mirror of
https://github.com/TomHarte/CLK.git
synced 2024-12-27 01:31:42 +00:00
Attempts an initial flattening of the pipeline, seemingly losing all output.
This commit is contained in:
parent
601961deeb
commit
fd0ffc7085
@ -13,22 +13,14 @@ using namespace Outputs::Display::OpenGL;
|
|||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
/// The texture unit from which to source 1bpp input data.
|
/// The texture unit from which to source input data.
|
||||||
constexpr GLenum SourceData1BppTextureUnit = GL_TEXTURE0;
|
constexpr GLenum SourceDataTextureUnit = GL_TEXTURE0;
|
||||||
/// The texture unit from which to source 2bpp input data.
|
|
||||||
//constexpr GLenum SourceData2BppTextureUnit = GL_TEXTURE1;
|
|
||||||
/// The texture unit from which to source 4bpp input data.
|
|
||||||
//constexpr GLenum SourceData4BppTextureUnit = GL_TEXTURE2;
|
|
||||||
|
|
||||||
/// The texture unit which contains raw line-by-line composite, S-Video or RGB data.
|
/// The texture unit which contains raw line-by-line composite, S-Video or RGB data.
|
||||||
constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE3;
|
constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE1;
|
||||||
/// The texture unit which contains line-by-line records of luminance and two channels of chrominance, straight after multiplication by the quadrature vector, not yet filtered.
|
|
||||||
constexpr GLenum SVideoLineBufferTextureUnit = GL_TEXTURE4;
|
|
||||||
/// The texture unit which contains line-by-line records of RGB.
|
|
||||||
constexpr GLenum RGBLineBufferTextureUnit = GL_TEXTURE5;
|
|
||||||
|
|
||||||
/// The texture unit that contains the current display.
|
/// The texture unit that contains the current display.
|
||||||
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE6;
|
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE2;
|
||||||
|
|
||||||
#define TextureAddress(x, y) (((y) << 11) | (x))
|
#define TextureAddress(x, y) (((y) << 11) | (x))
|
||||||
#define TextureAddressGetY(v) uint16_t((v) >> 11)
|
#define TextureAddressGetY(v) uint16_t((v) >> 11)
|
||||||
@ -292,14 +284,9 @@ void ScanTarget::setup_pipeline() {
|
|||||||
write_pointers_.write_area = 0;
|
write_pointers_.write_area = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Pick a processing width; this will be at least four times the
|
// Pick a processing width; this will be the minimum necessary not to
|
||||||
// colour subcarrier, and an integer multiple of the pixel clock and
|
// lose any detail when combining the input.
|
||||||
// at most 2048.
|
processing_width_ = modals_.cycles_per_line / modals_.clocks_per_pixel_greatest_common_divisor;
|
||||||
const int colour_cycle_width = (modals_.colour_cycle_numerator * 4 + modals_.colour_cycle_denominator - 1) / modals_.colour_cycle_denominator;
|
|
||||||
const int dot_clock = modals_.cycles_per_line / modals_.clocks_per_pixel_greatest_common_divisor;
|
|
||||||
const int overflow = colour_cycle_width % dot_clock;
|
|
||||||
processing_width_ = colour_cycle_width + (overflow ? dot_clock - overflow : 0);
|
|
||||||
processing_width_ = std::min(processing_width_, 2048);
|
|
||||||
|
|
||||||
// Establish an output shader. TODO: add gamma correction here.
|
// Establish an output shader. TODO: add gamma correction here.
|
||||||
output_shader_.reset(new Shader(
|
output_shader_.reset(new Shader(
|
||||||
@ -323,63 +310,15 @@ void ScanTarget::setup_pipeline() {
|
|||||||
set_uniforms(ShaderType::Line, *output_shader_);
|
set_uniforms(ShaderType::Line, *output_shader_);
|
||||||
output_shader_->set_uniform("origin", modals_.visible_area.origin.x, modals_.visible_area.origin.y);
|
output_shader_->set_uniform("origin", modals_.visible_area.origin.x, modals_.visible_area.origin.y);
|
||||||
output_shader_->set_uniform("size", modals_.visible_area.size.width, modals_.visible_area.size.height);
|
output_shader_->set_uniform("size", modals_.visible_area.size.width, modals_.visible_area.size.height);
|
||||||
|
output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
|
||||||
// Establish such intermediary shaders as are required.
