1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-04-22 09:37:21 +00:00

Merge pull request #1472 from TomHarte/FastPRGs

Withdraw PRG support for the Plus 4.
This commit is contained in:
Thomas Harte 2025-02-18 21:57:32 -05:00 committed by GitHub
commit f786f8a970
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 206 additions and 123 deletions

View File

@ -180,9 +180,8 @@ bool obviously_uses_ted(const File &file) {
analysis->machine_code_addresses
);
// If FF3E or FF3F is touched, this is for the +4.
// TODO: probably require a very early touch.
for(const auto address: {0xff3e, 0xff3f}) {
// Check for interrupt status and paging touches.
for(const auto address: {0xff3e, 0xff3f, 0xff09}) {
for(const auto &collection: {
disassembly.external_loads,
disassembly.external_stores,

View File

@ -269,13 +269,14 @@ static Media GetMediaAndPlatforms(const std::string &file_name, TargetPlatform::
accumulator.try_standard<Tape::ZX80O81P>(TargetPlatform::ZX8081, "p81");
static constexpr auto PRGTargets = TargetPlatform::Vic20; //Commodore8bit; // Disabled until analysis improves.
if(accumulator.name_matches("prg")) {
// Try instantiating as a ROM; failing that accept as a tape.
try {
accumulator.insert<Cartridge::PRG>(TargetPlatform::Commodore8bit, file_name);
accumulator.insert<Cartridge::PRG>(PRGTargets, file_name);
} catch(...) {
try {
accumulator.insert<Tape::PRG>(TargetPlatform::Commodore8bit, file_name);
accumulator.insert<Tape::PRG>(PRGTargets, file_name);
} catch(...) {}
}
}

