHeight = 2048;
|
||||
|
||||
GLuint target_framebuffer_;
|
||||
const float output_gamma_;
|
||||
|
||||
// Outputs::Display::ScanTarget overrides.
|
||||
void set_modals(Modals) override;
|
||||
Scan *begin_scan() override;
|
||||
void end_scan() override;
|
||||
uint8_t *begin_data(size_t required_length, size_t required_alignment) override;
|
||||
void end_data(size_t actual_length) override;
|
||||
void submit() override;
|
||||
void announce(Event event, bool is_visible, const Outputs::Display::ScanTarget::Scan::EndPoint &location, uint8_t colour_burst_amplitude) override;
|
||||
void will_change_owner() override;
|
||||
|
||||
bool output_is_visible_ = false;
|
||||
|
||||
// Extends the definition of a Scan to include two extra fields,
|
||||
// relevant to the way that this scan target processes video.
|
||||
struct Scan {
|
||||
Outputs::Display::ScanTarget::Scan scan;
|
||||
|
||||
/// Stores the y coordinate that this scan's data is at, within the write area texture.
|
||||
uint16_t data_y;
|
||||
/// Stores the y coordinate of this scan within the line buffer.
|
||||
uint16_t line;
|
||||
};
|
||||
|
||||
struct PointerSet {
|
||||
// This constructor is here to appease GCC's interpretation of
|
||||
// an ambiguity in the C++ standard; cf. https://stackoverflow.com/questions/17430377
|
||||
PointerSet() noexcept {}
|
||||
|
||||
// The sizes below might be less hassle as something more natural like ints,
|
||||
// but squeezing this struct into 64 bits makes the std::atomics more likely
|
||||
// to be lock free; they are under LLVM x86-64.
|
||||
int write_area = 0;
|
||||
uint16_t scan_buffer = 0;
|
||||
uint16_t line = 0;
|
||||
};
|
||||
|
||||
/// A pointer to the next thing that should be provided to the caller for data.
|
||||
PointerSet write_pointers_;
|
||||
|
||||
/// A pointer to the final thing currently cleared for submission.
|
||||
std::atomic<PointerSet> submit_pointers_;
|
||||
|
||||
/// A pointer to the first thing not yet submitted for display.
|
||||
std::atomic<PointerSet> read_pointers_;
|
||||
|
||||
// Maintains a buffer of the most recent 3072 scans.
|
||||
std::array<Scan, 3072> scan_buffer_;
|
||||
|
||||
// Maintains a list of composite scan buffer coordinates; the Line struct
|
||||
// is transported to the GPU in its entirety; the LineMetadatas live in CPU
|
||||
// space only.
|
||||
struct Line {
|
||||
struct EndPoint {
|
||||
uint16_t x, y;
|
||||
uint16_t cycles_since_end_of_horizontal_retrace;
|
||||
int16_t composite_angle;
|
||||
} end_points[2];
|
||||
uint16_t line;
|
||||
uint8_t composite_amplitude;
|
||||
};
|
||||
struct LineMetadata {
|
||||
bool is_first_in_frame;
|
||||
bool previous_frame_was_complete;
|
||||
};
|
||||
std::array<Line, LineBufferHeight> line_buffer_;
|
||||
std::array<LineMetadata, LineBufferHeight> line_metadata_buffer_;
|
||||
|
||||
// Contains the first composition of scans into lines;
|
||||
// they're accumulated prior to output to allow for continuous
|
||||
// application of any necessary conversions — e.g. composite processing.
|
||||
TextureTarget unprocessed_line_texture_;
|
||||
|
||||
// Contains pre-lowpass-filtered chrominance information that is
|
||||
// part-QAM-demoduled, if dealing with a QAM data source.
|
||||
std::unique_ptr<TextureTarget> qam_chroma_texture_;
|
||||
|
||||
// Scans are accumulated to the accumulation texture; the full-display
|
||||
// rectangle is used to ensure untouched pixels properly decay.
|
||||
std::unique_ptr<TextureTarget> accumulation_texture_;
|
||||
Rectangle full_display_rectangle_;
|
||||
bool stencil_is_valid_ = false;
|
||||
|
||||
// Ephemeral state that helps in line composition.
|
||||
Line *active_line_ = nullptr;
|
||||
int provided_scans_ = 0;
|
||||
bool is_first_in_frame_ = true;
|
||||
bool frame_is_complete_ = true;
|
||||
bool previous_frame_was_complete_ = true;
|
||||
|
||||
// OpenGL storage handles for buffer data.
|
||||
GLuint scan_buffer_name_ = 0, scan_vertex_array_ = 0;
|
||||
GLuint line_buffer_name_ = 0, line_vertex_array_ = 0;
|
||||
|
||||
template <typename T> void allocate_buffer(const T &array, GLuint &buffer_name, GLuint &vertex_array_name);
|
||||
template <typename T> void patch_buffer(const T &array, GLuint target, uint16_t submit_pointer, uint16_t read_pointer);
|
||||
|
||||
// Uses a texture to vend write areas.
|
||||
std::vector<uint8_t> write_area_texture_;
|
||||
size_t data_type_size_ = 0;
|
||||
|
||||
GLuint write_area_texture_name_ = 0;
|
||||
bool texture_exists_ = false;
|
||||
|
||||
// Ephemeral information for the begin/end functions.
|
||||
Scan *vended_scan_ = nullptr;
|
||||
int vended_write_area_pointer_ = 0;
|
||||
|
||||
// Track allocation failures.
|
||||
bool allocation_has_failed_ = false;
|
||||
bool line_allocation_has_failed_ = false;
|
||||
|
||||
// Receives scan target modals.
|
||||
Modals modals_;
|
||||
bool modals_are_dirty_ = false;
|
||||
void setup_pipeline();
|
||||
|
||||
enum class ShaderType {
|
||||
Composition,
|
||||
Conversion,
|
||||
QAMSeparation
|
||||
};
|
||||
|
||||
/*!
|
||||
Calls @c taret.enable_vertex_attribute_with_pointer to attach all
|
||||
globals for shaders of @c type to @c target.
|
||||
*/
|
||||
static void enable_vertex_attributes(ShaderType type, Shader &target);
|
||||
void set_uniforms(ShaderType type, Shader &target) const;
|
||||
std::vector<std::string> bindings(ShaderType type) const;
|
||||
|
||||
GLsync fence_ = nullptr;
|
||||
std::atomic_flag is_drawing_;
|
||||
|
||||
std::unique_ptr<Shader> input_shader_;
|
||||
std::unique_ptr<Shader> output_shader_;
|
||||
std::unique_ptr<Shader> qam_separation_shader_;
|
||||
|
||||
|
||||
/*!
