1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-10-25 09:27:01 +00:00

Compare commits

...

212 Commits

Author SHA1 Message Date
Thomas Harte
d964ebd4c1 Merge pull request #789 from TomHarte/OPLLDrums
Softens OPLL tremolo and vibrato; adds drum damping.
2020-05-10 15:51:34 -04:00
Thomas Harte
9458963311 Factors out shift by 7. 2020-05-10 13:57:50 -04:00
Thomas Harte
44690b1066 Halves effect of vibrato. 2020-05-10 12:05:14 -04:00
Thomas Harte
c41028cdc7 Adds further exposition. 2020-05-10 00:44:03 -04:00
Thomas Harte
64c62c16fb Adjusts tremolo scale. 2020-05-10 00:43:46 -04:00
Thomas Harte
afef4f05fe Adds damping and phase resets for the rhythm section. 2020-05-10 00:10:51 -04:00
Thomas Harte
fc0f290c85 Merge pull request #788 from TomHarte/ConstFun
Cleans up a variety of dangling issues.
2020-05-09 23:57:22 -04:00
Thomas Harte
81d70ee325 Adds in a few further consts. 2020-05-09 23:49:37 -04:00
Thomas Harte
6dc7a4471d Removes unused .cpp file. 2020-05-09 23:43:05 -04:00
Thomas Harte
fcb8bd00b6 Adds further costs. 2020-05-09 23:42:42 -04:00
Thomas Harte
05c3f2a30d Adds some further `costs. 2020-05-09 23:03:33 -04:00
Thomas Harte
25996ce180 Further doubles down on construction syntax for type conversions. 2020-05-09 23:00:39 -04:00
Thomas Harte
3729bddb2a Farewell, BestEffortUpdater. 2020-05-09 21:48:04 -04:00
Thomas Harte
4136428db3 Removes dead StandardOptions.cpp. 2020-05-09 21:35:15 -04:00
Thomas Harte
31c6faf3c8 Adds a bunch of consts. 2020-05-09 21:23:52 -04:00
Thomas Harte
5c1ae40a9c Merge pull request #783 from TomHarte/OPL2
Adds provisional OPLL emulation.
2020-05-09 18:28:03 -04:00
Thomas Harte
4c6d0f7fa0 Corrects SConstruct; applies default initialisation in Struct.cpp. 2020-05-09 18:11:50 -04:00
Thomas Harte
40b60fe5d4 Renames folder as per intended scope. 2020-05-09 18:04:11 -04:00
Thomas Harte
eed357abb4 Introduces concept of 'average peak volume' in order better to normalise audio sources like the OPLL. 2020-05-09 17:57:21 -04:00
Thomas Harte
8f541602c1 Moves modulator updates a sample behind operator updates. 2020-05-08 21:14:25 -04:00
Thomas Harte
668f4b77f3 Implements feedback. 2020-05-08 21:05:23 -04:00
Thomas Harte
303965fbb8 Removes the crutch of my first-attempt implementation. 2020-05-08 20:53:34 -04:00
Thomas Harte
792aed242d Fixes the use-sustain flag. 2020-05-08 20:49:39 -04:00
Thomas Harte
dc5654b941 Attempts to implement the proper attack phase.
It's sounding pretty good now, but for sustain.
2020-05-08 18:59:05 -04:00
Thomas Harte
e51e2425cc Attempts to implement decay and release the right way around and with full precision.
Higher numbers = decay/release more quickly, not more slowly.
2020-05-08 18:40:49 -04:00
Thomas Harte
95c6b9b55d Declare proper envelope precision. 2020-05-08 17:58:50 -04:00
Thomas Harte
ea25ead19d Ensures rhythm envelope generators don't pick up should_damp state. 2020-05-08 00:18:31 -04:00
Thomas Harte
24100ec3b0 Switches snare and high-hat envelope generators. 2020-05-08 00:08:14 -04:00
Thomas Harte
32437fbf8b Attempts to use the proper rhythm mode envelope generators. 2020-05-07 23:56:15 -04:00
Thomas Harte
5219a86a41 In principle fully implements rhythm mode. 2020-05-07 23:38:51 -04:00
Thomas Harte
e12dc5d894 Reduce the amount of time spent installing instruments. 2020-05-06 00:15:28 -04:00
Thomas Harte
75315406bb Ensure all channels begin in 'release' phase, which is currently code for 'off' in conjunction with attenuation of 511. 2020-05-06 00:13:01 -04:00
Thomas Harte
ea42fe638a Corrects channel attenuation and carrier sustain level settings. 2020-05-05 23:41:15 -04:00
Thomas Harte
744211cec0 Ensures rhythm instruments are installed. 2020-05-05 23:13:13 -04:00
Thomas Harte
1a4321d7d0 Attempts better to balance attenuations. 2020-05-05 22:14:11 -04:00
Thomas Harte
b943441901 Marks up more specific TODOs.
I think I'm already much happier with this factoring.
2020-05-05 00:35:03 -04:00
Thomas Harte
0505b82384 Restores top bit of channel period, propagates it to the envelope generator. 2020-05-05 00:28:24 -04:00
Thomas Harte
c9fb5721cd Makes first attempt to reintroduce full-melodic output. 2020-05-05 00:16:45 -04:00
Thomas Harte
386a7ca442 Continues doing away with the attempt heavily to interleave the OPLL and OPL2, creating a new OPLL class. 2020-05-04 21:14:51 -04:00
Thomas Harte
e929d5d819 Ensures proper dereferencing of the std::optional. 2020-05-03 21:57:15 -04:00
Thomas Harte
94614ae4c3 Shifts the LFO implementation inline. 2020-05-03 21:44:22 -04:00
Thomas Harte
1223c99e0f Adds waveform generation logic to the new factoring. 2020-05-03 21:38:20 -04:00
Thomas Harte
1ff5ea0a6e Adds KeyLevelScaler, implements EnvelopeGenerator, adds reset to PhaseGenerator. 2020-05-03 16:24:55 -04:00
Thomas Harte
9d2691d1d2 Taking it as given that outstanding deficiencies are mostly due to poor design, starts breaking out the envelope and phase generators. 2020-05-01 23:46:42 -04:00
Thomas Harte
e4ef2c68bb Feeds through drum volume levels. 2020-04-30 19:35:09 -04:00
Thomas Harte
7fffafdfd4 Wires the high-hat through, possibly incorrectly. 2020-04-29 22:44:15 -04:00
Thomas Harte
5896288edd Adapts to new interface. 2020-04-29 22:08:36 -04:00
Thomas Harte
c4135fad2b Attempts completely to decouple updates and audio outputs. 2020-04-29 22:07:40 -04:00
Thomas Harte
1f34214fb3 Imagines a future of being able to boot into the BIOS. 2020-04-29 22:07:20 -04:00
Thomas Harte
f899af0eef Fixes OPL tests. 2020-04-28 20:17:16 -04:00
Thomas Harte
9f0c8bcae7 Attempts to add the missing noise generators. I think I may still be astray on volumes. 2020-04-26 15:51:33 -04:00
Thomas Harte
2bc36a6cde Eliminates branch within snare output. 2020-04-26 00:21:15 -04:00
Thomas Harte
ee10fe3d2c Fully separates updates and outputs in operators; takes a shot at the snare. 2020-04-26 00:18:09 -04:00
Thomas Harte
a424e867f9 Continues factoring this apart, albeit with a decision on whether to retain update-and-output still pending. 2020-04-25 23:07:40 -04:00
Thomas Harte
f52b40396a Re-ups output level.
Though it's still quiet compared to the SN.
2020-04-25 23:07:06 -04:00
Thomas Harte
cd2ab70a58 Moves the LFSR to the LowFrequencyOscillator.
Possibly I should come up with a better name for that?
2020-04-25 22:21:42 -04:00
Thomas Harte
a5d1941d28 Adds necessary standalone #imports; makes safe for signed types. 2020-04-25 22:21:10 -04:00
Thomas Harte
65a3783dd2 Attempts the tom tom. 2020-04-25 19:21:55 -04:00