View File

@ -241,7 +241,7 @@ public:
}
// HACK. NOCOMMIT.
int pulse_num_ = 0;
// int pulse_num_ = 0;
Cycles perform_bus_operation(
const CPU::MOS6502::BusOperation operation,
@ -254,15 +254,18 @@ public:
// Update other subsystems.
advance_timers_and_tape(length);
video_.run_for(length);
if(!superspeed_) {
video_.run_for(length);
if(c1541_) {
c1541_cycles_ += length * Cycles(1'000'000);
c1541_->run_for(c1541_cycles_.divide(media_divider_));
if(c1541_) {
c1541_cycles_ += length * Cycles(1'000'000);
c1541_->run_for(c1541_cycles_.divide(media_divider_));
}
time_since_audio_update_ += length;
}
time_since_audio_update_ += length;
if(operation == CPU::MOS6502::BusOperation::Ready) {
return length;
}
@ -300,8 +303,50 @@ public:
serial_port_.set_output(Serial::Line::Attention, Serial::LineLevel(~output & 0x04));
}
} else if(address < 0xfd00 || address >= 0xff40) {
if(use_fast_tape_hack_ && operation == CPU::MOS6502Esque::BusOperation::ReadOpcode && address == 0xe5fd) {
read_dipole();
// if(
// use_fast_tape_hack_ &&
// operation == CPU::MOS6502Esque::BusOperation::ReadOpcode
// ) {
// superspeed_ |= address == 0xe5fd;
// superspeed_ &= (address != 0xe68b) && (address != 0xe68d);
// }
constexpr bool use_hle = true;
// if(
// use_fast_tape_hack_ &&
// operation == CPU::MOS6502Esque::BusOperation::ReadOpcode &&
// address == 0xe5fd
// ) {
// printf("Pulse %d from %lld ",
// pulse_num_,
// tape_player_->serialiser()->offset()
// );
// }
if(
use_fast_tape_hack_ &&
operation == CPU::MOS6502Esque::BusOperation::ReadOpcode &&
(
(use_hle && address == 0xe5fd) ||
address == 0xe68b ||
address == 0xe68d
)
) {
// ++pulse_num_;
if(use_hle) {
read_dipole();
}
// using Flag = CPU::MOS6502::Flag;
// using Register = CPU::MOS6502::Register;
// const auto flags = m6502_.value_of(Register::Flags);
// printf("to %lld: %c%c%c\n",
// tape_player_->serialiser()->offset(),
// flags & Flag::Sign ? 'n' : '-',
// flags & Flag::Overflow ? 'v' : '-',
// flags & Flag::Carry ? 'c' : '-'
// );
*value = 0x60;
} else {
if(is_read(operation)) {
@ -311,36 +356,47 @@ public:
}
}
/* if(use_fast_tape_hack_ && operation == CPU::MOS6502Esque::BusOperation::ReadOpcode) {
if(address == 0xe9cc) {
// Skip the `jsr rdblok` that opens `fah` (i.e. find any header), performing
// its function as a high-level emulation.
Storage::Tape::Commodore::Parser parser(TargetPlatform::Plus4);
auto header = parser.get_next_header(*tape_player_->serialiser());
const auto tape_position = tape_player_->serialiser()->offset();
if(header) {
// Copy to in-memory buffer and set type.
std::memcpy(&ram_[0x0333], header->data.data(), 191);
map_.write(0xb6) = 0x33;
map_.write(0xb7) = 0x03;
map_.write(0xf8) = header->type_descriptor();
// hold_tape_ = true;
logger.info().append("Found header");
} else {
// no header found, so pretend this hack never interceded
tape_player_->serialiser()->set_offset(tape_position);
// hold_tape_ = false;
logger.info().append("Didn't find header");
}
// TODO: rdbyte and ldsync is probably sufficient?
// Clear status and the verify flags.
ram_[0x90] = 0;
ram_[0x93] = 0;
*value = 0x0c; // NOP abs.
}
}*/
// if(use_fast_tape_hack_ && operation == CPU::MOS6502Esque::BusOperation::ReadOpcode) {
// constexpr uint16_t ldsync = 0;
// switch(address) {
// default: break;
//
// case ldsync:
// break;
// }
//
// if(address == 0xe9cc) {
// // Skip the `jsr rdblok` that opens `fah` (i.e. find any header), performing
// // its function as a high-level emulation.
// Storage::Tape::Commodore::Parser parser(TargetPlatform::Plus4);
// auto header = parser.get_next_header(*tape_player_->serialiser());
//
// const auto tape_position = tape_player_->serialiser()->offset();
// if(header) {
// // Copy to in-memory buffer and set type.
// std::memcpy(&ram_[0x0333], header->data.data(), 191);
// map_.write(0xb6) = 0x33;
// map_.write(0xb7) = 0x03;
// map_.write(0xf8) = header->type_descriptor();
//// hold_tape_ = true;
// logger.info().append("Found header");
// } else {
// // no header found, so pretend this hack never interceded
// tape_player_->serialiser()->set_offset(tape_position);
//// hold_tape_ = false;
// logger.info().append("Didn't find header");