|
||||
Produces a shader that composes fragment of the input stream to a single buffer,
|
||||
normalising the data into one of four forms: RGB, 8-bit luminance,
|
||||
phase-linked luminance or luminance+phase offset.
|
||||
*/
|
||||
std::unique_ptr<Shader> composition_shader() const;
|
||||
/*!
|
||||
Produces a shader that reads from a composition buffer and converts to host
|
||||
output RGB, decoding composite or S-Video as necessary.
|
||||
*/
|
||||
std::unique_ptr<Shader> conversion_shader() const;
|
||||
/*!
|
||||
Produces a shader that writes separated but not-yet filtered QAM components
|
||||
from the unprocessed line texture to the QAM chroma texture, at a fixed
|
||||
size of four samples per colour clock, point sampled.
|
||||
*/
|
||||
std::unique_ptr<Shader> qam_separation_shader() const;
|
||||
|
||||
void set_sampling_window(int output_Width, int output_height, Shader &target);
|
||||
|
||||
std::string sampling_function() const;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ScanTarget_hpp */
|
664
Outputs/OpenGL/ScanTargetGLSLFragments.cpp
Normal file
664
Outputs/OpenGL/ScanTargetGLSLFragments.cpp
Normal file
@ -0,0 +1,664 @@
|
||||
//
|
||||
// ScanTargetVertexArrayAttributs.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 11/11/2018.
|
||||
// Copyright © 2018 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "ScanTarget.hpp"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
// MARK: - State setup for compiled shaders.
|
||||
|
||||
void ScanTarget::set_uniforms(ShaderType type, Shader &target) const {
|
||||
// Slightly over-amping rowHeight here is a cheap way to make sure that lines
|
||||
// converge even allowing for the fact that they may not be spaced by exactly
|
||||
// the expected distance. Cf. the stencil-powered logic for making sure all
|
||||
// pixels are painted only exactly once per field.
|
||||
switch(type) {
|
||||
case ShaderType::Composition: break;
|
||||
default:
|
||||
target.set_uniform("rowHeight", GLfloat(1.05f / modals_.expected_vertical_lines));
|
||||
target.set_uniform("scale", GLfloat(modals_.output_scale.x), GLfloat(modals_.output_scale.y));
|
||||
target.set_uniform("phaseOffset", GLfloat(modals_.input_data_tweaks.phase_linked_luminance_offset));
|
||||
|
||||
const float clocks_per_angle = float(modals_.cycles_per_line) * float(modals_.colour_cycle_denominator) / float(modals_.colour_cycle_numerator);
|
||||
GLfloat texture_offsets[4];
|
||||
GLfloat angles[4];
|
||||
for(int c = 0; c < 4; ++c) {
|
||||
GLfloat angle = (GLfloat(c) - 1.5f) / 4.0f;
|
||||
texture_offsets[c] = angle * clocks_per_angle;
|
||||
angles[c] = GLfloat(angle * 2.0f * M_PI);
|
||||
}
|
||||
target.set_uniform("textureCoordinateOffsets", 1, 4, texture_offsets);
|
||||
target.set_uniform("compositeAngleOffsets", 4, 1, angles);
|
||||
|
||||
switch(modals_.composite_colour_space) {
|
||||
case ColourSpace::YIQ: {
|
||||
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
|
||||
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
|
||||
target.set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
|
||||
target.set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
|
||||
} break;
|
||||
|
||||
case ColourSpace::YUV: {
|
||||
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
|
||||
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
|
||||
target.set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
|
||||
target.set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
|
||||
} break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ScanTarget::set_sampling_window(int output_width, int output_height, Shader &target) {
|
||||
if(modals_.display_type != DisplayType::CompositeColour) {
|
||||
const float one_pixel_width = float(modals_.cycles_per_line) * modals_.visible_area.size.width / float(output_width);
|
||||
const float clocks_per_angle = float(modals_.cycles_per_line) * float(modals_.colour_cycle_denominator) / float(modals_.colour_cycle_numerator);
|
||||
GLfloat texture_offsets[4];
|
||||
GLfloat angles[4];
|
||||
for(int c = 0; c < 4; ++c) {
|
||||
texture_offsets[c] = 1.5f * (((one_pixel_width * float(c)) / 3.0f) - (one_pixel_width * 0.5f));
|
||||
angles[c] = GLfloat((texture_offsets[c] / clocks_per_angle) * 2.0f * M_PI);
|
||||
}
|
||||
target.set_uniform("textureCoordinateOffsets", 1, 4, texture_offsets);
|
||||
target.set_uniform("compositeAngleOffsets", 4, 1, angles);
|
||||
}
|
||||
}
|
||||
|
||||
void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
|
||||
#define rt_offset_of(field, source) (reinterpret_cast<uint8_t *>(&source.field) - reinterpret_cast<uint8_t *>(&source))
|
||||
// test_scan and test_line are here so that the byte offsets that need to be
|
||||
// calculated inside a loop can be done so validly; offsetof requires constant arguments.
|
||||
Scan test_scan;
|
||||
Line test_line;
|
||||
|
||||
switch(type) {
|
||||
case ShaderType::Composition:
|
||||
for(int c = 0; c < 2; ++c) {
|
||||
const std::string prefix = c ? "end" : "start";
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "DataX",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Scan),
|
||||
reinterpret_cast<void *>(rt_offset_of(scan.end_points[c].data_offset, test_scan)),
|
||||
1);
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Clock",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Scan),
|
||||
reinterpret_cast<void *>(rt_offset_of(scan.end_points[c].cycles_since_end_of_horizontal_retrace, test_scan)),
|
||||
1);
|
||||
}
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
"dataY",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Scan),
|
||||
reinterpret_cast<void *>(offsetof(Scan, data_y)),
|
||||
1);
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
"lineY",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Scan),
|
||||
reinterpret_cast<void *>(offsetof(Scan, line)),
|
||||
1);
|
||||
break;
|
||||
|
||||
default:
|
||||
for(int c = 0; c < 2; ++c) {
|
||||
const std::string prefix = c ? "end" : "start";
|
||||
|
||||
if(type == ShaderType::Conversion) {
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Point",
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(rt_offset_of(end_points[c].x, test_line)),
|
||||
1);
|
||||
}
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Clock",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(rt_offset_of(end_points[c].cycles_since_end_of_horizontal_retrace, test_line)),
|
||||
1);
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "CompositeAngle",
|
||||
1, GL_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(rt_offset_of(end_points[c].composite_angle, test_line)),
|
||||
1);
|
||||
}
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
"lineY",
|
||||
1, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(offsetof(Line, line)),
|
||||
1);
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
"lineCompositeAmplitude",
|
||||
1, GL_UNSIGNED_BYTE, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(offsetof(Line, composite_amplitude)),
|
||||
1);
|
||||
break;
|
||||
}
|
||||
#undef rt_offset_of
|
||||
}
|
||||
|
||||
std::vector<std::string> ScanTarget::bindings(ShaderType type) const {
|
||||
switch(type) {
|
||||
case ShaderType::Composition: return {
|
||||
"startDataX",
|
||||
"startClock",
|
||||
"endDataX",
|
||||
"endClock",
|
||||
"dataY",
|
||||
"lineY"
|
||||
};
|
||||
|
||||
default: return {
|
||||
"startPoint",
|
||||
"endPoint",
|
||||
"startClock",
|
||||
"endClock",
|
||||
"lineY",
|
||||
"lineCompositeAmplitude",
|
||||
"startCompositeAngle",
|
||||
"endCompositeAngle"
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// MARK: - Shader code.