Thomas Harte
b9b5c2a3bc Takes a first run at proper slot mixing and the bass drum. 2020-04-25 18:01:05 -04:00
Thomas Harte
12c618642e Corrects output range. 2020-04-25 00:07:58 -04:00
Thomas Harte
6ebc93c995 Switches to maximum-rate multiplexing. Hopefully to eliminate the mixer as a consideration for now. 2020-04-24 23:50:06 -04:00
Thomas Harte
6d4e29c851 Strips mixer back to basics in search of audio issues. 2020-04-24 23:32:02 -04:00
Thomas Harte
b3979e2fda Looking towards rhythm mode, and in search of bugs: factors out ADSR.
Further factorings to come.
2020-04-24 18:48:32 -04:00
Thomas Harte
983c32bf75 Adds vibrato.
This would complete melodic output, subject to bug fixes.
2020-04-24 18:02:41 -04:00
Thomas Harte
9e3614066a Adds tremolo support, switches to global timer for ADSR stages other than attack. 2020-04-23 23:55:49 -04:00
Thomas Harte
c7ad6b1b50 Minor layout and commenting improvements. 2020-04-21 23:35:48 -04:00
Thomas Harte
676dcf7fbb Calculates the proper key scale rate, though ADSR itself is still lacking that precision. 2020-04-21 22:57:56 -04:00
Thomas Harte
50d725330c Adds missing header. 2020-04-21 22:48:52 -04:00
Thomas Harte
2886dd1dae Collapses key-level scaling to a single 2d table.
I dare imagine I can do better; the columns in particular look like arithmetic progressions.
2020-04-21 20:19:02 -04:00
Thomas Harte
40424ac38b Re-enables key-level scaling, with 3db and 1.5db the correct way around. 2020-04-21 20:10:40 -04:00
Thomas Harte
a4d3865394 Decreases sustain level attenuation; disables key-level scaling for now.
The latter was definitely wrong, I also think I don't need the big four tables.
2020-04-21 19:58:40 -04:00
Thomas Harte
0ac99e8d42 Disables low low-pass filter, honours audio control bits for better volume usage. 2020-04-21 19:57:13 -04:00
Thomas Harte
bdce1c464a Takes a shot at key-level scaling. Testing to come. 2020-04-21 00:09:42 -04:00
Thomas Harte
475d75c16a Preserves fractional part of modulator phase. 2020-04-20 23:35:37 -04:00
Thomas Harte
32fd1897d0 Via a unit test, confirms and fixes relative volumes of OPLL channels.
Also rejigs responsibility for scaling to emulator-standard volume.
2020-04-20 23:17:29 -04:00
Thomas Harte
39e6a28730 Rearranges file. 2020-04-20 19:41:04 -04:00
Thomas Harte
3852e119aa Adds test data for FM wave generation. 2020-04-20 19:33:03 -04:00
Thomas Harte
f19fd7c166 Pulls out common melodic update calls. 2020-04-20 18:58:31 -04:00
Thomas Harte
100fddcee1 Corrects divider, takes another whack at ADSR. 2020-04-20 18:58:10 -04:00
Thomas Harte
99fa86a67e Adds a test for lookup sine. And fixes lookup sine. 2020-04-20 18:40:47 -04:00
Thomas Harte
6568c29c54 Improves commentary. 2020-04-19 22:42:25 -04:00
Thomas Harte
c54bbc5a04 Rename Table.h; LogSin -> LogSign and make it a bit more typer. 2020-04-19 13:33:17 -04:00
Thomas Harte
92d0c466c2 Moves complete phase -> output calculation inside Operator.
Reasoning being: otherwise I wasn't currently enforcing non-sine waveforms.
2020-04-19 13:27:24 -04:00
Thomas Harte
020c760976 Simplifies the phase counter. 2020-04-19 00:30:14 -04:00
Thomas Harte
cdfd7de221 Minor: enables all melodic channels when rhythm mode is disabled; supports non-modulated channels. 2020-04-18 17:48:29 -04:00
Thomas Harte
3da2e91acf Adjusts range of output, makes declaration of level full owner of type information. 2020-04-17 23:29:09 -04:00
Thomas Harte
3948304172 Attempts to use table-based maths. 2020-04-17 23:23:16 -04:00
Thomas Harte
4a295cd95e Wraps log_sin in an access function to enshrine sign and mask rules; switches both functions to non-math.h clashing names. 2020-04-17 23:22:42 -04:00
Thomas Harte
6f7c8b35c5 Applies an ahead-of-time transformation to the exp table, and wraps it in a helper function. 2020-04-17 22:33:13 -04:00
Thomas Harte
e58ba27c00 Clarifies meaning of scaling. Though it isn't yet applied. 2020-04-17 22:30:10 -04:00
Thomas Harte
0aceddd088 Starts tidying up the OPL2.
This is as a precursor to switching to using the proper table lookups, which I hope will automatically fix my range issues.
2020-04-15 22:10:50 -04:00
Thomas Harte
30ff399218 With some fixes for scale, I think possibly this is close for melodic channels. 2020-04-15 21:27:27 -04:00
Thomas Harte
a7e63b61eb Just from printing numbers: corrects transition from attack to decay. 2020-04-15 00:26:01 -04:00
Thomas Harte
b13b0d9311 Starts towards implementing some OPL test cases. 2020-04-14 23:51:45 -04:00
Thomas Harte
d8380dc3e2 Tries to be a little neater in spelling out the work here.
I think I'm somewhat circling here now; I need to think of a way of getting clean comparison data.
2020-04-14 21:55:42 -04:00
Thomas Harte
d805e9a8f0 Actually, octave probably works this way around? Higher octaves = higher frequencies. 2020-04-14 21:39:12 -04:00
Thomas Harte
aa45142728 Endeavours to fix attenuation and add FM synthesis.
I now definitely think my frequency counting is wrong.
2020-04-14 18:32:06 -04:00
Thomas Harte
09d1aed3a5 Attempts to voice the current attenuation (and, therefore, the ADSR output), even if linearly rather than logarithmically. 2020-04-13 22:12:55 -04:00
Thomas Harte
a1f80b5142 Takes a stab at per-operator ADSR.
Heavy caveats apply: no KSR is applied, non-ADSR attenuation isn't applied, attenuation isn't voiced in general.
2020-04-13 21:39:06 -04:00
Thomas Harte
cb1970ebab Switch to more compact form of output for bool.
This also will hopefully deal with GCC's slightly confused claim that 'value' may be used without having been initialised down at #define OutputIntC (i.e. after it's out of scope, but I can sort of see why GCC might get confused while it remains in scope).
2020-04-12 14:40:32 -04:00
Thomas Harte
d3fbdba77c Add missing #include. 2020-04-12 14:20:02 -04:00
Thomas Harte
632d797c9d Adjusts frequency formula. This could be close.
I guess next I need to get ADSR/volume in general working, before I can go FM? Then I'll worry about using the proper log-sin/exp tables.
2020-04-12 14:15:09 -04:00
Thomas Harte
559a2d81c1 Baby step: starts trying to output the raw FM carrier, no modulation, no ADSR. 2020-04-12 12:46:40 -04:00
Thomas Harte
7a5f23c0a5 Adds accommodations for the OPLL. 2020-04-10 22:05:22 -04:00
Thomas Harte
84b115f15f Attempts to move forward in defining what the parts of an OPL are meant to do. 2020-04-10 19:13:52 -04:00
Thomas Harte
a0d14f4030 Starts trying to make sense of the various fields at play. 2020-04-08 23:15:44 -04:00