|
|
||||||
pipeline_stages_.clear();
|
|
||||||
if(modals_.display_type == DisplayType::CompositeColour) {
|
|
||||||
pipeline_stages_.emplace_back(
|
|
||||||
composite_to_svideo_shader(modals_.colour_cycle_numerator, modals_.colour_cycle_denominator, processing_width_).release(),
|
|
||||||
SVideoLineBufferTextureUnit,
|
|
||||||
GL_NEAREST);
|
|
||||||
}
|
|
||||||
if(modals_.display_type == DisplayType::SVideo || modals_.display_type == DisplayType::CompositeColour) {
|
|
||||||
pipeline_stages_.emplace_back(
|
|
||||||
svideo_to_rgb_shader(modals_.colour_cycle_numerator, modals_.colour_cycle_denominator, processing_width_).release(),
|
|
||||||
(modals_.display_type == DisplayType::CompositeColour) ? RGBLineBufferTextureUnit : SVideoLineBufferTextureUnit,
|
|
||||||
GL_NEAREST);
|
|
||||||
}
|
|
||||||
|
|
||||||
glBindVertexArray(scan_vertex_array_);
|
|
||||||
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
|
|
||||||
|
|
||||||
// Establish an input shader.
|
// Establish an input shader.
|
||||||
input_shader_ = input_shader(modals_.input_data_type, modals_.display_type);
|
input_shader_ = composition_shader();
|
||||||
|
glBindVertexArray(scan_vertex_array_);
|
||||||
|
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
|
||||||
enable_vertex_attributes(ShaderType::InputScan, *input_shader_);
|
enable_vertex_attributes(ShaderType::InputScan, *input_shader_);
|
||||||
set_uniforms(ShaderType::InputScan, *input_shader_);
|
set_uniforms(ShaderType::InputScan, *input_shader_);
|
||||||
input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0));
|
input_shader_->set_uniform("textureName", GLint(SourceDataTextureUnit - GL_TEXTURE0));
|
||||||
|
|
||||||
// Cascade the texture units in use as per the pipeline stages.
|
|
||||||
std::vector<Shader *> input_shaders = {input_shader_.get()};
|
|
||||||
GLint texture_unit = GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0);
|
|
||||||
for(const auto &stage: pipeline_stages_) {
|
|
||||||
input_shaders.push_back(stage.shader.get());
|
|
||||||
|
|
||||||
stage.shader->set_uniform("textureName", texture_unit);
|
|
||||||
set_uniforms(ShaderType::ProcessedScan, *stage.shader);
|
|
||||||
enable_vertex_attributes(ShaderType::ProcessedScan, *stage.shader);
|
|
||||||
|
|
||||||
++texture_unit;
|
|
||||||
}
|
|
||||||
output_shader_->set_uniform("textureName", texture_unit);
|
|
||||||
|
|
||||||
// Ensure that all shaders involved in the input pipeline have the proper colour space knowledged.
|
|
||||||
for(auto shader: input_shaders) {
|
|
||||||
switch(modals_.composite_colour_space) {
|
|
||||||
case ColourSpace::YIQ: {
|
|
||||||
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
|
|
||||||
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
|
|
||||||
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
|
|
||||||
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
|
|
||||||
} break;
|
|
||||||
|
|
||||||
case ColourSpace::YUV: {
|
|
||||||
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
|
|
||||||
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
|
|
||||||
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
|
|
||||||
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
||||||
@ -431,7 +370,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
|||||||
|
|
||||||
// Submit texture.
|
// Submit texture.
