diff --git a/Outputs/OpenGL/ScanTarget.cpp b/Outputs/OpenGL/ScanTarget.cpp index 1a9ce475e..a7805df1a 100644 --- a/Outputs/OpenGL/ScanTarget.cpp +++ b/Outputs/OpenGL/ScanTarget.cpp @@ -13,22 +13,14 @@ using namespace Outputs::Display::OpenGL; namespace { -/// The texture unit from which to source 1bpp input data. -constexpr GLenum SourceData1BppTextureUnit = GL_TEXTURE0; -/// The texture unit from which to source 2bpp input data. -//constexpr GLenum SourceData2BppTextureUnit = GL_TEXTURE1; -/// The texture unit from which to source 4bpp input data. -//constexpr GLenum SourceData4BppTextureUnit = GL_TEXTURE2; +/// The texture unit from which to source input data. +constexpr GLenum SourceDataTextureUnit = GL_TEXTURE0; /// The texture unit which contains raw line-by-line composite, S-Video or RGB data. -constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE3; -/// The texture unit which contains line-by-line records of luminance and two channels of chrominance, straight after multiplication by the quadrature vector, not yet filtered. -constexpr GLenum SVideoLineBufferTextureUnit = GL_TEXTURE4; -/// The texture unit which contains line-by-line records of RGB. -constexpr GLenum RGBLineBufferTextureUnit = GL_TEXTURE5; +constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE1; /// The texture unit that contains the current display. -constexpr GLenum AccumulationTextureUnit = GL_TEXTURE6; +constexpr GLenum AccumulationTextureUnit = GL_TEXTURE2; #define TextureAddress(x, y) (((y) << 11) | (x)) #define TextureAddressGetY(v) uint16_t((v) >> 11) @@ -292,14 +284,9 @@ void ScanTarget::setup_pipeline() { write_pointers_.write_area = 0; } - // Pick a processing width; this will be at least four times the - // colour subcarrier, and an integer multiple of the pixel clock and - // at most 2048. - const int colour_cycle_width = (modals_.colour_cycle_numerator * 4 + modals_.colour_cycle_denominator - 1) / modals_.colour_cycle_denominator; - const int dot_clock = modals_.cycles_per_line / modals_.clocks_per_pixel_greatest_common_divisor; - const int overflow = colour_cycle_width % dot_clock; - processing_width_ = colour_cycle_width + (overflow ? dot_clock - overflow : 0); - processing_width_ = std::min(processing_width_, 2048); + // Pick a processing width; this will be the minimum necessary not to + // lose any detail when combining the input. + processing_width_ = modals_.cycles_per_line / modals_.clocks_per_pixel_greatest_common_divisor; // Establish an output shader. TODO: add gamma correction here. output_shader_.reset(new Shader( @@ -323,63 +310,15 @@ void ScanTarget::setup_pipeline() { set_uniforms(ShaderType::Line, *output_shader_); output_shader_->set_uniform("origin", modals_.visible_area.origin.x, modals_.visible_area.origin.y); output_shader_->set_uniform("size", modals_.visible_area.size.width, modals_.visible_area.size.height); - - // Establish such intermediary shaders as are required. - pipeline_stages_.clear(); - if(modals_.display_type == DisplayType::CompositeColour) { - pipeline_stages_.emplace_back( - composite_to_svideo_shader(modals_.colour_cycle_numerator, modals_.colour_cycle_denominator, processing_width_).release(), - SVideoLineBufferTextureUnit, - GL_NEAREST); - } - if(modals_.display_type == DisplayType::SVideo || modals_.display_type == DisplayType::CompositeColour) { - pipeline_stages_.emplace_back( - svideo_to_rgb_shader(modals_.colour_cycle_numerator, modals_.colour_cycle_denominator, processing_width_).release(), - (modals_.display_type == DisplayType::CompositeColour) ? RGBLineBufferTextureUnit : SVideoLineBufferTextureUnit, - GL_NEAREST); - } - - glBindVertexArray(scan_vertex_array_); - glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_); + output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0)); // Establish an input shader. - input_shader_ = input_shader(modals_.input_data_type, modals_.display_type); + input_shader_ = composition_shader(); + glBindVertexArray(scan_vertex_array_); + glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_); enable_vertex_attributes(ShaderType::InputScan, *input_shader_); set_uniforms(ShaderType::InputScan, *input_shader_); - input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0)); - - // Cascade the texture units in use as per the pipeline stages. - std::vector input_shaders = {input_shader_.get()}; - GLint texture_unit = GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0); - for(const auto &stage: pipeline_stages_) { - input_shaders.push_back(stage.shader.get()); - - stage.shader->set_uniform("textureName", texture_unit); - set_uniforms(ShaderType::ProcessedScan, *stage.shader); - enable_vertex_attributes(ShaderType::ProcessedScan, *stage.shader); - - ++texture_unit; - } - output_shader_->set_uniform("textureName", texture_unit); - - // Ensure that all shaders involved in the input pipeline have the proper colour space knowledged. - for(auto shader: input_shaders) { - switch(modals_.composite_colour_space) { - case ColourSpace::YIQ: { - const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f}; - const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f}; - shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB); - shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ); - } break; - - case ColourSpace::YUV: { - const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f}; - const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f}; - shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB); - shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV); - } break; - } - } + input_shader_->set_uniform("textureName", GLint(SourceDataTextureUnit - GL_TEXTURE0)); } void ScanTarget::draw(bool synchronous, int output_width, int output_height) { @@ -431,7 +370,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) { // Submit texture. if(submit_pointers.write_area != read_pointers.write_area) { - glActiveTexture(SourceData1BppTextureUnit); + glActiveTexture(SourceDataTextureUnit); glBindTexture(GL_TEXTURE_2D, write_area_texture_name_); // Create storage for the texture if it doesn't yet exist; this was deferred until here @@ -487,7 +426,6 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) { // Push new input to the unprocessed line buffer. if(new_scans) { - glDisable(GL_BLEND); unprocessed_line_texture_.bind_framebuffer(); // Clear newly-touched lines; that is everything from (read+1) to submit. @@ -499,26 +437,11 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) { if(first_line_to_clear < final_line_to_clear) { glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), final_line_to_clear - first_line_to_clear); glClear(GL_COLOR_BUFFER_BIT); - - if(pipeline_stages_.size()) { - pipeline_stages_.back().target.bind_framebuffer(); - glClear(GL_COLOR_BUFFER_BIT); - unprocessed_line_texture_.bind_framebuffer(); - } } else { glScissor(0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear); glClear(GL_COLOR_BUFFER_BIT); glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear); glClear(GL_COLOR_BUFFER_BIT); - - if(pipeline_stages_.size()) { - pipeline_stages_.back().target.bind_framebuffer(); - glScissor(0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear); - glClear(GL_COLOR_BUFFER_BIT); - glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear); - glClear(GL_COLOR_BUFFER_BIT); - unprocessed_line_texture_.bind_framebuffer(); - } } glDisable(GL_SCISSOR_TEST); @@ -528,13 +451,6 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) { glBindVertexArray(scan_vertex_array_); input_shader_->bind(); glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans)); - - // If there are any further pipeline stages, apply them. - for(auto &stage: pipeline_stages_) { - stage.target.bind_framebuffer(); - stage.shader->bind(); - glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans)); - } } // Ensure the accumulation buffer is properly sized. @@ -545,7 +461,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) { GLsizei(proportional_width), GLsizei(output_height), AccumulationTextureUnit, - GL_LINEAR, + GL_NEAREST, true)); if(accumulation_texture_) { new_framebuffer->bind_framebuffer(); diff --git a/Outputs/OpenGL/ScanTarget.hpp b/Outputs/OpenGL/ScanTarget.hpp index 78cc6035f..53fe8a5b8 100644 --- a/Outputs/OpenGL/ScanTarget.hpp +++ b/Outputs/OpenGL/ScanTarget.hpp @@ -105,8 +105,7 @@ class ScanTarget: public Outputs::Display::ScanTarget { // Contains the first composition of scans into lines; // they're accumulated prior to output to allow for continuous - // application of any necessary conversions — e.g. composite processing — - // which happen progressively from here to the RGB texture. + // application of any necessary conversions — e.g. composite processing. TextureTarget unprocessed_line_texture_; // Scans are accumulated to the accumulation texture; the full-display @@ -180,22 +179,8 @@ class ScanTarget: public Outputs::Display::ScanTarget { std::unique_ptr input_shader_; std::unique_ptr output_shader_; - static std::unique_ptr input_shader(InputDataType input_data_type, DisplayType display_type); - static std::unique_ptr composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width); - static std::unique_ptr svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width); - static SignalProcessing::FIRFilter colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff); - - struct PipelineStage { - PipelineStage(Shader *shader, GLenum texture_unit, GLint magnification_filter) : - shader(shader), - target(LineBufferWidth, LineBufferHeight, texture_unit, magnification_filter, false) {} - - std::unique_ptr shader; - TextureTarget target; - }; - - // A list is used here to avoid requiring a copy constructor on PipelineStage. - std::list pipeline_stages_; + static std::unique_ptr composition_shader(); + static std::unique_ptr conversion_shader(InputDataType input_data_type, DisplayType display_type, int colour_cycle_numerator, int colour_cycle_denominator, int processing_width); }; } diff --git a/Outputs/OpenGL/ScanTargetGLSLFragments.cpp b/Outputs/OpenGL/ScanTargetGLSLFragments.cpp index 261b6d94f..fe4abbf1e 100644 --- a/Outputs/OpenGL/ScanTargetGLSLFragments.cpp +++ b/Outputs/OpenGL/ScanTargetGLSLFragments.cpp @@ -90,12 +90,14 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { if(type == ShaderType::InputScan) { result += "out vec2 textureCoordinate;" - "uniform usampler2D textureName;"; + "uniform sampler2D textureName;"; } else { result += "out vec2 textureCoordinates[15];" + "out vec2 chromaCoordinates[2];" "uniform sampler2D textureName;" + "uniform float chromaOffset;" "uniform float edgeExpansion;"; } @@ -120,9 +122,9 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { "vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);" "sourcePosition /= vec2(scale.x, 2048.0);" - "vec2 expansion = vec2(2.0*lateral*edgeExpansion - edgeExpansion, 0.0) / textureSize(textureName, 0);" - "eyePosition = eyePosition + expansion;" - "sourcePosition = sourcePosition + expansion;" +// "vec2 expansion = vec2(edgeExpansion, 0.0) / textureSize(textureName, 0);" +// "eyePosition = eyePosition + expansion;" +// "sourcePosition = sourcePosition + expansion;" "textureCoordinates[0] = sourcePosition + vec2(-7.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[1] = sourcePosition + vec2(-6.0, 0.0) / textureSize(textureName, 0);" @@ -140,6 +142,9 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { "textureCoordinates[13] = sourcePosition + vec2(6.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[14] = sourcePosition + vec2(7.0, 0.0) / textureSize(textureName, 0);" + "chromaCoordinates[0] = sourcePosition + vec2(chromaOffset, 0.0);" + "chromaCoordinates[1] = sourcePosition - vec2(chromaOffset, 0.0);" + "eyePosition = eyePosition;"; } @@ -235,8 +240,8 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) { } } -std::unique_ptr ScanTarget::input_shader(InputDataType input_data_type, DisplayType display_type) { - std::string fragment_shader = +std::unique_ptr ScanTarget::composition_shader() { +/* std::string fragment_shader = "#version 150\n" "out vec3 fragColour;" @@ -313,161 +318,203 @@ std::unique_ptr ScanTarget::input_shader(InputDataType input_data_type, computed_display_type = DisplayType::RGB; fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);"; break; - } + }*/ // If the input type is RGB but the output type isn't then // there'll definitely be an RGB to SVideo step. - if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) { - fragment_shader += - "vec3 composite_colour = rgbToLumaChroma * fragColour;" - "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" - "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);"; - } +// if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) { +// fragment_shader += +// "vec3 composite_colour = rgbToLumaChroma * fragColour;" +// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" +// "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);"; +// } // If the output type is SVideo, throw in an attempt to separate the two chrominance // channels here. - if(display_type == DisplayType::SVideo) { - if(computed_display_type != DisplayType::RGB) { - fragment_shader += - "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"; - } - fragment_shader += - "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);" - "fragColour = vec3(fragColour.x, chroma);"; - } +// if(display_type == DisplayType::SVideo) { +// if(computed_display_type != DisplayType::RGB) { +// fragment_shader += +// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"; +// } +// fragment_shader += +// "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);" +// "fragColour = vec3(fragColour.x, chroma);"; +// } // Add an SVideo to composite step if necessary. - if( - (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) && - computed_display_type != DisplayType::CompositeMonochrome - ) { - fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));"; - } +// if( +// (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) && +// computed_display_type != DisplayType::CompositeMonochrome +// ) { +// fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));"; +// } + + + const std::string fragment_shader = + "#version 150\n" + + "in vec2 textureCoordinate;" + "out vec4 fragColour;" + + "uniform sampler2D textureName;" + + "void main(void) {" + "fragColour = vec4(1.0) - texture(textureName, textureCoordinate);" + "}"; return std::unique_ptr(new Shader( glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan), - fragment_shader + "}", + fragment_shader, attribute_bindings(ShaderType::InputScan) )); } -SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) { - const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); - return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff); -} - -std::unique_ptr ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { - /* - Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that - from the original to get chrominance. - - (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth), - there'll be at least four samples per colour clock and in practice at most just a shade more than 9. - */ - auto shader = std::unique_ptr(new