Thomas Harte
dd6769bfbc Splits OPLL and OPL2 classes.
Logic is: they have different mixers (additive in the OPL2, time-division multiplexing in the OPLL) as well as different register sets. So I'll put operator and channel logic directly into those structs.
2020-04-07 23:15:26 -04:00
Thomas Harte
027af5acca Allow LFSR to be instantiated with a given value. 2020-04-05 22:58:09 -04:00
Thomas Harte
db4b71fc9a Adds correct LSFR, something of OPLL -> OPL2 logic. 2020-04-05 22:57:53 -04:00
Thomas Harte
d9e41d42b5 Adds the OPL2 to SConstruct. 2020-04-05 21:34:19 -04:00
Thomas Harte
0ed7d257e1 Add some extra notes, implement correct mapping to only 18 operators. Not 22. 2020-04-05 14:32:55 -04:00
Thomas Harte
335a68396f Attempts to complete OPL2 register decoding. 2020-04-04 23:39:09 -04:00
Thomas Harte
84cdf6130f Starts at least trying to decode OPL2 register writes. 2020-04-04 23:29:25 -04:00
Thomas Harte
b0abc4f7bb Implements enough wiring that the Master System will instantiate and talk to an OPLL. 2020-04-03 20:05:36 -04:00
Thomas Harte
ab81d1093d Merge pull request #782 from TomHarte/6502Tidy
Makes `State`, and therefore the 'Reflection' dependency, an optional adjunct to the 6502.
2020-04-02 20:49:18 -04:00
Thomas Harte
e4d4e4e002 Adds 6502 State to the SConstruct file.
On the assumption I'll actually use it at some point.
2020-04-02 19:16:22 -04:00
Thomas Harte
cc357a6afa Removes boilerplate from header. 2020-04-02 19:15:57 -04:00
Thomas Harte
dfc1c7d358 Separates 6502 State object to make it optional.
Also makes a few minor const improvements while I'm poking around.
2020-04-02 19:11:27 -04:00
Thomas Harte
7ed8e33622 Eliminates unused 6502 counter. 2020-04-02 18:49:28 -04:00
Thomas Harte
474822e83d Merge pull request #781 from TomHarte/NoMoreCRTMachine
Splits 'CRTMachine' into three parts: ScanProducer, AudioProducer, TimedMachine.
2020-04-02 09:46:54 -04:00
Thomas Harte
fe3942c5b3 Updates comments. 2020-04-01 23:49:07 -04:00
Thomas Harte
f417fa82a4 Splits 'CRTMachine' into three parts: ScanProducer, AudioProducer, TimedMachine.
Simultaneously cleans up some of the naming conventions and tries to make things a bit more template-compatible.
2020-04-01 23:19:34 -04:00
Thomas Harte
c4b114133a Merge pull request #779 from TomHarte/6502State
Provisionally adds `State` and `get/set_state` to the 6502.
2020-03-31 21:05:29 -04:00
Thomas Harte
2f4b0c2b9a Removes non-functional assert. 2020-03-30 21:48:07 -04:00
Thomas Harte
a491650c8b Adds safety asserts. 2020-03-30 21:39:31 -04:00
Thomas Harte
6805acd74f Adds padding for all integer types. 2020-03-30 00:31:25 -04:00
Thomas Harte
95c68c76e1 Corrects use of StructImpl. 2020-03-30 00:27:40 -04:00
Thomas Harte
60aa383c95 Makes a not-quite-correct attempt at a .description for reflective structs. 2020-03-30 00:24:49 -04:00
Thomas Harte
edc553fa1d Removes duplicative 'register'. 2020-03-29 22:58:00 -04:00
Thomas Harte
4f2ebad8e0 Takes a shot a set_state. 2020-03-29 22:50:30 -04:00
Thomas Harte
1810ef60be Adds --fix-missing in the hope of catching more issues automatically. 2020-03-29 18:41:30 -04:00
Thomas Harte
f720a6201b Adds explicit type cast. 2020-03-29 18:36:57 -04:00
Thomas Harte
cfb75b58ca Pulls all 6502 MicroOp sequences into the main operations_ table.
This will make state restoration somewhat more tractable.
2020-03-29 18:36:41 -04:00
Thomas Harte
4fbe983527 Provisionally adds State and get_state to the 6502.
`set_state` may be a little more complicated, requiring a way to advance in single-cycle steps **without applying bus accesses**.
2020-03-28 00:33:27 -04:00
Thomas Harte
272383cac7 Merge pull request #778 from TomHarte/AppleIIDisks
Resolves a potential crash with NIB files
2020-03-25 21:52:26 -04:00
Thomas Harte
39380c63cb Throws in some consts. 2020-03-25 21:25:50 -04:00
Thomas Harte
ea26f4f7bf Eliminates test code, adds a caveat. 2020-03-25 21:22:30 -04:00
Thomas Harte
5fd2be3c8e Makes a genuine attempt at five and three decoding. 2020-03-25 20:50:26 -04:00
Thomas Harte
2320b5c1fe Takes some steps towards five-and-three decoding.
Now I 'just' need to figure out how bits are distributed within the decoded sector. The XORing and data checksum seem the same (?)
2020-03-25 00:15:31 -04:00
Thomas Harte
e5cbdfc67c It turns out that 5-and-3 disks have a different header prologue. 2020-03-24 21:59:55 -04:00
Thomas Harte
894d196b64 Avoids massive overallocation where sync blocks overlap the index hole. 2020-03-24 21:34:33 -04:00
Thomas Harte
af037649c3 Merge pull request #777 from TomHarte/ShowCRCs
Show CRC32s of missing ROMs.
2020-03-23 21:33:10 -04:00
Thomas Harte
cfca3e2507 Adds missing header for std::setw, std::set fill. 2020-03-23 21:26:50 -04:00
Thomas Harte
7a12a0149a Ensures BIOS is really not paged if not loaded. 2020-03-23 20:00:31 -04:00
Thomas Harte
fcdc1bfbd0 Prints the CRC32(s) of any missing ROMs. 2020-03-23 20:00:13 -04:00
Thomas Harte
d1d14ba9a0 Merge pull request #775 from TomHarte/SavedVolume
Ensures the macOS version retains volume.
2020-03-23 00:18:51 -04:00
Thomas Harte
0e502f6d5c Ensures the macOS version retains volume. 2020-03-23 00:10:56 -04:00
Thomas Harte
d3bac57d6a Merge pull request #774 from TomHarte/VolumeControl
Adds output volume control.
2020-03-22 21:23:49 -04:00
Thomas Harte
bd1b4b8a9f Increases volume fade-out speed. 2020-03-22 21:13:55 -04:00
Thomas Harte
38d81c394f Switches OSAtomics to stdatomics. The former were deprecated by macOS 10.12. 2020-03-22 21:11:04 -04:00
Thomas Harte
72103a4adb Corrects execution cap for splitAndSync ticks. 2020-03-22 19:25:02 -04:00
Thomas Harte
e6bae261c4 Ensures volume controls appear for mouse-capture machines when not capturing. 2020-03-22 19:06:38 -04:00
Thomas Harte
5edb0c0ee7 Adds animated fade-out to volume control. Bumps macOS version to 10.12.2. 2020-03-22 18:45:24 -04:00
Thomas Harte
442ce403f9 It's a bit jarring, but ensures volume control shows and hides according to mouse cursor. 2020-03-22 16:25:07 -04:00
Thomas Harte
7398cb44e2 Adds a functioning volume control for macOS, it just doesn't know how to hide yet. 2020-03-22 13:24:23 -04:00
Thomas Harte
15d54dfb4c Adds 'volume' command-line parameter for kiosk mode. 2020-03-21 22:24:31 -04:00
Thomas Harte
9087bb9b08 Allows audio volume to be set. 2020-03-21 22:00:47 -04:00
Thomas Harte
0c689e85a5 Use screen number for spotting screen changes.
NSScreen implements Swift Equatable but doesn't seem officially to implement -isEqual:.