|
||||
|
||||
std::string ScanTarget::sampling_function() const {
|
||||
std::string fragment_shader;
|
||||
|
||||
if(modals_.display_type == DisplayType::SVideo) {
|
||||
fragment_shader +=
|
||||
"vec2 svideo_sample(vec2 coordinate, float angle) {";
|
||||
} else {
|
||||
fragment_shader +=
|
||||
"float composite_sample(vec2 coordinate, float angle) {";
|
||||
}
|
||||
|
||||
const bool is_svideo = modals_.display_type == DisplayType::SVideo;
|
||||
switch(modals_.input_data_type) {
|
||||
case InputDataType::Luminance1:
|
||||
case InputDataType::Luminance8:
|
||||
// Easy, just copy across.
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0).r, 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0).r;";
|
||||
break;
|
||||
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
fragment_shader +=
|
||||
"uint iPhase = uint(step(sign(angle), 0.0) * 3) ^ uint(abs(angle * 2.0 / 3.141592654) ) & 3u;";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0)[iPhase], 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0)[iPhase];";
|
||||
break;
|
||||
|
||||
case InputDataType::Luminance8Phase8:
|
||||
fragment_shader +=
|
||||
"vec2 yc = textureLod(textureName, coordinate, 0).rg;"
|
||||
|
||||
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
|
||||
"float rawChroma = step(yc.y, 0.75) * cos(angle + phaseOffset);";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(yc.x, rawChroma);" :
|
||||
"return mix(yc.x, rawChroma, compositeAmplitude);";
|
||||
break;
|
||||
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
fragment_shader +=
|
||||
"vec3 colour = rgbToLumaChroma * textureLod(textureName, coordinate, 0).rgb;"
|
||||
"vec2 quadrature = vec2(cos(angle), sin(angle));";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(colour.r, dot(quadrature, colour.gb));" :
|
||||
"return mix(colour.r, dot(quadrature, colour.gb), compositeAmplitude);";
|
||||
break;
|
||||
}
|
||||
|
||||
fragment_shader += "}";
|
||||
|
||||
return fragment_shader;
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::conversion_shader() const {
|
||||
// Compose a vertex shader. If the display type is RGB, generate just the proper
|
||||
// geometry position, plus a solitary textureCoordinate.
|
||||
//
|
||||
// If the display type is anything other than RGB, also produce composite
|
||||
// angle and 1/composite amplitude as outputs.
|
||||
//
|
||||
// If the display type is composite colour, generate four textureCoordinates,
|
||||
// spanning a range of -135, -45, +45, +135 degrees.
|
||||
//
|
||||
// If the display type is S-Video, generate three textureCoordinates, at
|
||||
// -45, 0, +45.
|
||||
std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform vec2 scale;"
|
||||
"uniform float rowHeight;"
|
||||
|
||||
"in vec2 startPoint;"
|
||||
"in vec2 endPoint;"
|
||||
|
||||
"in float startClock;"
|
||||
"in float startCompositeAngle;"
|
||||
"in float endClock;"
|
||||
"in float endCompositeAngle;"
|
||||
|
||||
"in float lineY;"
|
||||
"in float lineCompositeAmplitude;"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform sampler2D qamTextureName;"
|
||||
"uniform vec2 origin;"
|
||||
"uniform vec2 size;"
|
||||
|
||||
"uniform float textureCoordinateOffsets[4];"
|
||||
"out vec2 textureCoordinates[4];";
|
||||
|
||||
std::string fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform sampler2D qamTextureName;"
|
||||
|
||||
"in vec2 textureCoordinates[4];"
|
||||
|
||||
"out vec4 fragColour;";
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"out float compositeAngle;"
|
||||
"out float compositeAmplitude;"
|
||||
"out float oneOverCompositeAmplitude;"
|
||||
|
||||
"uniform float angleOffsets[4];";
|
||||
fragment_shader +=
|
||||
"in float compositeAngle;"
|
||||
"in float compositeAmplitude;"
|
||||
"in float oneOverCompositeAmplitude;"
|
||||
|
||||
"uniform vec4 compositeAngleOffsets;";
|
||||
}
|
||||
|
||||
if(modals_.display_type == DisplayType::SVideo || modals_.display_type == DisplayType::CompositeColour) {
|
||||
vertex_shader += "out vec2 qamTextureCoordinates[4];";
|
||||
fragment_shader += "in vec2 qamTextureCoordinates[4];";
|
||||
}
|
||||
|
||||
// Add the code to generate a proper output position; this applies to all display types.
|
||||
vertex_shader +=
|
||||
"void main(void) {"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
"vec2 centrePoint = mix(startPoint, vec2(endPoint.x, startPoint.y), lateral) / scale;"
|
||||
"vec2 height = normalize(vec2(endPoint.x, startPoint.y) - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
|
||||
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
|
||||
"gl_Position = vec4(eyePosition, 0.0, 1.0);";
|
||||
|
||||
// For everything other than RGB, calculate the two composite outputs.
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
|
||||
"compositeAmplitude = lineCompositeAmplitude / 255.0;"
|
||||
"oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));";
|
||||
}
|
||||
|
||||
vertex_shader +=
|
||||
"float centreClock = mix(startClock, endClock, lateral);"
|
||||
"textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);";
|
||||
|
||||
if((modals_.display_type == DisplayType::SVideo) || (modals_.display_type == DisplayType::CompositeColour)) {
|
||||
vertex_shader +=
|
||||
"float centreCompositeAngle = abs(mix(startCompositeAngle, endCompositeAngle, lateral)) * 4.0 / 64.0;"
|
||||
"centreCompositeAngle = floor(centreCompositeAngle);"
|
||||
"qamTextureCoordinates[0] = vec2(centreCompositeAngle - 1.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[1] = vec2(centreCompositeAngle - 0.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[2] = vec2(centreCompositeAngle + 0.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[3] = vec2(centreCompositeAngle + 1.5, lineY + 0.5) / textureSize(textureName, 0);";
|
||||
}
|
||||
|
||||
vertex_shader += "}";
|
||||
|
||||
// Compose a fragment shader.