|
||||||
if(submit_pointers.write_area != read_pointers.write_area) {
|
if(submit_pointers.write_area != read_pointers.write_area) {
|
||||||
glActiveTexture(SourceData1BppTextureUnit);
|
glActiveTexture(SourceDataTextureUnit);
|
||||||
glBindTexture(GL_TEXTURE_2D, write_area_texture_name_);
|
glBindTexture(GL_TEXTURE_2D, write_area_texture_name_);
|
||||||
|
|
||||||
// Create storage for the texture if it doesn't yet exist; this was deferred until here
|
// Create storage for the texture if it doesn't yet exist; this was deferred until here
|
||||||
@ -487,7 +426,6 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
|||||||
|
|
||||||
// Push new input to the unprocessed line buffer.
|
// Push new input to the unprocessed line buffer.
|
||||||
if(new_scans) {
|
if(new_scans) {
|
||||||
glDisable(GL_BLEND);
|
|
||||||
unprocessed_line_texture_.bind_framebuffer();
|
unprocessed_line_texture_.bind_framebuffer();
|
||||||
|
|
||||||
// Clear newly-touched lines; that is everything from (read+1) to submit.
|
// Clear newly-touched lines; that is everything from (read+1) to submit.
|
||||||
@ -499,26 +437,11 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
|||||||
if(first_line_to_clear < final_line_to_clear) {
|
if(first_line_to_clear < final_line_to_clear) {
|
||||||
glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), final_line_to_clear - first_line_to_clear);
|
glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), final_line_to_clear - first_line_to_clear);
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
glClear(GL_COLOR_BUFFER_BIT);
|
||||||
|
|
||||||
if(pipeline_stages_.size()) {
|
|
||||||
pipeline_stages_.back().target.bind_framebuffer();
|
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
|
||||||
unprocessed_line_texture_.bind_framebuffer();
|
|
||||||
}
|
|
||||||
} else {
|
} else {
|
||||||
glScissor(0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear);
|
glScissor(0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear);
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
glClear(GL_COLOR_BUFFER_BIT);
|
||||||
glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear);
|
glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear);
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
glClear(GL_COLOR_BUFFER_BIT);
|
||||||
|
|
||||||
if(pipeline_stages_.size()) {
|
|
||||||
pipeline_stages_.back().target.bind_framebuffer();
|
|
||||||
glScissor(0, 0, unprocessed_line_texture_.get_width(), final_line_to_clear);
|
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
|
||||||
glScissor(0, first_line_to_clear, unprocessed_line_texture_.get_width(), unprocessed_line_texture_.get_height() - first_line_to_clear);
|
|
||||||
glClear(GL_COLOR_BUFFER_BIT);
|
|
||||||
unprocessed_line_texture_.bind_framebuffer();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
glDisable(GL_SCISSOR_TEST);
|
glDisable(GL_SCISSOR_TEST);
|
||||||
@ -528,13 +451,6 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
|||||||
glBindVertexArray(scan_vertex_array_);
|
glBindVertexArray(scan_vertex_array_);
|
||||||
input_shader_->bind();
|
input_shader_->bind();
|
||||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans));
|
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans));
|
||||||
|
|
||||||
// If there are any further pipeline stages, apply them.
|
|
||||||
for(auto &stage: pipeline_stages_) {
|
|
||||||
stage.target.bind_framebuffer();
|
|
||||||
stage.shader->bind();
|
|
||||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(new_scans));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ensure the accumulation buffer is properly sized.
|
// Ensure the accumulation buffer is properly sized.
|
||||||
@ -545,7 +461,7 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
|||||||
GLsizei(proportional_width),
|
GLsizei(proportional_width),
|
||||||
GLsizei(output_height),
|
GLsizei(output_height),
|
||||||
AccumulationTextureUnit,
|
AccumulationTextureUnit,
|
||||||
GL_LINEAR,
|
GL_NEAREST,
|
||||||
true));
|
true));
|
||||||
if(accumulation_texture_) {
|
if(accumulation_texture_) {
|
||||||
new_framebuffer->bind_framebuffer();
|
new_framebuffer->bind_framebuffer();
|
||||||
|
@ -105,8 +105,7 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
|||||||
|
|
||||||
// Contains the first composition of scans into lines;
|
// Contains the first composition of scans into lines;
|
||||||
// they're accumulated prior to output to allow for continuous
|
// they're accumulated prior to output to allow for continuous
|
||||||
// application of any necessary conversions — e.g. composite processing —
|
// application of any necessary conversions — e.g. composite processing.