2020-03-21 17:01:57 -04:00
Thomas Harte
75f2b0487e Merge pull request #773 from TomHarte/MacCrashAgain
Ensures proper NSScreen comparison...
2020-03-20 23:19:53 -04:00
Thomas Harte
5a1bae8a9c Ensures proper NSScreen comparison, and no never-ending setupDisplayLink loop on exit. 2020-03-20 23:00:16 -04:00
Thomas Harte
129bc485bf Merge pull request #772 from TomHarte/ReflectiveEnum
Endeavours to bring introspection to machine selection options.
2020-03-19 23:30:19 -04:00
Thomas Harte
69277bbb27 Renames files to match project convention. 2020-03-19 23:24:06 -04:00
Thomas Harte
b8b335f67d Exposes the Master System's region for SDL selection. 2020-03-19 21:46:42 -04:00
Thomas Harte
eef7868199 Ensures 'new' overrides default selection; doesn't try to propagate multiple files if machines won't take them. 2020-03-19 21:15:38 -04:00
Thomas Harte
23aa7ea85f Revives MultiConfigurable. 2020-03-19 21:02:14 -04:00
Thomas Harte
c1b69fd091 Attempts to support multiple pieces of media on the SDL command line, ensures proper window titling. 2020-03-19 20:40:43 -04:00
Thomas Harte
7ab7efdbc1 Ensures consistent ordering. 2020-03-19 19:41:50 -04:00
Thomas Harte
b8ebdc012f Ensure normative construction declaration ordering. 2020-03-19 18:58:36 -04:00
Thomas Harte
9995d776de Attempts to fix the macOS version, plus some implicit type conversions. 2020-03-18 23:29:09 -04:00
Thomas Harte
c6f35c9aac Rejigs help output. 2020-03-18 23:11:25 -04:00
Thomas Harte
615ea2f573 Applies parsed arguments. 2020-03-18 22:31:32 -04:00
Thomas Harte
311458f41f Restores Macintosh 'runtime' options.
Also cleans up some leftover parts elsewhere.
2020-03-18 21:50:02 -04:00
Thomas Harte
b2a381d401 Restores Vic-20 runtime options. 2020-03-18 20:23:55 -04:00
Thomas Harte
ffc1b0ff29 Reintroduces Oric runtime options. 2020-03-18 18:31:31 -04:00
Thomas Harte
ead2823322 Reintroduces MSX and Master System runtime options. 2020-03-18 18:26:22 -04:00
Thomas Harte
a7e1920597 Restores ColecoVision runtime options. 2020-03-18 00:06:52 -04:00
Thomas Harte
ec6664f590 Takes steps to guarantee property naming; reintroduces Electron runtime options. 2020-03-17 23:52:55 -04:00
Thomas Harte
8c6ca89da2 Restores runtime options for the Acorn Electron. 2020-03-17 22:06:20 -04:00
Thomas Harte
b6e81242e7 Reintroduces Apple II runtime options. 2020-03-17 21:53:26 -04:00
Thomas Harte
f9ca443667 Adds the ability for reflective structs to limit the permitted values to enumerated properties. 2020-03-17 21:44:04 -04:00
Thomas Harte
394ee61c78 Starts a switch to reflectable-style runtime options.
The Amstrad CPC and ZX80/81 have made the jump so far, subject to caveats. The macOS build is unlikely currently to work properly.
2020-03-16 23:25:05 -04:00
Thomas Harte
1d40aa687e Adds necessary include for unique_ptr. 2020-03-15 23:52:24 -04:00
Thomas Harte
8e3bf0dbca Starts moving towards a Deflectable-based system of runtime options. 2020-03-15 23:48:53 -04:00
Thomas Harte
2031a33edf Technically SDL users can now start a new machine.
Missing though: all the old per-machine command-line options, and any control over the new one.
2020-03-15 21:50:43 -04:00
Thomas Harte
fc3d3c76f8 Edges further towards providing enough information for dynamic user-provided machine creation. 2020-03-15 12:54:55 -04:00
Thomas Harte
880bed04f5 Adds AllMachines, rounds out ConstructionOptionsByMachineName. 2020-03-15 00:15:19 -04:00
Thomas Harte
f9c8470b20 Ensure targets always nominate a machine. 2020-03-15 00:13:38 -04:00
Thomas Harte
36acc2dddd Add necessary include for std::find. 2020-03-14 00:22:23 -04:00
Thomas Harte
a59963b6a0 Adds necessary header for memcpy. 2020-03-14 00:17:58 -04:00
Thomas Harte
cab4bead72 Promotes explicit specialisations to namespace scope. 2020-03-13 23:38:29 -04:00
Thomas Harte
1a2872c815 Starts to build an easy set interface. 2020-03-13 22:42:37 -04:00
Thomas Harte
f27e0a141d Sketches but doesn't implement an interface for serialisation. 2020-03-13 20:16:36 -04:00
Thomas Harte
52f644c4f1 Ensures that reflection is completely blind; starts adding SDL instantiation logic. 2020-03-12 20:56:02 -04:00
Thomas Harte
06c08a0574 Merge branch 'ReflectiveEnum' of github.com:TomHarte/CLK into ReflectiveEnum 2020-03-11 23:30:27 -04:00
Thomas Harte
724e2e6d27 Withdraws ability to select an integer size for ReflectableEnums.
It isn't that useful, and this'll help if/when I get to serialisation.
2020-03-11 23:28:38 -04:00
Thomas Harte
fd052189ca Adds reflection to all of the other computer targets. 2020-03-11 23:25:29 -04:00
Thomas Harte
044a2b67e1 Beefs up documentation on this miniature sort-of reflection. 2020-03-11 23:03:05 -04:00
Thomas Harte
7e8b86e9bb Attempts to flesh out Reflection::Enum. 2020-03-11 23:03:05 -04:00
Thomas Harte
ce80825abb Starts working towards a registration-based model of reflective enums. 2020-03-11 23:03:05 -04:00
Thomas Harte
a99bb3ba6d Switches to class storage. 2020-03-11 23:03:05 -04:00
Thomas Harte
3428e9887d Starts experimenting with declared reflection. 2020-03-11 23:03:05 -04:00
Thomas Harte
5a8fcac4dc Gives function overloading a try. 2020-03-11 23:03:05 -04:00
Thomas Harte
6a9b14f7d1 Adds a prototype reflective enum.
I need to make this scopeable before it is acceptable.
2020-03-11 23:03:05 -04:00
Thomas Harte
a74d8bd6e8 Merge pull request #771 from TomHarte/MacShutdownRace
Ensure race condition workaround is applied for all CVDisplayLinkStops.
2020-03-11 22:47:17 -04:00
Thomas Harte
3c70f056ed Ensure race condition workaround is applied for all CVDisplayLinkStops.
This also centralises the workaround, the better for replacing it when I discover a safer alternative.
2020-03-11 22:09:36 -04:00
Thomas Harte
a546880a65 Beefs up documentation on this miniature sort-of reflection. 2020-03-11 22:06:16 -04:00
Thomas Harte
238145f27f Attempts to flesh out Reflection::Enum. 2020-03-10 23:36:52 -04:00
Thomas Harte
0502e6be67 Starts working towards a registration-based model of reflective enums. 2020-03-10 22:32:55 -04:00
Thomas Harte
6a8c6f5a06 Switches to class storage. 2020-03-10 22:32:55 -04:00
Thomas Harte
5248475e73 Starts experimenting with declared reflection. 2020-03-10 22:32:55 -04:00
Thomas Harte
d6c6b9bdb8 Gives function overloading a try. 2020-03-10 22:32:55 -04:00
Thomas Harte
7bf04d5338 Adds a prototype reflective enum.
I need to make this scopeable before it is acceptable.
2020-03-10 22:32:55 -04:00
277 changed files with 6026 additions and 2857 deletions