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
fragment_shader +=
|
||||
"uniform mat3 lumaChromaToRGB;"
|
||||
"uniform mat3 rgbToLumaChroma;";
|
||||
|
||||
fragment_shader += sampling_function();
|
||||
}
|
||||
|
||||
fragment_shader +=
|
||||
"void main(void) {"
|
||||
"vec3 fragColour3;";
|
||||
|
||||
switch(modals_.display_type) {
|
||||
case DisplayType::CompositeColour:
|
||||
fragment_shader +=
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
|
||||
// Sample four times over, at proper angle offsets.
|
||||
"vec4 samples = vec4("
|
||||
"composite_sample(textureCoordinates[0], angles.x),"
|
||||
"composite_sample(textureCoordinates[1], angles.y),"
|
||||
"composite_sample(textureCoordinates[2], angles.z),"
|
||||
"composite_sample(textureCoordinates[3], angles.w)"
|
||||
");"
|
||||
|
||||
// Compute a luminance for use if there's no colour information, now, before
|
||||
// modifying samples.
|
||||
"float mono_luminance = dot(samples, vec4(0.15, 0.35, 0.35, 0.15));"
|
||||
|
||||
// Take the average to calculate luminance, then subtract that from all four samples to
|
||||
// give chrominance.
|
||||
"float luminance = dot(samples, vec4(0.25));"
|
||||
|
||||
// Split and average chrominance.
|
||||
"vec2 chrominances[4] = vec2[4]("
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[0], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[1], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[2], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[3], 0).gb"
|
||||
");"
|
||||
"vec2 channels = (chrominances[0] + chrominances[1] + chrominances[2] + chrominances[3])*0.5 - vec2(1.0);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = mix("
|
||||
"lumaChromaToRGB * vec3(luminance / (1.0 - compositeAmplitude), channels),"
|
||||
"vec3(mono_luminance),"
|
||||
"step(oneOverCompositeAmplitude, 0.01)"
|
||||
");";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeMonochrome:
|
||||
fragment_shader +=
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
"vec4 samples = vec4("
|
||||
"composite_sample(textureCoordinates[0], angles.x),"
|
||||
"composite_sample(textureCoordinates[1], angles.y),"
|
||||
"composite_sample(textureCoordinates[2], angles.z),"
|
||||
"composite_sample(textureCoordinates[3], angles.w)"
|
||||
");"
|
||||
"fragColour3 = vec3(dot(samples, vec4(0.15, 0.35, 0.35, 0.25)));";
|
||||
break;
|
||||
|
||||
case DisplayType::RGB:
|
||||
fragment_shader +=
|
||||
"vec3 samples[4] = vec3[4]("
|
||||
"textureLod(textureName, textureCoordinates[0], 0).rgb,"
|
||||
"textureLod(textureName, textureCoordinates[1], 0).rgb,"
|
||||
"textureLod(textureName, textureCoordinates[2], 0).rgb,"
|
||||
"textureLod(textureName, textureCoordinates[3], 0).rgb"
|
||||
");"
|
||||
"fragColour3 = samples[0]*0.15 + samples[1]*0.35 + samples[2]*0.35 + samples[2]*0.15;";
|
||||
break;
|
||||
|
||||
case DisplayType::SVideo:
|
||||
fragment_shader +=
|
||||
// Sample the S-Video stream to obtain luminance.
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
"vec4 samples = vec4("
|
||||
"svideo_sample(textureCoordinates[0], angles.x).x,"
|
||||
"svideo_sample(textureCoordinates[1], angles.y).x,"
|
||||
"svideo_sample(textureCoordinates[2], angles.z).x,"
|
||||
"svideo_sample(textureCoordinates[3], angles.w).x"
|
||||
");"
|
||||
"float luminance = dot(samples, vec4(0.15, 0.35, 0.35, 0.25));"
|
||||
|
||||
// Split and average chrominaxnce.
|
||||
"vec2 chrominances[4] = vec2[4]("
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[0], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[1], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[2], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[3], 0).gb"
|
||||
");"
|
||||
"vec2 channels = (chrominances[0] + chrominances[1] + chrominances[2] + chrominances[3])*0.5 - vec2(1.0);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = lumaChromaToRGB * vec3(luminance, channels);";
|
||||
break;
|
||||
}
|
||||
|
||||
// Apply a brightness adjustment if requested.
|
||||
if(fabs(modals_.brightness - 1.0f) > 0.05f) {
|
||||
fragment_shader += "fragColour3 = fragColour3 * " + std::to_string(modals_.brightness) + ";";
|
||||
}
|
||||
|
||||
// Apply a gamma correction if required.
|
||||
if(fabs(output_gamma_ - modals_.intended_gamma) > 0.05f) {
|
||||
const float gamma_ratio = output_gamma_ / modals_.intended_gamma;
|
||||
fragment_shader += "fragColour3 = pow(fragColour3, vec3(" + std::to_string(gamma_ratio) + "));";
|
||||
}
|
||||
|
||||
fragment_shader +=
|
||||
"fragColour = vec4(fragColour3, 0.64);"
|
||||
"}";
|
||||
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader,
|
||||
bindings(ShaderType::Conversion)
|
||||
));
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::composition_shader() const {
|
||||
const std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in float startDataX;"
|
||||
"in float startClock;"
|
||||
|
||||
"in float endDataX;"
|
||||
"in float endClock;"
|
||||
|
||||
"in float dataY;"
|
||||
"in float lineY;"
|
||||
|
||||
"out vec2 textureCoordinate;"
|
||||
"uniform usampler2D textureName;"
|
||||
|
||||
"void main(void) {"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
|
||||
"textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY + 0.5) / textureSize(textureName, 0);"
|
||||
"vec2 eyePosition = vec2(mix(startClock, endClock, lateral), lineY + longitudinal) / vec2(2048.0, 2048.0);"
|
||||
"gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);"
|
||||
"}";
|
||||
|
||||
std::string fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
"in vec2 textureCoordinate;"
|
||||
|
||||
"uniform usampler2D textureName;"
|
||||
|
||||
"void main(void) {";
|
||||
|
||||
switch(modals_.input_data_type) {
|
||||
case InputDataType::Luminance1:
|
||||
fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0).rrrr;";
|
||||
break;
|
||||
|
||||
case InputDataType::Luminance8:
|
||||
fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0).rrrr / vec4(255.0);";
|
||||
break;
|
||||
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
case InputDataType::Luminance8Phase8:
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0) / vec4(255.0);";
|
||||
break;
|
||||
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
fragment_shader += "fragColour = vec4(textureLod(textureName, textureCoordinate, 0).rrr & uvec3(4u, 2u, 1u), 1.0);";
|
||||
break;
|
||||
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
fragment_shader +=
|
||||
"uint textureValue = textureLod(textureName, textureCoordinate, 0).r;"
|
||||
"fragColour = vec4(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u), 3.0) / 3.0;";
|
||||
break;
|
||||
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
fragment_shader +=
|
||||
"uvec2 textureValue = textureLod(textureName, textureCoordinate, 0).rg;"
|
||||
"fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);";
|
||||
break;
|
||||
}
|
||||
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader + "}",
|
||||
bindings(ShaderType::Composition)
|
||||
));
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::qam_separation_shader() const {
|
||||
const bool is_svideo = modals_.display_type == DisplayType::SVideo;
|
||||
|
||||
// Sets up texture coordinates to run between startClock and endClock, mapping to
|
||||
// coordinates that correlate with four times the absolute value of the composite angle.