Shader( - glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), - "#version 150\n" - - "in vec2 textureCoordinates[15];" - "uniform vec4 chromaWeights[4];" - "uniform vec4 lumaWeights[4];" - "uniform sampler2D textureName;" - "uniform mat3 lumaChromaToRGB;" - - "out vec3 fragColour;" - "void main() {" - "vec3 samples[15] = vec3[15](" - "texture(textureName, textureCoordinates[0]).rgb," - "texture(textureName, textureCoordinates[1]).rgb," - "texture(textureName, textureCoordinates[2]).rgb," - "texture(textureName, textureCoordinates[3]).rgb," - "texture(textureName, textureCoordinates[4]).rgb," - "texture(textureName, textureCoordinates[5]).rgb," - "texture(textureName, textureCoordinates[6]).rgb," - "texture(textureName, textureCoordinates[7]).rgb," - "texture(textureName, textureCoordinates[8]).rgb," - "texture(textureName, textureCoordinates[9]).rgb," - "texture(textureName, textureCoordinates[10]).rgb," - "texture(textureName, textureCoordinates[11]).rgb," - "texture(textureName, textureCoordinates[12]).rgb," - "texture(textureName, textureCoordinates[13]).rgb," - "texture(textureName, textureCoordinates[14]).rgb" - ");" - "vec4 samples0[4] = vec4[4](" - "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r)," - "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r)," - "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r)," - "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)" - ");" - "vec4 samples1[4] = vec4[4](" - "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," - "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," - "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g)," - "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)" - ");" - "vec4 samples2[4] = vec4[4](" - "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b)," - "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b)," - "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b)," - "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)" - ");" - "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);" - "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);" - "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);" - "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);" - "fragColour = lumaChromaToRGB * vec3(channel0, chroma);" - "}", - attribute_bindings(ShaderType::ProcessedScan) - )); - - auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients(); - chroma_coefficients.push_back(0.0f); - shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data()); - - auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients(); - luma_coefficients.push_back(0.0f); - shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); - - shader->set_uniform("edgeExpansion", 0); - - return shader; -} - -std::unique_ptr ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { - auto shader = std::unique_ptr(new Shader( - glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), - "#version 150\n" - - "in vec2 textureCoordinates[15];" - "in float compositeAngle;" - "in float oneOverCompositeAmplitude;" - - "uniform vec4 lumaWeights[4];" - "uniform sampler2D textureName;" - - "out vec3 fragColour;" - "void main() {" - "vec4 samples[4] = vec4[4](" - "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r)," - "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r)," - "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r)," - "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)" - ");" - "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);" - "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" - "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;" - "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));" - "}", - attribute_bindings(ShaderType::ProcessedScan) - )); - - auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f); - auto luma_coefficients = luma_low.get_coefficients(); - luma_coefficients.push_back(0.0f); - shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); - - shader->set_uniform("edgeExpansion", 0); - - return shader; +std::unique_ptr ScanTarget::conversion_shader(InputDataType input_data_type, DisplayType display_type, int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { + return nullptr; } +// +//SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) { +// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); +// return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff); +//} +// +//std::unique_ptr ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { +// /* +// Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that +// from the original to get chrominance. +// +// (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth), +// there'll be at least four samples per colour clock and in practice at most just a shade more than 9. +// */ +// auto shader = std::unique_ptr(new Shader( +// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), +// "#version 150\n" +// +// "in vec2 textureCoordinates[15];" +// "in vec2 chromaCoordinates[2];" +// "in float compositeAngle;" +// +//// "uniform vec4 chromaWeights[4];" +//// "uniform