View File

@@ -17,6 +17,6 @@ jobs:
steps:
- uses: actions/checkout@v1
- name: Install dependencies
run: sudo apt-get --allow-releaseinfo-change update; sudo apt-get install libsdl2-dev scons
run: sudo apt-get --allow-releaseinfo-change update; sudo apt-get --fix-missing install libsdl2-dev scons
- name: Make
run: cd OSBindings/SDL; scons

View File

@@ -11,20 +11,20 @@
using namespace Analyser::Dynamic;
float ConfidenceCounter::get_confidence() {
return static_cast<float>(hits_) / static_cast<float>(hits_ + misses_);
return float(hits_) / float(hits_ + misses_);
}
void ConfidenceCounter::add_hit() {
hits_++;
++hits_;
}
void ConfidenceCounter::add_miss() {
misses_++;
++misses_;
}
void ConfidenceCounter::add_equivocal() {
if(hits_ > misses_) {
hits_++;
misses_++;
++hits_;
++misses_;
}
}

View File

@@ -35,8 +35,8 @@ class ConfidenceSummary: public ConfidenceSource {
float get_confidence() final;
private:
std::vector<ConfidenceSource *> sources_;
std::vector<float> weights_;
const std::vector<ConfidenceSource *> sources_;
const std::vector<float> weights_;
float weight_sum_;
};

View File

@@ -1,94 +0,0 @@
//
// MultiCRTMachine.cpp
// Clock Signal
//
// Created by Thomas Harte on 29/01/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "MultiCRTMachine.hpp"
#include <condition_variable>
#include <mutex>
using namespace Analyser::Dynamic;
MultiCRTMachine::MultiCRTMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines, std::recursive_mutex &machines_mutex) :
machines_(machines), machines_mutex_(machines_mutex), queues_(machines.size()) {
speaker_ = MultiSpeaker::create(machines);
}
void MultiCRTMachine::perform_parallel(const std::function<void(::CRTMachine::Machine *)> &function) {
// Apply a blunt force parallelisation of the machines; each run_for is dispatched
// to a separate queue and this queue will block until all are done.
volatile std::size_t outstanding_machines;
std::condition_variable condition;
std::mutex mutex;
{
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
std::lock_guard<std::mutex> lock(mutex);
outstanding_machines = machines_.size();
for(std::size_t index = 0; index < machines_.size(); ++index) {
CRTMachine::Machine *crt_machine = machines_[index]->crt_machine();
queues_[index].enqueue([&mutex, &condition, crt_machine, function, &outstanding_machines]() {
if(crt_machine) function(crt_machine);
std::lock_guard<std::mutex> lock(mutex);
outstanding_machines--;
condition.notify_all();
});
}
}
std::unique_lock<std::mutex> lock(mutex);
condition.wait(lock, [&outstanding_machines] { return !outstanding_machines; });
}
void MultiCRTMachine::perform_serial(const std::function<void (::CRTMachine::Machine *)> &function) {
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
for(const auto &machine: machines_) {
CRTMachine::Machine *const crt_machine = machine->crt_machine();
if(crt_machine) function(crt_machine);
}
}
void MultiCRTMachine::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
scan_target_ = scan_target;
CRTMachine::Machine *const crt_machine = machines_.front()->crt_machine();
if(crt_machine) crt_machine->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus MultiCRTMachine::get_scan_status() const {
CRTMachine::Machine *const crt_machine = machines_.front()->crt_machine();
if(crt_machine) crt_machine->get_scan_status();
return Outputs::Display::ScanStatus();
}
Outputs::Speaker::Speaker *MultiCRTMachine::get_speaker() {
return speaker_;
}
void MultiCRTMachine::run_for(Time::Seconds duration) {
perform_parallel([duration](::CRTMachine::Machine *machine) {
if(machine->get_confidence() >= 0.01f) machine->run_for(duration);
});
if(delegate_) delegate_->multi_crt_did_run_machines();
}
void MultiCRTMachine::did_change_machine_order() {
if(scan_target_) scan_target_->will_change_owner();
perform_serial([](::CRTMachine::Machine *machine) {
machine->set_scan_target(nullptr);
});
CRTMachine::Machine *const crt_machine = machines_.front()->crt_machine();
if(crt_machine) crt_machine->set_scan_target(scan_target_);
if(speaker_) {
speaker_->set_new_front_machine(machines_.front().get());
}
}

View File

@@ -12,6 +12,81 @@
using namespace Analyser::Dynamic;
namespace {
class MultiStruct: public Reflection::Struct {
public:
MultiStruct(const std::vector<Configurable::Device *> &devices) : devices_(devices) {
for(auto device: devices) {
options_.emplace_back(device->get_options());
}
}
void apply() {
auto options = options_.begin();
for(auto device: devices_) {
device->set_options(*options);
++options;
}
}
std::vector<std::string> all_keys() const final {
std::set<std::string> keys;
for(auto &options: options_) {
const auto new_keys = options->all_keys();
keys.insert(new_keys.begin(), new_keys.end());
}
return std::vector<std::string>(keys.begin(), keys.end());
}
std::vector<std::string> values_for(const std::string &name) const final {
std::set<std::string> values;
for(auto &options: options_) {
const auto new_values = options->values_for(name);
values.insert(new_values.begin(), new_values.end());
}
return std::vector<std::string>(values.begin(), values.end());
}
const std::type_info *type_of(const std::string &name) const final {
for(auto &options: options_) {
auto info = options->type_of(name);
if(info) return info;
}
return nullptr;
}
const void *get(const std::string &name) const final {
for(auto &options: options_) {
auto value = options->get(name);
if(value) return value;
}
return nullptr;
}
void set(const std::string &name, const void *value) final {
const auto safe_type = type_of(name);
if(!safe_type) return;
// Set this property only where the child's type is the same as that
// which was returned from here for type_of.
for(auto &options: options_) {
const auto type = options->type_of(name);
if(!type) continue;
if(*type == *safe_type) {
options->set(name, value);
}
}
}
private:
const std::vector<Configurable::Device *> &devices_;
std::vector<std::unique_ptr<Reflection::Struct>> options_;
};
}
MultiConfigurable::MultiConfigurable(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) {
for(const auto &machine: machines) {
Configurable::Device *device = machine->configurable_device();
@@ -19,46 +94,11 @@ MultiConfigurable::MultiConfigurable(const std::vector<std::unique_ptr<::Machine
}
}
std::vector<std::unique_ptr<Configurable::Option>> MultiConfigurable::get_options() {
std::vector<std::unique_ptr<Configurable::Option>> options;
// Produce the list of unique options.
for(const auto &device : devices_) {
std::vector<std::unique_ptr<Configurable::Option>> device_options = device->get_options();
for(auto &option : device_options) {
if(std::find(options.begin(), options.end(), option) == options.end()) {
options.push_back(std::move(option));
}
}
}
return options;
void MultiConfigurable::set_options(const std::unique_ptr<Reflection::Struct> &str) {
const auto options = dynamic_cast<MultiStruct *>(str.get());
options->apply();
}
void MultiConfigurable::set_selections(const Configurable::SelectionSet &selection_by_option) {
for(const auto &device : devices_) {
device->set_selections(selection_by_option);
}
}
Configurable::SelectionSet MultiConfigurable::get_accurate_selections() {
Configurable::SelectionSet set;
for(const auto &device : devices_) {
Configurable::SelectionSet device_set = device->get_accurate_selections();
for(auto &selection : device_set) {
set.insert(std::move(selection));
}
}
return set;
}
Configurable::SelectionSet MultiConfigurable::get_user_friendly_selections() {
Configurable::SelectionSet set;
for(const auto &device : devices_) {
Configurable::SelectionSet device_set = device->get_user_friendly_selections();
for(auto &selection : device_set) {
set.insert(std::move(selection));
}
}
return set;
std::unique_ptr<Reflection::Struct> MultiConfigurable::get_options() {
return std::make_unique<MultiStruct>(devices_);
}