// }
//
// // Clear status and the verify flags.
// ram_[0x90] = 0;
// ram_[0x93] = 0;
//
// *value = 0x0c; // NOP abs.
// }
// }
} else if(address < 0xff00) {
// Miscellaneous hardware. All TODO.
if(is_read(operation)) {
@ -567,7 +623,7 @@ public:
}
}
return length;
return superspeed_ ? Cycles(0) : length;
}
private:
@ -713,6 +769,7 @@ private:
bool play_button_ = false;
bool allow_fast_tape_hack_ = false; // TODO: implement fast-tape hack.
bool use_fast_tape_hack_ = false;
bool superspeed_ = false;
void set_use_fast_tape() {
use_fast_tape_hack_ =
allow_fast_tape_hack_ && tape_player_->motor_control() && rom_is_paged_ && !tape_player_->is_at_end();
@ -728,6 +785,9 @@ private:
tape_player_->run_for(length);
}
// TODO: substantially simplify the below; at the minute it's a
// literal transcription of the original as a simple first step.
void read_dipole() {
using Register = CPU::MOS6502::Register;
using Flag = CPU::MOS6502::Flag;
@ -834,6 +894,7 @@ private:
// ldy dsamp1+1
ldabs(x, dsamp1);
ldabs(y, dsamp1 + 1);
advance_cycles(8);
//badeg1
do {
@ -845,15 +906,17 @@ private:
pha();
ldabs(a, dsamp2);
pha();
advance_cycles(14);
// lda #$10
//rwtl ; wait till rd line is high
// bit port [= $0001]
// beq rwtl ; !ls!
ldimm(a, 0x10);
advance_cycles(2);
do {
bit(io_input());
if(advance_cycles(7)) {
if(advance_cycles(6)) {
return;
}
} while(eq());
@ -863,7 +926,7 @@ private:
// bne rwth ; caught the edge
do {
bit(io_input());
if(advance_cycles(7)) {
if(advance_cycles(6)) {
return;
}
} while(ne());
@ -873,6 +936,8 @@ private:
// sty timr2h
timers_.write<2>(x);
timers_.write<3>(y);
advance_cycles(8);
//; go! ...ta
//
@ -884,6 +949,7 @@ private:
timers_.write<4>(a);
pla();
timers_.write<5>(a);
advance_cycles(14);
//; clear timer flags
@ -892,6 +958,7 @@ private:
// sta tedirq
ldimm(a, 0x50);
interrupts_.set_status(a);
advance_cycles(6);
//; um...check that edge again
@ -905,11 +972,12 @@ private:
do {
ldimm(a, io_input());
cmp(io_input());
if(advance_cycles(11)) {
if(advance_cycles(9)) {
return;
}
} while(ne());
andimm(0x10);
advance_cycles(5);
} while(ne());
@ -926,11 +994,8 @@ private:
// lda #$10
//wata ; wait for ta to timeout
ldimm(a, 0x10);
advance_cycles(3);
do {
if(advance_cycles(13)) {
return;
}
// bit port ; kuldge, kludge, kludge !!! <<><>>
// bne rshort ; kuldge, kludge, kludge !!! <<><>>
bit(io_input());
@ -942,6 +1007,10 @@ private:
// bit tedirq
// beq wata
bit(interrupts_.status());
if(advance_cycles(12)) {
return;
}
} while(eq());
@ -950,21 +1019,21 @@ private:
//
//casdb2
do {
if(advance_cycles(11)) {
return;
}
// lda port
// cmp port
ldimm(a, io_input());
cmp(io_input());
if(advance_cycles(9)) {
return;
}
// bne casdb2
} while(ne());
// and #$10
// bne rshort ; shorts anyone?
andimm(0x10);
advance_cycles(3);
if(ne()) {
rshort();
return;
@ -981,11 +1050,12 @@ private:
//; wait for tb to timeout
//; now do the dipole sample #2
ldimm(a, 0x40);
advance_cycles(3);
do {
if(advance_cycles(7)) {
bit(interrupts_.status());
if(advance_cycles(6)) {
return;
}
bit(interrupts_.status());
} while(eq());
@ -994,16 +1064,17 @@ private:
// cmp port
// bne casdb3
do {
if(advance_cycles(11)) {
return;
}
ldimm(a, io_input());
cmp(io_input());
if(advance_cycles(9)) {
return;
}
} while(ne());
// and #$10
// bne rlong ; looks like a long from here !ls!
andimm(0x10);
advance_cycles(2);
if(ne()) {
rlong();
return;
@ -1018,6 +1089,7 @@ private:
timers_.write<2>(a);
ldabs(a, zcell + 1);
timers_.write<3>(y);
advance_cycles(16);
// ; go! z-cell check
@ -1028,15 +1100,16 @@ private:
ldimm(a, 0x10);
interrupts_.set_status(a);
ldimm(a, 0x10);
advance_cycles(8);
//wata2
// bit tedirq
// beq wata2 ; check z-cell is low
do {
bit(interrupts_.status());
if(advance_cycles(7)) {
return;
}
bit(interrupts_.status());
} while(eq());
//casdb4
@ -1044,11 +1117,11 @@ private:
// cmp port
// bne casdb4
do {
if(advance_cycles(7)) {
return;
}
ldimm(a, io_input());
cmp(io_input());
if(advance_cycles(9)) {
return;
}
} while(ne());
// and #$10
@ -1056,11 +1129,13 @@ private:
// bit twordd ; got a word dipole
// bmi dipok ; !bra
andimm(0x10);
advance_cycles(2);
if(eq()) {
rderr1();
return;
}
bit(0x80);
advance_cycles(2);
dipok();
}