|
||||
std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"in float startClock;"
|
||||
"in float startCompositeAngle;"
|
||||
"in float endClock;"
|
||||
"in float endCompositeAngle;"
|
||||
|
||||
"in float lineY;"
|
||||
"in float lineCompositeAmplitude;"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform float textureCoordinateOffsets[4];"
|
||||
|
||||
"out float compositeAngle;"
|
||||
"out float compositeAmplitude;"
|
||||
"out float oneOverCompositeAmplitude;";
|
||||
|
||||
std::string fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform mat3 rgbToLumaChroma;"
|
||||
|
||||
"in float compositeAngle;"
|
||||
"in float compositeAmplitude;"
|
||||
"in float oneOverCompositeAmplitude;"
|
||||
|
||||
"out vec4 fragColour;"
|
||||
"uniform vec4 compositeAngleOffsets;";
|
||||
|
||||
if(is_svideo) {
|
||||
vertex_shader += "out vec2 textureCoordinate;";
|
||||
fragment_shader += "in vec2 textureCoordinate;";
|
||||
} else {
|
||||
vertex_shader += "out vec2 textureCoordinates[4];";
|
||||
fragment_shader += "in vec2 textureCoordinates[4];";
|
||||
}
|
||||
|
||||
vertex_shader +=
|
||||
"void main(void) {"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
"float centreClock = mix(startClock, endClock, lateral);"
|
||||
|
||||
"compositeAngle = mix(startCompositeAngle, endCompositeAngle, lateral) / 64.0;"
|
||||
|
||||
"float snappedCompositeAngle = floor(abs(compositeAngle) * 4.0);"
|
||||
"vec2 eyePosition = vec2(snappedCompositeAngle, lineY + longitudinal) / vec2(2048.0, 2048.0);"
|
||||
"gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);"
|
||||
|
||||
"compositeAngle = compositeAngle * 2.0 * 3.141592654;"
|
||||
"compositeAmplitude = lineCompositeAmplitude / 255.0;"
|
||||
"oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));";
|
||||
|
||||
if(is_svideo) {
|
||||
vertex_shader +=
|
||||
"textureCoordinate = vec2(centreClock, lineY + 0.5) / textureSize(textureName, 0);";
|
||||
} else {
|
||||
vertex_shader +=
|
||||
"textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);";
|
||||
}
|
||||
|
||||
vertex_shader += "}";
|
||||
|
||||
fragment_shader +=
|
||||
sampling_function() +
|
||||
"void main(void) {";
|
||||
|
||||
if(modals_.display_type == DisplayType::SVideo) {
|
||||
fragment_shader +=
|
||||
"fragColour = vec4(svideo_sample(textureCoordinate, compositeAngle).rgg * vec3(1.0, cos(compositeAngle), sin(compositeAngle)), 1.0);";
|
||||
} else {
|
||||
fragment_shader +=
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
|
||||
// Sample four times over, at proper angle offsets.
|
||||
"vec4 samples = vec4("
|
||||
"composite_sample(textureCoordinates[0], angles.x),"
|
||||
"composite_sample(textureCoordinates[1], angles.y),"
|
||||
"composite_sample(textureCoordinates[2], angles.z),"
|
||||
"composite_sample(textureCoordinates[3], angles.w)"
|
||||
");"
|
||||
|
||||
// Take the average to calculate luminance, then subtract that from all four samples to
|
||||
// give chrominance.
|
||||
"float luminance = dot(samples, vec4(0.25));"
|
||||
"float chrominance = (dot(samples.yz, vec2(0.5)) - luminance) * oneOverCompositeAmplitude;"
|
||||
|
||||
// Pack that all up and send it on its way.
|
||||
"fragColour = vec4(luminance, vec2(cos(compositeAngle), sin(compositeAngle)) * chrominance, 1.0);";
|
||||
};
|
||||
|
||||
fragment_shader +=
|
||||
"fragColour = fragColour*0.5 + vec4(0.5);"
|
||||
"}";
|
||||
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader,
|
||||
bindings(ShaderType::QAMSeparation)
|
||||
));
|
||||
}
|
13
Outputs/ScanTarget.cpp
Normal file
13
Outputs/ScanTarget.cpp
Normal file
@ -0,0 +1,13 @@
|
||||
//
|
||||
// ScanTarget.cpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 14/11/2018.
|
||||
// Copyright © 2018 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "ScanTarget.hpp"
|
||||
|
||||
using namespace Outputs::Display;
|
||||
|
||||
NullScanTarget NullScanTarget::singleton;
|
324
Outputs/ScanTarget.hpp
Normal file
324
Outputs/ScanTarget.hpp
Normal file
@ -0,0 +1,324 @@
|
||||
//
|
||||
// ScanTarget.hpp
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 30/10/2018.