|
||||||
// which happen progressively from here to the RGB texture.
|
|
||||||
TextureTarget unprocessed_line_texture_;
|
TextureTarget unprocessed_line_texture_;
|
||||||
|
|
||||||
// Scans are accumulated to the accumulation texture; the full-display
|
// Scans are accumulated to the accumulation texture; the full-display
|
||||||
@ -180,22 +179,8 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
|||||||
std::unique_ptr<Shader> input_shader_;
|
std::unique_ptr<Shader> input_shader_;
|
||||||
std::unique_ptr<Shader> output_shader_;
|
std::unique_ptr<Shader> output_shader_;
|
||||||
|
|
||||||
static std::unique_ptr<Shader> input_shader(InputDataType input_data_type, DisplayType display_type);
|
static std::unique_ptr<Shader> composition_shader();
|
||||||
static std::unique_ptr<Shader> composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width);
|
static std::unique_ptr<Shader> conversion_shader(InputDataType input_data_type, DisplayType display_type, int colour_cycle_numerator, int colour_cycle_denominator, int processing_width);
|
||||||
static std::unique_ptr<Shader> svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width);
|
|
||||||
static SignalProcessing::FIRFilter colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff);
|
|
||||||
|
|
||||||
struct PipelineStage {
|
|
||||||
PipelineStage(Shader *shader, GLenum texture_unit, GLint magnification_filter) :
|
|
||||||
shader(shader),
|
|
||||||
target(LineBufferWidth, LineBufferHeight, texture_unit, magnification_filter, false) {}
|
|
||||||
|
|
||||||
std::unique_ptr<Shader> shader;
|
|
||||||
TextureTarget target;
|
|
||||||
};
|
|
||||||
|
|
||||||
// A list is used here to avoid requiring a copy constructor on PipelineStage.
|
|
||||||
std::list<PipelineStage> pipeline_stages_;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -90,12 +90,14 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
|
|||||||
if(type == ShaderType::InputScan) {
|
if(type == ShaderType::InputScan) {
|
||||||
result +=
|
result +=
|
||||||
"out vec2 textureCoordinate;"
|
"out vec2 textureCoordinate;"
|
||||||
"uniform usampler2D textureName;";
|
"uniform sampler2D textureName;";
|
||||||
} else {
|
} else {
|
||||||
result +=
|
result +=
|
||||||
"out vec2 textureCoordinates[15];"
|
"out vec2 textureCoordinates[15];"
|
||||||
|
"out vec2 chromaCoordinates[2];"
|
||||||
|
|
||||||
"uniform sampler2D textureName;"
|
"uniform sampler2D textureName;"
|
||||||
|
"uniform float chromaOffset;"
|
||||||
"uniform float edgeExpansion;";
|
"uniform float edgeExpansion;";
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -120,9 +122,9 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
|
|||||||
"vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);"
|
"vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);"
|
||||||
"sourcePosition /= vec2(scale.x, 2048.0);"
|
"sourcePosition /= vec2(scale.x, 2048.0);"
|
||||||
|
|
||||||
"vec2 expansion = vec2(2.0*lateral*edgeExpansion - edgeExpansion, 0.0) / textureSize(textureName, 0);"
|
// "vec2 expansion = vec2(edgeExpansion, 0.0) / textureSize(textureName, 0);"
|
||||||
"eyePosition = eyePosition + expansion;"
|
// "eyePosition = eyePosition + expansion;"
|
||||||
"sourcePosition = sourcePosition + expansion;"
|
// "sourcePosition = sourcePosition + expansion;"
|
||||||
|
|
||||||
"textureCoordinates[0] = sourcePosition + vec2(-7.0, 0.0) / textureSize(textureName, 0);"
|
"textureCoordinates[0] = sourcePosition + vec2(-7.0, 0.0) / textureSize(textureName, 0);"
|
||||||