vec4 lumaWeights[4];" +// "uniform sampler2D textureName;" +// "uniform mat3 lumaChromaToRGB;" +// +// "out vec3 fragColour;" +// "void main() {" +// "vec2 angles = vec2(compositeAngle - 1.570795827, compositeAngle + 1.570795827);" +// +// "vec2 sines = sin(angles) * vec2(0.5) + vec2(0.5);" +// "vec2 coses = cos(angles);" +// "float denominator = sines.y * coses.x - sines.x * coses.y;" +// +// "vec2 samples = vec2(texture(textureName, chromaCoordinates[0]).g, texture(textureName, chromaCoordinates[1]).g);" +// +// "float channel1 = (samples.x * sines.x - samples.y * sines.y) / denominator;" +// "float channel2 = (samples.x * coses.x - samples.y * coses.y) / denominator;" +// +//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).r, channel1, channel2);" +// "fragColour = vec3(sines.x + sines.y, 0.0, 0.0);" +// //, 0.0);" +// +//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).g, 0.0, 0.0);" +//// "fragColour = vec3(0.5);" +///* "vec3 samples[15] = vec3[15](" +// "texture(textureName, textureCoordinates[0]).rgb," +// "texture(textureName, textureCoordinates[1]).rgb," +// "texture(textureName, textureCoordinates[2]).rgb," +// "texture(textureName, textureCoordinates[3]).rgb," +// "texture(textureName, textureCoordinates[4]).rgb," +// "texture(textureName, textureCoordinates[5]).rgb," +// "texture(textureName, textureCoordinates[6]).rgb," +// "texture(textureName, textureCoordinates[7]).rgb," +// "texture(textureName, textureCoordinates[8]).rgb," +// "texture(textureName, textureCoordinates[9]).rgb," +// "texture(textureName, textureCoordinates[10]).rgb," +// "texture(textureName, textureCoordinates[11]).rgb," +// "texture(textureName, textureCoordinates[12]).rgb," +// "texture(textureName, textureCoordinates[13]).rgb," +// "texture(textureName, textureCoordinates[14]).rgb" +// ");" +// "vec4 samples0[4] = vec4[4](" +// "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r)," +// "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r)," +// "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r)," +// "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)" +// ");" +// "vec4 samples1[4] = vec4[4](" +// "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," +// "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," +// "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g)," +// "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)" +// ");" +// "vec4 samples2[4] = vec4[4](" +// "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b)," +// "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b)," +// "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b)," +// "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)" +// ");" +// "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);" +// "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);" +// "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);" +// "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);" +// "fragColour = lumaChromaToRGB * vec3(channel0, chroma);"*/ +// "}", +// attribute_bindings(ShaderType::ProcessedScan) +// )); +// +// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); +// const float chroma_offset = 0.25f / cycles_per_expanded_line; +// shader->set_uniform("chromaOffset", chroma_offset); +// +//// auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients(); +//// chroma_coefficients.push_back(0.0f); +//// shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data()); +//// +//// auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients(); +//// luma_coefficients.push_back(0.0f); +//// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); +// +// shader->set_uniform("edgeExpansion", 20); +// +// return shader; +//} +// +//std::unique_ptr ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { +// auto shader = std::unique_ptr(new Shader( +// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), +// "#version 150\n" +// +// "in vec2 textureCoordinates[15];" +// "in float compositeAngle;" +// "in float oneOverCompositeAmplitude;" +// +// "uniform vec4 lumaWeights[4];" +// "uniform sampler2D textureName;" +// +// "out vec3 fragColour;" +// "void main() {" +// "vec4 samples[4] = vec4[4](" +// "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r)," +// "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r)," +// "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r)," +// "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)" +// ");" +// "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);" +// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" +// "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;" +// "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));" +// "}", +// attribute_bindings(ShaderType::ProcessedScan) +// )); +// +// auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f); +// auto luma_coefficients = luma_low.get_coefficients(); +// luma_coefficients.push_back(0.0f); +// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); +// +// shader->set_uniform("edgeExpansion", 10); +// +// return shader; +//} +//