View File

@@ -10,6 +10,7 @@
#define MultiConfigurable_hpp
#include "../../../../Machines/DynamicMachine.hpp"
#include "../../../../Configurable/Configurable.hpp"
#include <memory>
#include <vector>
@@ -28,10 +29,8 @@ class MultiConfigurable: public Configurable::Device {
MultiConfigurable(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines);
// Below is the standard Configurable::Device interface; see there for documentation.
std::vector<std::unique_ptr<Configurable::Option>> get_options() final;
void set_selections(const Configurable::SelectionSet &selection_by_option) final;
Configurable::SelectionSet get_accurate_selections() final;
Configurable::SelectionSet get_user_friendly_selections() final;
void set_options(const std::unique_ptr<Reflection::Struct> &options) final;
std::unique_ptr<Reflection::Struct> get_options() final;
private:
std::vector<Configurable::Device *> devices_;

View File

@@ -16,7 +16,7 @@ namespace {
class MultiJoystick: public Inputs::Joystick {
public:
MultiJoystick(std::vector<JoystickMachine::Machine *> &machines, std::size_t index) {
MultiJoystick(std::vector<MachineTypes::JoystickMachine *> &machines, std::size_t index) {
for(const auto &machine: machines) {
const auto &joysticks = machine->get_joysticks();
if(joysticks.size() >= index) {
@@ -67,9 +67,9 @@ class MultiJoystick: public Inputs::Joystick {
MultiJoystickMachine::MultiJoystickMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) {
std::size_t total_joysticks = 0;
std::vector<JoystickMachine::Machine *> joystick_machines;
std::vector<MachineTypes::JoystickMachine *> joystick_machines;
for(const auto &machine: machines) {
JoystickMachine::Machine *joystick_machine = machine->joystick_machine();
auto joystick_machine = machine->joystick_machine();
if(joystick_machine) {
joystick_machines.push_back(joystick_machine);
total_joysticks = std::max(total_joysticks, joystick_machine->get_joysticks().size());

View File

@@ -23,7 +23,7 @@ namespace Dynamic {
Makes a static internal copy of the list of machines; makes no guarantees about the
order of delivered messages.
*/
class MultiJoystickMachine: public JoystickMachine::Machine {
class MultiJoystickMachine: public MachineTypes::JoystickMachine {
public:
MultiJoystickMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines);

View File

@@ -13,7 +13,7 @@ using namespace Analyser::Dynamic;
MultiKeyboardMachine::MultiKeyboardMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) :
keyboard_(machines_) {
for(const auto &machine: machines) {
KeyboardMachine::Machine *keyboard_machine = machine->keyboard_machine();
auto keyboard_machine = machine->keyboard_machine();
if(keyboard_machine) machines_.push_back(keyboard_machine);
}
}
@@ -48,7 +48,7 @@ Inputs::Keyboard &MultiKeyboardMachine::get_keyboard() {
return keyboard_;
}
MultiKeyboardMachine::MultiKeyboard::MultiKeyboard(const std::vector<::KeyboardMachine::Machine *> &machines)
MultiKeyboardMachine::MultiKeyboard::MultiKeyboard(const std::vector<::MachineTypes::KeyboardMachine *> &machines)
: machines_(machines) {
for(const auto &machine: machines_) {
observed_keys_.insert(machine->get_keyboard().observed_keys().begin(), machine->get_keyboard().observed_keys().end());

View File

@@ -24,13 +24,13 @@ namespace Dynamic {
Makes a static internal copy of the list of machines; makes no guarantees about the
order of delivered messages.
*/
class MultiKeyboardMachine: public KeyboardMachine::Machine {
class MultiKeyboardMachine: public MachineTypes::KeyboardMachine {
private:
std::vector<::KeyboardMachine::Machine *> machines_;
std::vector<MachineTypes::KeyboardMachine *> machines_;
class MultiKeyboard: public Inputs::Keyboard {
public:
MultiKeyboard(const std::vector<::KeyboardMachine::Machine *> &machines);
MultiKeyboard(const std::vector<MachineTypes::KeyboardMachine *> &machines);
bool set_key_pressed(Key key, char value, bool is_pressed) final;
void reset_all_keys() final;
@@ -38,7 +38,7 @@ class MultiKeyboardMachine: public KeyboardMachine::Machine {
bool is_exclusive() final;
private:
const std::vector<::KeyboardMachine::Machine *> &machines_;
const std::vector<MachineTypes::KeyboardMachine *> &machines_;
std::set<Key> observed_keys_;
bool is_exclusive_ = false;
};

View File

@@ -12,7 +12,7 @@ using namespace Analyser::Dynamic;
MultiMediaTarget::MultiMediaTarget(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) {
for(const auto &machine: machines) {
MediaTarget::Machine *media_target = machine->media_target();
auto media_target = machine->media_target();
if(media_target) targets_.push_back(media_target);
}
}

View File

@@ -24,7 +24,7 @@ namespace Dynamic {
Makes a static internal copy of the list of machines; makes no guarantees about the
order of delivered messages.
*/
struct MultiMediaTarget: public MediaTarget::Machine {
struct MultiMediaTarget: public MachineTypes::MediaTarget {
public:
MultiMediaTarget(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines);
@@ -32,7 +32,7 @@ struct MultiMediaTarget: public MediaTarget::Machine {
bool insert_media(const Analyser::Static::Media &media) final;
private:
std::vector<MediaTarget::Machine *> targets_;
std::vector<MachineTypes::MediaTarget *> targets_;
};
}