|
||||
// Copyright © 2018 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef Outputs_Display_ScanTarget_h
|
||||
#define Outputs_Display_ScanTarget_h
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
namespace Outputs {
|
||||
namespace Display {
|
||||
|
||||
enum class Type {
|
||||
PAL50,
|
||||
NTSC60
|
||||
};
|
||||
|
||||
struct Rect {
|
||||
struct Point {
|
||||
float x, y;
|
||||
} origin;
|
||||
|
||||
struct {
|
||||
float width, height;
|
||||
} size;
|
||||
|
||||
Rect() : origin({0.0f, 0.0f}), size({1.0f, 1.0f}) {}
|
||||
Rect(float x, float y, float width, float height) :
|
||||
origin({x, y}), size({width, height}) {}
|
||||
};
|
||||
|
||||
enum class ColourSpace {
|
||||
/// YIQ is the NTSC colour space.
|
||||
YIQ,
|
||||
|
||||
/// YUV is the PAL colour space.
|
||||
YUV
|
||||
};
|
||||
|
||||
enum class DisplayType {
|
||||
RGB,
|
||||
SVideo,
|
||||
CompositeColour,
|
||||
CompositeMonochrome
|
||||
};
|
||||
|
||||
/*!
|
||||
Enumerates the potential formats of input data.
|
||||
*/
|
||||
enum class InputDataType {
|
||||
|
||||
// The luminance types can be used to feed only two video pipelines:
|
||||
// black and white video, or composite colour.
|
||||
|
||||
Luminance1, // 1 byte/pixel; any bit set => white; no bits set => black.
|
||||
Luminance8, // 1 byte/pixel; linear scale.
|
||||
|
||||
PhaseLinkedLuminance8, // 4 bytes/pixel; each byte is an individual 8-bit luminance
|
||||
// value and which value is output is a function of
|
||||
// colour subcarrier phase — byte 0 defines the first quarter
|
||||
// of each colour cycle, byte 1 the next quarter, etc. This
|
||||
// format is intended to permit replay of sampled original data.
|
||||
|
||||
// The luminance plus phase types describe a luminance and the phase offset
|
||||
// of a colour subcarrier. So they can be used to generate a luminance signal,
|
||||
// or an s-video pipeline.
|
||||
|
||||
Luminance8Phase8, // 2 bytes/pixel; first is luminance, second is phase.
|
||||
// Phase is encoded on a 192-unit circle; anything
|
||||
// greater than 192 implies that the colour part of
|
||||
// the signal should be omitted.
|
||||
|
||||
// The RGB types can directly feed an RGB pipeline, naturally, or can be mapped
|
||||
// to phase+luminance, or just to luminance.
|
||||
|
||||
Red1Green1Blue1, // 1 byte/pixel; bit 0 is blue on or off, bit 1 is green, bit 2 is red.
|
||||
Red2Green2Blue2, // 1 byte/pixel; bits 0 and 1 are blue, bits 2 and 3 are green, bits 4 and 5 are blue.
|
||||
Red4Green4Blue4, // 2 bytes/pixel; first nibble is red, second is green, third is blue.
|
||||
Red8Green8Blue8, // 4 bytes/pixel; first is red, second is green, third is blue, fourth is vacant.
|
||||
};
|
||||
|
||||
inline size_t size_for_data_type(InputDataType data_type) {
|
||||
switch(data_type) {
|
||||
case InputDataType::Luminance1:
|
||||
case InputDataType::Luminance8:
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
return 1;
|
||||
|
||||
case InputDataType::Luminance8Phase8:
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
return 2;
|
||||
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
return 4;
|
||||
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
inline DisplayType natural_display_type_for_data_type(InputDataType data_type) {
|
||||
switch(data_type) {
|
||||
default:
|
||||
case InputDataType::Luminance1:
|
||||
case InputDataType::Luminance8:
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
return DisplayType::CompositeColour;
|
||||
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
return DisplayType::RGB;
|
||||
|
||||
case InputDataType::Luminance8Phase8:
|
||||
return DisplayType::SVideo;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
Provides an abstract target for 'scans' i.e. continuous sweeps of output data,
|
||||
which are identified by 2d start and end coordinates, and the PCM-sampled data
|
||||
that is output during the sweep.
|
||||
|
||||
Additional information is provided to allow decoding (and/or encoding) of a
|
||||
composite colour feed.
|
||||
|
||||
Otherwise helpful: the ScanTarget vends all allocated memory. That should allow
|
||||
for use of shared memory where available.
|
||||
*/
|
||||
struct ScanTarget {
|
||||
|
||||
/*
|
||||
This top section of the interface deals with modal settings. A ScanTarget can
|
||||
assume that the modals change very infrequently.
|
||||
*/
|
||||
|
||||
struct Modals {
|
||||
/// Describes the format of input data.
|
||||
InputDataType input_data_type;
|
||||
|
||||
struct InputDataTweaks {
|
||||
/// If using the PhaseLinkedLuminance8 data type, this value provides an offset
|
||||
/// to add to phase before indexing the supplied luminances.
|
||||
float phase_linked_luminance_offset = 0.0f;
|
||||
|
||||
} input_data_tweaks;
|
||||
|
||||
/// Describes the type of display that the data is being shown on.
|
||||
DisplayType display_type = DisplayType::SVideo;
|
||||
|
||||
/// If being fed composite data, this defines the colour space in use.
|
||||
ColourSpace composite_colour_space;
|
||||
|
||||
/// Provides an integral clock rate for the duration of "a single line", specifically
|
||||
/// for an idealised line. So e.g. in NTSC this will be for the duration of 227.5
|
||||
/// colour clocks, regardless of whether the source actually stretches lines to
|
||||
/// 228 colour cycles, abbreviates them to 227 colour cycles, etc.
|
||||
int cycles_per_line;
|
||||
|
||||
/// Sets a GCD for the durations of pixels coming out of this device. This with
|
||||
/// the @c cycles_per_line are offered for sizing of intermediary buffers.
|
||||
int clocks_per_pixel_greatest_common_divisor;
|
||||
|
||||
/// Provides the number of colour cycles in a line, as a quotient.
|
||||
int colour_cycle_numerator, colour_cycle_denominator;
|
||||
|
||||
/// Provides a pre-estimate of the likely number of left-to-right scans per frame.
|
||||
/// This isn't a guarantee, but it should provide a decent-enough estimate.
|
||||
int expected_vertical_lines;
|
||||
|
||||
/// Provides an additional restriction on the section of the display that is expected
|
||||
/// to contain interesting content.
|
||||
Rect visible_area;
|
||||
|
||||
/// Describes the usual gamma of the output device these scans would appear on.
|
||||
float intended_gamma = 2.2f;
|
||||
|
||||
/// Provides a brightness multiplier for the display output.
|
||||
float brightness = 1.0f;
|
||||
|
||||
/// Specifies the range of values that will be output for x and y coordinates.
|
||||
struct {
|
||||
uint16_t x, y;
|
||||
} output_scale;
|
||||
};
|
||||
|
||||
/// Sets the total format of input data.