"textureCoordinates[1] = sourcePosition + vec2(-6.0, 0.0) / textureSize(textureName, 0);"
|
"textureCoordinates[1] = sourcePosition + vec2(-6.0, 0.0) / textureSize(textureName, 0);"
|
||||||
@ -140,6 +142,9 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
|
|||||||
"textureCoordinates[13] = sourcePosition + vec2(6.0, 0.0) / textureSize(textureName, 0);"
|
"textureCoordinates[13] = sourcePosition + vec2(6.0, 0.0) / textureSize(textureName, 0);"
|
||||||
"textureCoordinates[14] = sourcePosition + vec2(7.0, 0.0) / textureSize(textureName, 0);"
|
"textureCoordinates[14] = sourcePosition + vec2(7.0, 0.0) / textureSize(textureName, 0);"
|
||||||
|
|
||||||
|
"chromaCoordinates[0] = sourcePosition + vec2(chromaOffset, 0.0);"
|
||||||
|
"chromaCoordinates[1] = sourcePosition - vec2(chromaOffset, 0.0);"
|
||||||
|
|
||||||
"eyePosition = eyePosition;";
|
"eyePosition = eyePosition;";
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -235,8 +240,8 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type, DisplayType display_type) {
|
std::unique_ptr<Shader> ScanTarget::composition_shader() {
|
||||||
std::string fragment_shader =
|
/* std::string fragment_shader =
|
||||||
"#version 150\n"
|
"#version 150\n"
|
||||||
|
|
||||||
"out vec3 fragColour;"
|
"out vec3 fragColour;"
|
||||||
@ -313,161 +318,203 @@ std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type,
|
|||||||
computed_display_type = DisplayType::RGB;
|
computed_display_type = DisplayType::RGB;
|
||||||
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);";
|
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);";
|
||||||
break;
|
break;
|
||||||
}
|
}*/
|
||||||
|
|
||||||
// If the input type is RGB but the output type isn't then
|
// If the input type is RGB but the output type isn't then
|
||||||
// there'll definitely be an RGB to SVideo step.
|
// there'll definitely be an RGB to SVideo step.
|
||||||
if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) {
|
// if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) {
|
||||||
fragment_shader +=
|
// fragment_shader +=
|
||||||
"vec3 composite_colour = rgbToLumaChroma * fragColour;"
|
// "vec3 composite_colour = rgbToLumaChroma * fragColour;"
|
||||||
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
|
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
|
||||||
"fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);";
|
// "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);";
|
||||||
}
|
// }
|
||||||
|
|
||||||
// If the output type is SVideo, throw in an attempt to separate the two chrominance
|
// If the output type is SVideo, throw in an attempt to separate the two chrominance
|
||||||
// channels here.
|
// channels here.
|
||||||
if(display_type == DisplayType::SVideo) {
|
// if(display_type == DisplayType::SVideo) {
|
||||||
if(computed_display_type != DisplayType::RGB) {
|
// if(computed_display_type != DisplayType::RGB) {
|
||||||
fragment_shader +=
|
// fragment_shader +=
|
||||||
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));";
|
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));";
|
||||||
}
|
// }
|
||||||
fragment_shader +=
|
// fragment_shader +=
|
||||||
"vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);"
|
// "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);"
|
||||||
"fragColour = vec3(fragColour.x, chroma);";
|
// "fragColour = vec3(fragColour.x, chroma);";
|
||||||
}
|
// }
|
||||||
|
|
||||||
// Add an SVideo to composite step if necessary.
|
// Add an SVideo to composite step if necessary.