View File

@@ -0,0 +1,105 @@
//
// MultiProducer.cpp
// Clock Signal
//
// Created by Thomas Harte on 29/01/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "MultiProducer.hpp"
#include <condition_variable>
#include <mutex>
using namespace Analyser::Dynamic;
// MARK: - MultiInterface
template <typename MachineType>
void MultiInterface<MachineType>::perform_parallel(const std::function<void(MachineType *)> &function) {
// Apply a blunt force parallelisation of the machines; each run_for is dispatched
// to a separate queue and this queue will block until all are done.
volatile std::size_t outstanding_machines;
std::condition_variable condition;
std::mutex mutex;
{
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
std::lock_guard<std::mutex> lock(mutex);
outstanding_machines = machines_.size();
for(std::size_t index = 0; index < machines_.size(); ++index) {
const auto machine = ::Machine::get<MachineType>(*machines_[index].get());
queues_[index].enqueue([&mutex, &condition, machine, function, &outstanding_machines]() {
if(machine) function(machine);
std::lock_guard<std::mutex> lock(mutex);
outstanding_machines--;
condition.notify_all();
});
}
}
std::unique_lock<std::mutex> lock(mutex);
condition.wait(lock, [&outstanding_machines] { return !outstanding_machines; });
}
template <typename MachineType>
void MultiInterface<MachineType>::perform_serial(const std::function<void(MachineType *)> &function) {
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
for(const auto &machine: machines_) {
const auto typed_machine = ::Machine::get<MachineType>(*machine.get());
if(typed_machine) function(typed_machine);
}
}
// MARK: - MultiScanProducer
void MultiScanProducer::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
scan_target_ = scan_target;
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
const auto machine = machines_.front()->scan_producer();
if(machine) machine->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus MultiScanProducer::get_scan_status() const {
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
const auto machine = machines_.front()->scan_producer();
if(machine) return machine->get_scan_status();
return Outputs::Display::ScanStatus();
}
void MultiScanProducer::did_change_machine_order() {
if(scan_target_) scan_target_->will_change_owner();
perform_serial([](MachineTypes::ScanProducer *machine) {
machine->set_scan_target(nullptr);
});
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
const auto machine = machines_.front()->scan_producer();
if(machine) machine->set_scan_target(scan_target_);
}
// MARK: - MultiAudioProducer
MultiAudioProducer::MultiAudioProducer(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines, std::recursive_mutex &machines_mutex) : MultiInterface(machines, machines_mutex) {
speaker_ = MultiSpeaker::create(machines);
}
Outputs::Speaker::Speaker *MultiAudioProducer::get_speaker() {
return speaker_;
}
void MultiAudioProducer::did_change_machine_order() {
if(speaker_) {
speaker_->set_new_front_machine(machines_.front().get());
}
}
// MARK: - MultiTimedMachine
void MultiTimedMachine::run_for(Time::Seconds duration) {
perform_parallel([duration](::MachineTypes::TimedMachine *machine) {
if(machine->get_confidence() >= 0.01f) machine->run_for(duration);
});
if(delegate_) delegate_->did_run_machines(this);
}

View File

@@ -1,16 +1,16 @@
//
// MultiCRTMachine.hpp
// MultiProducer.hpp
// Clock Signal
//
// Created by Thomas Harte on 29/01/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#ifndef MultiCRTMachine_hpp
#define MultiCRTMachine_hpp
#ifndef MultiProducer_hpp
#define MultiProducer_hpp
#include "../../../../Concurrency/AsyncTaskQueue.hpp"
#include "../../../../Machines/CRTMachine.hpp"
#include "../../../../Machines/MachineTypes.hpp"
#include "../../../../Machines/DynamicMachine.hpp"
#include "MultiSpeaker.hpp"
@@ -22,6 +22,91 @@
namespace Analyser {
namespace Dynamic {
template <typename MachineType> class MultiInterface {
public:
MultiInterface(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines, std::recursive_mutex &machines_mutex) :
machines_(machines), machines_mutex_(machines_mutex), queues_(machines.size()) {}
protected:
/*!
Performs a parallel for operation across all machines, performing the supplied
function on each and returning only once all applications have completed.
No guarantees are extended as to which thread operations will occur on.
*/
void perform_parallel(const std::function<void(MachineType *)> &);
/*!
Performs a serial for operation across all machines, performing the supplied
function on each on the calling thread.
*/
void perform_serial(const std::function<void(MachineType *)> &);
protected:
const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines_;
std::recursive_mutex &machines_mutex_;
private:
std::vector<Concurrency::AsyncTaskQueue> queues_;
};
class MultiTimedMachine: public MultiInterface<MachineTypes::TimedMachine>, public MachineTypes::TimedMachine {
public:
using MultiInterface::MultiInterface;
/*!
Provides a mechanism by which a delegate can be informed each time a call to run_for has
been received.
*/
struct Delegate {
virtual void did_run_machines(MultiTimedMachine *) = 0;
};
/// Sets @c delegate as the receiver of delegate messages.
void set_delegate(Delegate *delegate) {
delegate_ = delegate;
}
void run_for(Time::Seconds duration) final;
private:
void run_for(const Cycles cycles) final {}
Delegate *delegate_ = nullptr;
};
class MultiScanProducer: public MultiInterface<MachineTypes::ScanProducer>, public MachineTypes::ScanProducer {
public:
using MultiInterface::MultiInterface;
/*!
Informs the MultiScanProducer that the order of machines has changed; it
uses this as an opportunity to synthesis any CRTMachine::Machine::Delegate messages that
are necessary to bridge the gap between one machine and the next.
*/
void did_change_machine_order();
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final;
Outputs::Display::ScanStatus get_scan_status() const final;
private:
Outputs::Display::ScanTarget *scan_target_ = nullptr;
};
class MultiAudioProducer: public MultiInterface<MachineTypes::AudioProducer>, public MachineTypes::AudioProducer {
public:
MultiAudioProducer(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines, std::recursive_mutex &machines_mutex);
/*!
Informs the MultiAudio that the order of machines has changed; it
uses this as an opportunity to switch speaker delegates as appropriate.
*/
void did_change_machine_order();
Outputs::Speaker::Speaker *get_speaker() final;
private:
MultiSpeaker *speaker_ = nullptr;
};
/*!
Provides a class that multiplexes the CRT machine interface to multiple machines.
@@ -29,61 +114,9 @@ namespace Dynamic {
acquiring a supplied mutex. The owner should also call did_change_machine_order()
if the order of machines changes.
*/
class MultiCRTMachine: public CRTMachine::Machine {
public:
MultiCRTMachine(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines, std::recursive_mutex &machines_mutex);
/*!
Informs the MultiCRTMachine that the order of machines has changed; the MultiCRTMachine
uses this as an opportunity to synthesis any CRTMachine::Machine::Delegate messages that
are necessary to bridge the gap between one machine and the next.
*/
void did_change_machine_order();
/*!
Provides a mechanism by which a delegate can be informed each time a call to run_for has
been received.
*/
struct Delegate {
virtual void multi_crt_did_run_machines() = 0;
};
/// Sets @c delegate as the receiver of delegate messages.
void set_delegate(Delegate *delegate) {
delegate_ = delegate;
}
// Below is the standard CRTMachine::Machine interface; see there for documentation.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final;
Outputs::Display::ScanStatus get_scan_status() const final;
Outputs::Speaker::Speaker *get_speaker() final;
void run_for(Time::Seconds duration) final;
private:
void run_for(const Cycles cycles) final {}
const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines_;
std::recursive_mutex &machines_mutex_;
std::vector<Concurrency::AsyncTaskQueue> queues_;
MultiSpeaker *speaker_ = nullptr;
Delegate *delegate_ = nullptr;
Outputs::Display::ScanTarget *scan_target_ = nullptr;
/*!
Performs a parallel for operation across all machines, performing the supplied
function on each and returning only once all applications have completed.
No guarantees are extended as to which thread operations will occur on.
*/
void perform_parallel(const std::function<void(::CRTMachine::Machine *)> &);
/*!
Performs a serial for operation across all machines, performing the supplied
function on each on the calling thread.
*/
void perform_serial(const std::function<void(::CRTMachine::Machine *)> &);
};
}
}
#endif /* MultiCRTMachine_hpp */
#endif /* MultiProducer_hpp */