|
||||
virtual void set_modals(Modals) = 0;
|
||||
|
||||
|
||||
/*
|
||||
This second section of the interface allows provision of the streamed data, plus some control
|
||||
over the streaming.
|
||||
*/
|
||||
|
||||
/*!
|
||||
Defines a scan in terms of its two endpoints.
|
||||
*/
|
||||
struct Scan {
|
||||
struct EndPoint {
|
||||
/// Provide the coordinate of this endpoint. These are fixed point, purely fractional
|
||||
/// numbers, relative to the scale provided in the Modals.
|
||||
uint16_t x, y;
|
||||
|
||||
/// Provides the offset, in samples, into the most recently allocated write area, of data
|
||||
/// at this end point.
|
||||
uint16_t data_offset;
|
||||
|
||||
/// For composite video, provides the angle of the colour subcarrier at this endpoint.
|
||||
///
|
||||
/// This is a slightly weird fixed point, being:
|
||||
///
|
||||
/// * a six-bit fractional part;
|
||||
/// * a nine-bit integral part; and
|
||||
/// * a sign.
|
||||
///
|
||||
/// Positive numbers indicate that the colour subcarrier is 'running positively' on this
|
||||
/// line; i.e. it is any NTSC line or an appropriate swing PAL line, encoded as
|
||||
/// x*cos(a) + y*sin(a).
|
||||
///
|
||||
/// Negative numbers indicate a 'negative running' colour subcarrier; i.e. it is one of
|
||||
/// the phase alternated lines of PAL, encoded as x*cos(a) - y*sin(a), or x*cos(-a) + y*sin(-a),
|
||||
/// whichever you prefer.
|
||||
///
|
||||
/// It will produce undefined behaviour if signs differ on a single scan.
|
||||
int16_t composite_angle;
|
||||
|
||||
/// Gives the number of cycles since the most recent horizontal retrace ended.
|
||||
uint16_t cycles_since_end_of_horizontal_retrace;
|
||||
} end_points[2];
|
||||
|
||||
/// For composite video, dictates the amplitude of the colour subcarrier as a proportion of
|
||||
/// the whole, as determined from the colour burst. Will be 0 if there was no colour burst.
|
||||
uint8_t composite_amplitude;
|
||||
};
|
||||
|
||||
/// Requests a new scan to populate.
|
||||
///
|
||||
/// @return A valid pointer, or @c nullptr if insufficient further storage is available.
|
||||
virtual Scan *begin_scan() = 0;
|
||||
|
||||
/// Requests a new scan to populate.
|
||||
virtual void end_scan() {}
|
||||
|
||||
/// Finds the first available storage of at least @c required_length pixels in size which is
|
||||
/// suitably aligned for writing of @c required_alignment number of samples at a time.
|
||||
///
|
||||
/// Calls will be paired off with calls to @c end_data.
|
||||
///
|
||||
/// @returns a pointer to the allocated space if any was available; @c nullptr otherwise.
|
||||
virtual uint8_t *begin_data(size_t required_length, size_t required_alignment = 1) = 0;
|
||||
|
||||
/// Announces that the owner is finished with the region created by the most recent @c begin_data
|
||||
/// and indicates that its actual final size was @c actual_length.
|
||||
///
|
||||
/// It is required that every call to begin_data be paired with a call to end_data.
|
||||
virtual void end_data(size_t actual_length) {}
|
||||
|
||||
/// Tells the scan target that its owner is about to change; this is a hint that existing
|
||||
/// data and scan allocations should be invalidated.
|
||||
virtual void will_change_owner() {}
|
||||
|
||||
/// Marks the end of an atomic set of data. Drawing is best effort, so the scan target should either:
|
||||
///
|
||||
/// (i) output everything received since the previous submit; or
|
||||
/// (ii) output nothing.
|
||||
///
|
||||
/// If there were any allocation failures — i.e. any nullptr responses to begin_data or
|
||||
/// begin_scan — then (ii) is a required response. But a scan target may also need to opt for (ii)
|
||||
/// for any other reason.
|
||||
///
|
||||
/// The ScanTarget isn't bound to take any drawing action immediately; it may sit on submitted data for
|
||||
/// as long as it feels is appropriate subject to an @c flush.
|
||||
virtual void submit() = 0;
|
||||
|
||||
|
||||
/*
|
||||
ScanTargets also receive notification of certain events that may be helpful in processing, particularly
|
||||
for synchronising internal output to the outside world.
|
||||
*/
|
||||
|
||||
enum class Event {
|
||||
BeginHorizontalRetrace,
|
||||
EndHorizontalRetrace,
|
||||
|
||||
BeginVerticalRetrace,
|
||||
EndVerticalRetrace,
|
||||
};
|
||||
|
||||
/*!
|
||||
Provides a hint that the named event has occurred.
|
||||
|
||||
@param event The event.
|
||||
@param is_visible @c true if the output stream is visible immediately after this event; @c false otherwise.
|
||||
@param location The location of the event.
|
||||
@param composite_amplitude The amplitude of the colour burst on this line (0, if no colour burst was found).
|
||||
*/
|
||||
virtual void announce(Event event, bool is_visible, const Scan::EndPoint &location, uint8_t composite_amplitude) {}
|
||||
};
|
||||
|
||||
/*!
|
||||
Provides a null target for scans.
|
||||
*/
|
||||
struct NullScanTarget: public ScanTarget {
|
||||
void set_modals(Modals) {}
|
||||
Scan *begin_scan() { return nullptr; }
|
||||
uint8_t *begin_data(size_t required_length, size_t required_alignment = 1) { return nullptr; }
|
||||
void submit() {}
|
||||
|
||||
static NullScanTarget singleton;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* Outputs_Display_ScanTarget_h */
|
@ -45,7 +45,7 @@ enum Personality {
|
||||
};
|
||||
|
||||
#define has_decimal_mode(p) ((p) >= Personality::P6502)
|
||||
#define is_65c02(p) ((p) >= Personality::PSynertek65C02)
|
||||
#define is_65c02(p) ((p) >= Personality::PSynertek65C02)
|
||||
#define has_bbrbbsrmbsmb(p) ((p) >= Personality::PRockwell65C02)
|
||||
#define has_stpwai(p) ((p) >= Personality::PWDC65C02)
|
||||
|
||||
|
@ -114,6 +114,9 @@ FIRFilter::FIRFilter(std::size_t number_of_taps, float input_sample_rate, float
|
||||
std::size_t Np = (number_of_taps - 1) / 2;
|
||||
float two_over_sample_rate = 2.0f / input_sample_rate;
|
||||
|
||||
// Clamp the high cutoff frequency.