|
||||||
if(
|
// if(
|
||||||
(display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) &&
|
// (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) &&
|
||||||
computed_display_type != DisplayType::CompositeMonochrome
|
// computed_display_type != DisplayType::CompositeMonochrome
|
||||||
) {
|
// ) {
|
||||||
fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));";
|
// fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));";
|
||||||
}
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
const std::string fragment_shader =
|
||||||
|
"#version 150\n"
|
||||||
|
|
||||||
|
"in vec2 textureCoordinate;"
|
||||||
|
"out vec4 fragColour;"
|
||||||
|
|
||||||
|
"uniform sampler2D textureName;"
|
||||||
|
|
||||||
|
"void main(void) {"
|
||||||
|
"fragColour = vec4(1.0) - texture(textureName, textureCoordinate);"
|
||||||
|
"}";
|
||||||
|
|
||||||
return std::unique_ptr<Shader>(new Shader(
|
return std::unique_ptr<Shader>(new Shader(
|
||||||
glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan),
|
glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan),
|
||||||
fragment_shader + "}",
|
fragment_shader,
|
||||||
attribute_bindings(ShaderType::InputScan)
|
attribute_bindings(ShaderType::InputScan)
|
||||||
));
|
));
|
||||||
}
|
}
|
||||||
|
|
||||||
SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) {
|
std::unique_ptr<Shader> ScanTarget::conversion_shader(InputDataType input_data_type, DisplayType display_type, int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
|
||||||
const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
|
return nullptr;
|
||||||
return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
|
|
||||||
/*
|
|
||||||
Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that
|
|
||||||
from the original to get chrominance.
|
|
||||||
|
|
||||||
(Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth),
|
|
||||||
there'll be at least four samples per colour clock and in practice at most just a shade more than 9.
|
|
||||||
*/
|
|
||||||
auto shader = std::unique_ptr<Shader>(new Shader(
|
|
||||||
glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
|
|
||||||
"#version 150\n"
|
|
||||||
|
|
||||||
"in vec2 textureCoordinates[15];"
|
|
||||||
"uniform vec4 chromaWeights[4];"
|
|
||||||
"uniform vec4 lumaWeights[4];"
|
|
||||||
"uniform sampler2D textureName;"
|
|
||||||
"uniform mat3 lumaChromaToRGB;"
|
|
||||||
|
|
||||||
"out vec3 fragColour;"
|
|
||||||
"void main() {"
|
|
||||||
"vec3 samples[15] = vec3[15]("
|
|
||||||
"texture(textureName, textureCoordinates[0]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[1]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[2]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[3]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[4]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[5]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[6]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[7]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[8]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[9]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[10]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[11]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[12]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[13]).rgb,"
|
|
||||||
"texture(textureName, textureCoordinates[14]).rgb"
|
|
||||||
");"
|
|
||||||
"vec4 samples0[4] = vec4[4]("
|
|
||||||
"vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
|
|
||||||
"vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
|
|
||||||
"vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r),"
|
|
||||||
"vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)"
|
|
||||||
");"
|
|
||||||
"vec4 samples1[4] = vec4[4]("
|
|
||||||
"vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
|
|
||||||
"vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
|
|
||||||
"vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g),"
|
|
||||||
"vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)"
|
|
||||||
");"
|
|
||||||
"vec4 samples2[4] = vec4[4]("
|
|
||||||
"vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
|
|
||||||
"vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
|
|
||||||
"vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b),"
|
|
||||||
"vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)"
|
|
||||||
");"
|
|
||||||
"float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);"
|
|
||||||
"float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);"
|
|
||||||
"float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);"
|
|
||||||
"vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);"
|
|
||||||
"fragColour = lumaChromaToRGB * vec3(channel0, chroma);"