View File

@ -13,7 +13,6 @@
#include <array>
#include <cstdint>
#include <vector>
namespace CRC {

View File

@ -100,8 +100,8 @@ private:
std::mutex filter_parameters_mutex_;
struct FilterParameters {
float input_cycles_per_second = 0.0f;
float output_cycles_per_second = 0.0f;
float input_cycles_per_second = 1.0f;
float output_cycles_per_second = 1.0f;
float high_frequency_cutoff = -1.0;
bool parameters_are_dirty = true;

View File

@ -9,9 +9,11 @@
#include "FIRFilter.hpp"
#include <cmath>
#include <numeric>
#ifndef M_PI
static constexpr float M_PI = 3.1415926f;
// TODO: use std::numbers::pi_v when switching to C++20.
#endif
using namespace SignalProcessing;
@ -36,8 +38,10 @@ using namespace SignalProcessing;
"DIGITAL SIGNAL PROCESSING, II", IEEE Press, pages 123-126.
*/
namespace {
/*! Evaluates the 0th order Bessel function at @c a. */
float FIRFilter::ino(float a) {
constexpr float ino(float a) {
float d = 0.0f;
float ds = 1.0f;
float s = 1.0f;
@ -51,73 +55,78 @@ float FIRFilter::ino(float a) {
return s;
}
void FIRFilter::coefficients_for_idealised_filter_response(short *filter_coefficients, float *A, float attenuation, std::size_t number_of_taps) {
/* calculate alpha, which is the Kaiser-Bessel window shape factor */
float a; // to take the place of alpha in the normal derivation
if(attenuation < 21.0f) {
a = 0.0f;
} else {
if(attenuation > 50.0f)
a = 0.1102f * (attenuation - 8.7f);
else
a = 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f);
}
std::vector<short> coefficients_for_idealised_filter_response(
const std::vector<float> &A,
const float attenuation,
const std::size_t number_of_taps
) {
/* Calculate alpha, the Kaiser-Bessel window shape factor */
const float a = [&] {
if(attenuation < 21.0f) {
return 0.0f;
} else if(attenuation > 50.0f) {
return 0.1102f * (attenuation - 8.7f);
} else {
return 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f);
}
} ();
std::vector<float> filter_coefficients_float(number_of_taps);
/* work out the right hand side of the filter coefficients */
std::size_t Np = (number_of_taps - 1) / 2;
float I0 = ino(a);
float Np_squared = float(Np * Np);
for(unsigned int i = 0; i <= Np; ++i) {
/* Work out the right hand side of the filter coefficients. */
const float I0 = ino(a);
const std::size_t Np = (number_of_taps - 1) / 2;
const float Np_squared = float(Np * Np);
for(std::size_t i = 0; i <= Np; ++i) {
filter_coefficients_float[Np + i] =
A[i] *
ino(a * sqrtf(1.0f - (float(i * i) / Np_squared) )) /
I0;
}
/* coefficients are symmetrical, so copy from right hand side to left side */
/* Coefficients are symmetrical, so copy from right hand side to left. */
for(std::size_t i = 0; i < Np; ++i) {
filter_coefficients_float[i] = filter_coefficients_float[number_of_taps - 1 - i];
}
/* scale back up so that we retain 100% of input volume */
float coefficientTotal = 0.0f;
for(std::size_t i = 0; i < number_of_taps; ++i) {
coefficientTotal += filter_coefficients_float[i];
}
/* Scale back up to retain 100% of input volume. */
const float coefficientTotal =
std::accumulate(filter_coefficients_float.begin(), filter_coefficients_float.end(), 0.0f);
/* we'll also need integer versions, potentially */
float coefficientMultiplier = 1.0f / coefficientTotal;
/* Hence produce integer versions. */
const float coefficientMultiplier = 1.0f / coefficientTotal;
std::vector<short> filter_coefficients;
filter_coefficients.reserve(number_of_taps);
for(std::size_t i = 0; i < number_of_taps; ++i) {
filter_coefficients[i] = short(filter_coefficients_float[i] * FixedMultiplier * coefficientMultiplier);
filter_coefficients.push_back(short(filter_coefficients_float[i] * FixedMultiplier * coefficientMultiplier));
}
return filter_coefficients;
}
}
std::vector<float> FIRFilter::get_coefficients() const {
std::vector<float> coefficients;
coefficients.reserve(filter_coefficients_.size());
for(const auto short_coefficient: filter_coefficients_) {
coefficients.push_back(float(short_coefficient) / FixedMultiplier);
}
return coefficients;
}
FIRFilter::FIRFilter(std::size_t number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation) {
// we must be asked to filter based on an odd number of
// taps, and at least three
if(number_of_taps < 3) number_of_taps = 3;
if(attenuation < 21.0f) attenuation = 21.0f;
// ensure we have an odd number of taps
number_of_taps |= 1;
// store instance variables
filter_coefficients_.resize(number_of_taps);
FIRFilter::FIRFilter(
std::size_t number_of_taps,
const float input_sample_rate,
const float low_frequency,
float high_frequency,
float attenuation
) {
// Ensure an odd number of taps greater than or equal to 3, with a minimum attenuation of 21.
number_of_taps = std::max<size_t>(3, number_of_taps) | 1;
attenuation = std::max(attenuation, 21.0f);
/* calculate idealised filter response */
std::size_t Np = (number_of_taps - 1) / 2;
float two_over_sample_rate = 2.0f / input_sample_rate;
const std::size_t Np = (number_of_taps - 1) / 2;
const float two_over_sample_rate = 2.0f / input_sample_rate;
// Clamp the high cutoff frequency.
high_frequency = std::min(high_frequency, input_sample_rate * 0.5f);
@ -125,7 +134,7 @@ FIRFilter::FIRFilter(std::size_t number_of_taps, float input_sample_rate, float
std::vector<float> A(Np+1);
A[0] = 2.0f * (high_frequency - low_frequency) / input_sample_rate;
for(unsigned int i = 1; i <= Np; ++i) {
float i_pi = float(i) * float(M_PI);
const float i_pi = float(i) * float(M_PI);
A[i] =
(
sinf(two_over_sample_rate * i_pi * high_frequency) -
@ -133,20 +142,22 @@ FIRFilter::FIRFilter(std::size_t number_of_taps, float input_sample_rate, float
) / i_pi;
}
FIRFilter::coefficients_for_idealised_filter_response(filter_coefficients_.data(), A.data(), attenuation, number_of_taps);
filter_coefficients_ = coefficients_for_idealised_filter_response(A, attenuation, number_of_taps);
}
FIRFilter::FIRFilter(const std::vector<float> &coefficients) {
filter_coefficients_.reserve(coefficients.size());
for(const auto coefficient: coefficients) {
filter_coefficients_.push_back(short(coefficient * FixedMultiplier));
}
}
FIRFilter FIRFilter::operator+(const FIRFilter &rhs) const {
std::vector<float> coefficients = get_coefficients();
std::vector<float> rhs_coefficients = rhs.get_coefficients();
const auto coefficients = get_coefficients();
const auto rhs_coefficients = rhs.get_coefficients();
std::vector<float> sum;
sum.reserve(coefficients.size());
for(std::size_t i = 0; i < coefficients.size(); ++i) {
sum.push_back((coefficients[i] + rhs_coefficients[i]) / 2.0f);
}
@ -155,9 +166,11 @@ FIRFilter FIRFilter::operator+(const FIRFilter &rhs) const {
}
FIRFilter FIRFilter::operator-() const {
const auto coefficients = get_coefficients();
std::vector<float> negative_coefficients;
for(const auto coefficient: get_coefficients()) {
negative_coefficients.reserve(coefficients.size());
for(const auto coefficient: coefficients) {
negative_coefficients.push_back(1.0f - coefficient);
}
@ -165,10 +178,11 @@ FIRFilter FIRFilter::operator-() const {
}
FIRFilter FIRFilter::operator*(const FIRFilter &rhs) const {
std::vector<float> coefficients = get_coefficients();
std::vector<float> rhs_coefficients = rhs.get_coefficients();
const std::vector<float> coefficients = get_coefficients();
const std::vector<float> rhs_coefficients = rhs.get_coefficients();
std::vector<float> sum;
sum.reserve(coefficients.size());
for(std::size_t i = 0; i < coefficients.size(); ++i) {
sum.push_back(coefficients[i] * rhs_coefficients[i]);
}