|
||||
high_frequency = std::min(high_frequency, input_sample_rate * 0.5f);
|
||||
|
||||
std::vector<float> A(Np+1);
|
||||
A[0] = 2.0f * (high_frequency - low_frequency) / input_sample_rate;
|
||||
for(unsigned int i = 1; i <= Np; ++i) {
|
||||
@ -146,6 +149,16 @@ FIRFilter FIRFilter::operator+(const FIRFilter &rhs) const {
|
||||
return FIRFilter(sum);
|
||||
}
|
||||
|
||||
FIRFilter FIRFilter::operator-() const {
|
||||
std::vector<float> negative_coefficients;
|
||||
|
||||
for(const auto coefficient: get_coefficients()) {
|
||||
negative_coefficients.push_back(1.0f - coefficient);
|
||||
}
|
||||
|
||||
return FIRFilter(negative_coefficients);
|
||||
}
|
||||
|
||||
FIRFilter FIRFilter::operator*(const FIRFilter &rhs) const {
|
||||
std::vector<float> coefficients = get_coefficients();
|
||||
std::vector<float> rhs_coefficients = rhs.get_coefficients();
|
||||
|
@ -29,6 +29,8 @@ class FIRFilter {
|
||||
static constexpr int FixedShift = 15;
|
||||
|
||||
public:
|
||||
/*! A suggested default attenuation value. */
|
||||
constexpr static float DefaultAttenuation = 60.0f;
|
||||
/*!
|
||||
Creates an instance of @c FIRFilter.
|
||||
|
||||
@ -38,12 +40,9 @@ class FIRFilter {
|
||||
@param high_frequency The highest frequency of signal to retain in the output.
|
||||
@param attenuation The attenuation of the discarded frequencies.
|
||||
*/
|
||||
FIRFilter(std::size_t number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation);
|
||||
FIRFilter(std::size_t number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation = DefaultAttenuation);
|
||||
FIRFilter(const std::vector<float> &coefficients);
|
||||
|
||||
/*! A suggested default attenuation value. */
|
||||
constexpr static float DefaultAttenuation = 60.0f;
|
||||
|
||||
/*!
|
||||
Applies the filter to one batch of input samples, returning the net result.
|
||||
|
||||
@ -84,6 +83,11 @@ class FIRFilter {
|
||||
*/
|
||||
FIRFilter operator*(const FIRFilter &) const;
|
||||
|
||||
/*!
|
||||
@returns A filter that would have the opposite effect of this filter.
|
||||
*/
|
||||
FIRFilter operator-() const;
|
||||
|
||||
private:
|
||||
std::vector<short> filter_coefficients_;
|
||||
|
||||
|
@ -265,7 +265,7 @@ void CPCDSK::set_tracks(const std::map<::Storage::Disk::Track::Address, std::sha
|
||||
sector.fdc_status1 = 0;
|
||||
sector.fdc_status2 = 0;
|
||||
|
||||
if(source_sector.second.has_data_crc_error) sector.fdc_status2 |= 0x20;
|
||||
if(source_sector.second.has_data_crc_error) sector.fdc_status2 |= 0x20;
|
||||
if(source_sector.second.has_header_crc_error) sector.fdc_status1 |= 0x20;
|
||||
if(source_sector.second.is_deleted) sector.fdc_status2 |= 0x40;
|
||||
}
|
||||
|
@ -19,6 +19,7 @@ using namespace Storage::Encodings::MFM;
|
||||
class MFMEncoder: public Encoder {
|
||||
public:
|
||||
MFMEncoder(std::vector<bool> &target) : Encoder(target) {}
|
||||
virtual ~MFMEncoder() {}
|
||||
|
||||
void add_byte(uint8_t input) {
|
||||
crc_generator_.add(input);
|
||||
|
@ -45,6 +45,7 @@ std::shared_ptr<Storage::Disk::Track> GetFMTrackWithSectors(const std::vector<co
|
||||
class Encoder {
|
||||
public:
|
||||
Encoder(std::vector<bool> &target);
|
||||
virtual ~Encoder() {}
|
||||
virtual void add_byte(uint8_t input) = 0;
|
||||
virtual void add_index_address_mark() = 0;
|
||||
virtual void add_ID_address_mark() = 0;
|
||||
|
@ -70,6 +70,8 @@ class HeadPosition {
|
||||
*/
|
||||
class Track {
|
||||
public:
|
||||
virtual ~Track() {}
|
||||
|
||||
/*!
|
||||
Describes the location of a track, implementing < to allow for use as a set key.
|
||||
*/
|
||||
|
@ -155,7 +155,7 @@ bool FileHolder::check_signature(const char *signature, std::size_t length) {
|
||||
// read and check the file signature
|
||||
std::vector<uint8_t> stored_signature = read(length);
|
||||
if(stored_signature.size() != length) return false;
|
||||
if(std::memcmp(stored_signature.data(), signature, length)) return false;
|
||||
if(std::memcmp(stored_signature.data(), signature, length)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -49,7 +49,7 @@ class CAS: public Tape {
|
||||
// each chunk is preceded by a header which may be long, and is optionally
|
||||
// also preceded by a gap.
|
||||
struct Chunk {
|
||||
bool has_gap;
|
||||
bool has_gap;
|
||||
bool long_header;
|
||||
std::vector<std::uint8_t> data;
|
||||
};
|
||||
|
@ -12,6 +12,8 @@
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
|
||||
#include "../../../Outputs/Log.hpp"
|
||||
|
||||
// MARK: - ZLib extensions
|
||||
|
||||
static float gzgetfloat(gzFile file) {
|
||||
@ -153,7 +155,7 @@ void UEF::get_next_pulses() {
|
||||
break;
|
||||
|
||||
default:
|
||||
printf("!!! Skipping %04x\n", next_chunk.id);
|
||||
LOG("!!! Skipping " << std::hex << next_chunk.id << std::endl);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -67,7 +67,7 @@ std::unique_ptr<Parser::FileSpeed> Parser::find_header(Storage::Tape::BinaryTape
|
||||
of a 0 start bit. The HI cycle length is placed in WINWID and will be used to discriminate
|
||||
between LO and HI cycles."
|
||||
*/
|
||||
total_length = total_length / 256.0f; // To get the average, in microseconds.
|
||||
total_length = total_length / 256.0f; // To get the average, in microseconds.
|
||||
// To convert to the loop count format used by the MSX BIOS.
|
||||
uint8_t int_result = static_cast<uint8_t>(total_length / (0.00001145f * 0.75f));
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user