|
|
||||||
"}",
|
|
||||||
attribute_bindings(ShaderType::ProcessedScan)
|
|
||||||
));
|
|
||||||
|
|
||||||
auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients();
|
|
||||||
chroma_coefficients.push_back(0.0f);
|
|
||||||
shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data());
|
|
||||||
|
|
||||||
auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients();
|
|
||||||
luma_coefficients.push_back(0.0f);
|
|
||||||
shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
|
|
||||||
|
|
||||||
shader->set_uniform("edgeExpansion", 0);
|
|
||||||
|
|
||||||
return shader;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
|
|
||||||
auto shader = std::unique_ptr<Shader>(new Shader(
|
|
||||||
glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
|
|
||||||
"#version 150\n"
|
|
||||||
|
|
||||||
"in vec2 textureCoordinates[15];"
|
|
||||||
"in float compositeAngle;"
|
|
||||||
"in float oneOverCompositeAmplitude;"
|
|
||||||
|
|
||||||
"uniform vec4 lumaWeights[4];"
|
|
||||||
"uniform sampler2D textureName;"
|
|
||||||
|
|
||||||
"out vec3 fragColour;"
|
|
||||||
"void main() {"
|
|
||||||
"vec4 samples[4] = vec4[4]("
|
|
||||||
"vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r),"
|
|
||||||
"vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r),"
|
|
||||||
"vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r),"
|
|
||||||
"vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)"
|
|
||||||
");"
|
|
||||||
"float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);"
|
|
||||||
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
|
|
||||||
"vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;"
|
|
||||||
"fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));"
|
|
||||||
"}",
|
|
||||||
attribute_bindings(ShaderType::ProcessedScan)
|
|
||||||
));
|
|
||||||
|
|
||||||
auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f);
|
|
||||||
auto luma_coefficients = luma_low.get_coefficients();
|
|
||||||
luma_coefficients.push_back(0.0f);
|
|
||||||
shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
|
|
||||||
|
|
||||||
shader->set_uniform("edgeExpansion", 0);
|
|
||||||
|
|
||||||
return shader;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
//SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) {
|
||||||
|
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
|
||||||
|
// return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff);
|
||||||
|
//}
|
||||||
|
//
|
||||||
|
//std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
|
||||||
|
// /*
|
||||||
|
// Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that
|
||||||
|
// from the original to get chrominance.
|
||||||
|
//
|
||||||
|
// (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth),
|
||||||
|
// there'll be at least four samples per colour clock and in practice at most just a shade more than 9.
|
||||||
|
// */
|
||||||
|
// auto shader = std::unique_ptr<Shader>(new Shader(
|
||||||
|
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
|
||||||
|
// "#version 150\n"
|
||||||
|
//
|
||||||
|
// "in vec2 textureCoordinates[15];"
|
||||||
|
// "in vec2 chromaCoordinates[2];"
|
||||||
|
// "in float compositeAngle;"
|
||||||
|
//
|
||||||
|
//// "uniform vec4 chromaWeights[4];"
|
||||||
|
//// "uniform vec4 lumaWeights[4];"
|
||||||
|
// "uniform sampler2D textureName;"
|
||||||
|
// "uniform mat3 lumaChromaToRGB;"
|
||||||
|
//
|
||||||
|
// "out vec3 fragColour;"
|
||||||
|
// "void main() {"
|
||||||
|
// "vec2 angles = vec2(compositeAngle - 1.570795827, compositeAngle + 1.570795827);"
|
||||||
|
//
|
||||||
|
// "vec2 sines = sin(angles) * vec2(0.5) + vec2(0.5);"
|
||||||
|
// "vec2 coses = cos(angles);"
|
||||||
|
// "float denominator = sines.y * coses.x - sines.x * coses.y;"
|
||||||
|
//
|
||||||
|
// "vec2 samples = vec2(texture(textureName, chromaCoordinates[0]).g, texture(textureName, chromaCoordinates[1]).g);"
|
||||||
|
//
|
||||||
|
// "float channel1 = (samples.x * sines.x - samples.y * sines.y) / denominator;"
|
||||||
|
// "float channel2 = (samples.x * coses.x - samples.y * coses.y) / denominator;"
|
||||||
|
//
|
||||||
|
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).r, channel1, channel2);"
|
||||||
|
// "fragColour = vec3(sines.x + sines.y, 0.0, 0.0);"
|
||||||
|
// //, 0.0);"
|
||||||
|
//
|
||||||
|
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).g, 0.0, 0.0);"
|
||||||
|
//// "fragColour = vec3(0.5);"
|
||||||
|
///* "vec3 samples[15] = vec3[15]("
|
||||||
|