View File

@ -20,6 +20,8 @@
#include <vector>
namespace SignalProcessing {
constexpr float FixedMultiplier = 32767.0f;
constexpr int FixedShift = 15;
/*!
The FIR filter takes a 1d PCM signal with a given sample rate and applies a band-pass filter to it.
@ -28,13 +30,10 @@ namespace SignalProcessing {
smaller numbers permit a filter that operates more quickly and with less lag but less effectively.
*/
class FIRFilter {
private:
static constexpr float FixedMultiplier = 32767.0f;
static constexpr int FixedShift = 15;
public:
/*! A suggested default attenuation value. */
constexpr static float DefaultAttenuation = 60.0f;
static constexpr float DefaultAttenuation = 60.0f;
/*!
Creates an instance of @c FIRFilter.
@ -59,7 +58,7 @@ public:
@param src The source buffer to apply the filter to.
@returns The result of applying the filter.
*/
inline short apply(const short *src, size_t stride = 1) const {
inline short apply(const short *const src, const size_t stride = 1) const {
#ifdef USE_ACCELERATE
short result;
vDSP_dotpr_s1_15(
@ -105,10 +104,6 @@ public:
private:
std::vector<short> filter_coefficients_;
static void coefficients_for_idealised_filter_response(
short *filterCoefficients, float *A, float attenuation, std::size_t numberOfTaps);
static float ino(float a);
};
}