// "texture(textureName, textureCoordinates[0]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[1]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[2]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[3]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[4]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[5]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[6]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[7]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[8]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[9]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[10]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[11]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[12]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[13]).rgb,"
|
||||||
|
// "texture(textureName, textureCoordinates[14]).rgb"
|
||||||
|
// ");"
|
||||||
|
// "vec4 samples0[4] = vec4[4]("
|
||||||
|
// "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
|
||||||
|
// "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
|
||||||
|
// "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r),"
|
||||||
|
// "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)"
|
||||||
|
// ");"
|
||||||
|
// "vec4 samples1[4] = vec4[4]("
|
||||||
|
// "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
|
||||||
|
// "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
|
||||||
|
// "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g),"
|
||||||
|
// "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)"
|
||||||
|
// ");"
|
||||||
|
// "vec4 samples2[4] = vec4[4]("
|
||||||
|
// "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
|
||||||
|
// "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
|
||||||
|
// "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b),"
|
||||||
|
// "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)"
|
||||||
|
// ");"
|
||||||
|
// "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);"
|
||||||
|
// "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);"
|
||||||
|
// "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);"
|
||||||
|
// "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);"
|
||||||
|
// "fragColour = lumaChromaToRGB * vec3(channel0, chroma);"*/
|
||||||
|
// "}",
|
||||||
|
// attribute_bindings(ShaderType::ProcessedScan)
|
||||||
|
// ));
|
||||||
|
//
|
||||||
|
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
|
||||||
|
// const float chroma_offset = 0.25f / cycles_per_expanded_line;
|
||||||
|
// shader->set_uniform("chromaOffset", chroma_offset);
|
||||||
|
//
|
||||||
|
//// auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients();
|
||||||
|
//// chroma_coefficients.push_back(0.0f);
|
||||||
|
//// shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data());
|
||||||
|
////
|
||||||
|
//// auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients();
|
||||||
|
//// luma_coefficients.push_back(0.0f);
|
||||||
|
//// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
|
||||||
|
//
|
||||||
|
// shader->set_uniform("edgeExpansion", 20);
|
||||||
|
//
|
||||||
|
// return shader;
|
||||||
|
//}
|
||||||
|
//
|
||||||
|
//std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
|
||||||
|
// auto shader = std::unique_ptr<Shader>(new Shader(
|
||||||
|
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
|
||||||
|
// "#version 150\n"
|
||||||
|
//
|
||||||
|
// "in vec2 textureCoordinates[15];"
|
||||||
|
// "in float compositeAngle;"
|
||||||
|
// "in float oneOverCompositeAmplitude;"
|
||||||
|
//
|
||||||
|
// "uniform vec4 lumaWeights[4];"
|
||||||
|
// "uniform sampler2D textureName;"
|
||||||
|
//
|
||||||
|
// "out vec3 fragColour;"
|
||||||
|
// "void main() {"
|
||||||
|
// "vec4 samples[4] = vec4[4]("
|
||||||
|
// "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r),"
|
||||||
|
// "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r),"
|
||||||
|
// "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r),"
|
||||||
|
// "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)"
|
||||||
|
// ");"
|
||||||
|
// "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);"
|
||||||
|
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
|
||||||
|
// "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;"
|
||||||
|
// "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));"
|
||||||
|
// "}",
|
||||||
|
// attribute_bindings(ShaderType::ProcessedScan)
|
||||||
|
// ));
|
||||||
|
//
|
||||||
|
// auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f);
|
||||||
|
// auto luma_coefficients = luma_low.get_coefficients();
|
||||||
|
// luma_coefficients.push_back(0.0f);
|
||||||
|
// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
|
||||||
|
//
|
||||||
|
// shader->set_uniform("edgeExpansion", 10);
|
||||||
|
//
|
||||||
|
// return shader;
|
||||||
|
//}
|
||||||
|
//
|
||||||
|
Loading…
Reference in New Issue
Block a user