View File

@@ -13,7 +13,7 @@ using namespace Analyser::Dynamic;
MultiSpeaker *MultiSpeaker::create(const std::vector<std::unique_ptr<::Machine::DynamicMachine>> &machines) {
std::vector<Outputs::Speaker::Speaker *> speakers;
for(const auto &machine: machines) {
Outputs::Speaker::Speaker *speaker = machine->crt_machine()->get_speaker();
Outputs::Speaker::Speaker *speaker = machine->audio_producer()->get_speaker();
if(speaker) speakers.push_back(speaker);
}
if(speakers.empty()) return nullptr;
@@ -34,7 +34,7 @@ float MultiSpeaker::get_ideal_clock_rate_in_range(float minimum, float maximum)
ideal += speaker->get_ideal_clock_rate_in_range(minimum, maximum);
}
return ideal / static_cast<float>(speakers_.size());
return ideal / float(speakers_.size());
}
void MultiSpeaker::set_computed_output_rate(float cycles_per_second, int buffer_size, bool stereo) {
@@ -54,6 +54,12 @@ bool MultiSpeaker::get_is_stereo() {
return false;
}
void MultiSpeaker::set_output_volume(float volume) {
for(const auto &speaker: speakers_) {
speaker->set_output_volume(volume);
}
}
void MultiSpeaker::set_delegate(Outputs::Speaker::Speaker::Delegate *delegate) {
delegate_ = delegate;
}
@@ -79,7 +85,7 @@ void MultiSpeaker::speaker_did_change_input_clock(Speaker *speaker) {
void MultiSpeaker::set_new_front_machine(::Machine::DynamicMachine *machine) {
{
std::lock_guard<std::mutex> lock_guard(front_speaker_mutex_);
front_speaker_ = machine->crt_machine()->get_speaker();
front_speaker_ = machine->audio_producer()->get_speaker();
}
if(delegate_) {
delegate_->speaker_did_change_input_clock(this);

View File

@@ -42,6 +42,7 @@ class MultiSpeaker: public Outputs::Speaker::Speaker, Outputs::Speaker::Speaker:
void set_computed_output_rate(float cycles_per_second, int buffer_size, bool stereo) override;
void set_delegate(Outputs::Speaker::Speaker::Delegate *delegate) override;
bool get_is_stereo() override;
void set_output_volume(float) override;
private:
void speaker_did_complete_samples(Speaker *speaker, const std::vector<int16_t> &buffer) final;

View File

@@ -16,74 +16,55 @@ using namespace Analyser::Dynamic;
MultiMachine::MultiMachine(std::vector<std::unique_ptr<DynamicMachine>> &&machines) :
machines_(std::move(machines)),
configurable_(machines_),
crt_machine_(machines_, machines_mutex_),
joystick_machine_(machines),
timed_machine_(machines_, machines_mutex_),
scan_producer_(machines_, machines_mutex_),
audio_producer_(machines_, machines_mutex_),
joystick_machine_(machines_),
keyboard_machine_(machines_),
media_target_(machines_) {
crt_machine_.set_delegate(this);
timed_machine_.set_delegate(this);
}
Activity::Source *MultiMachine::activity_source() {
return nullptr; // TODO
}
MediaTarget::Machine *MultiMachine::media_target() {
if(has_picked_) {
return machines_.front()->media_target();
} else {
return &media_target_;
#define Provider(type, name, member) \
type *MultiMachine::name() { \
if(has_picked_) { \
return machines_.front()->name(); \
} else { \
return &member; \
} \
}
}
CRTMachine::Machine *MultiMachine::crt_machine() {
if(has_picked_) {
return machines_.front()->crt_machine();
} else {
return &crt_machine_;
}
}
Provider(Configurable::Device, configurable_device, configurable_)
Provider(MachineTypes::TimedMachine, timed_machine, timed_machine_)
Provider(MachineTypes::ScanProducer, scan_producer, scan_producer_)
Provider(MachineTypes::AudioProducer, audio_producer, audio_producer_)
Provider(MachineTypes::JoystickMachine, joystick_machine, joystick_machine_)
Provider(MachineTypes::KeyboardMachine, keyboard_machine, keyboard_machine_)
Provider(MachineTypes::MediaTarget, media_target, media_target_)
JoystickMachine::Machine *MultiMachine::joystick_machine() {
if(has_picked_) {
return machines_.front()->joystick_machine();
} else {
return &joystick_machine_;
}
}
KeyboardMachine::Machine *MultiMachine::keyboard_machine() {
if(has_picked_) {
return machines_.front()->keyboard_machine();
} else {
return &keyboard_machine_;
}
}
MouseMachine::Machine *MultiMachine::mouse_machine() {
MachineTypes::MouseMachine *MultiMachine::mouse_machine() {
// TODO.
return nullptr;
}
Configurable::Device *MultiMachine::configurable_device() {
if(has_picked_) {
return machines_.front()->configurable_device();
} else {
return &configurable_;
}
}
#undef Provider
bool MultiMachine::would_collapse(const std::vector<std::unique_ptr<DynamicMachine>> &machines) {
return
(machines.front()->crt_machine()->get_confidence() > 0.9f) ||
(machines.front()->crt_machine()->get_confidence() >= 2.0f * machines[1]->crt_machine()->get_confidence());
(machines.front()->timed_machine()->get_confidence() > 0.9f) ||
(machines.front()->timed_machine()->get_confidence() >= 2.0f * machines[1]->timed_machine()->get_confidence());
}
void MultiMachine::multi_crt_did_run_machines() {
void MultiMachine::did_run_machines(MultiTimedMachine *) {
std::lock_guard<decltype(machines_mutex_)> machines_lock(machines_mutex_);
#ifndef NDEBUG
for(const auto &machine: machines_) {
CRTMachine::Machine *crt = machine->crt_machine();
LOGNBR(PADHEX(2) << crt->get_confidence() << " " << crt->debug_type() << "; ");
auto timed_machine = machine->timed_machine();
LOGNBR(PADHEX(2) << timed_machine->get_confidence() << " " << timed_machine->debug_type() << "; ");
}
LOGNBR(std::endl);
#endif
@@ -91,13 +72,14 @@ void MultiMachine::multi_crt_did_run_machines() {
DynamicMachine *front = machines_.front().get();
std::stable_sort(machines_.begin(), machines_.end(),
[] (const std::unique_ptr<DynamicMachine> &lhs, const std::unique_ptr<DynamicMachine> &rhs){
CRTMachine::Machine *lhs_crt = lhs->crt_machine();
CRTMachine::Machine *rhs_crt = rhs->crt_machine();
return lhs_crt->get_confidence() > rhs_crt->get_confidence();
auto lhs_timed = lhs->timed_machine();
auto rhs_timed = rhs->timed_machine();
return lhs_timed->get_confidence() > rhs_timed->get_confidence();
});
if(machines_.front().get() != front) {
crt_machine_.did_change_machine_order();
scan_producer_.did_change_machine_order();
audio_producer_.did_change_machine_order();
}
if(would_collapse(machines_)) {

View File

@@ -11,8 +11,9 @@
#include "../../../Machines/DynamicMachine.hpp"
#include "Implementation/MultiProducer.hpp"
#include "Implementation/MultiConfigurable.hpp"
#include "Implementation/MultiCRTMachine.hpp"
#include "Implementation/MultiProducer.hpp"
#include "Implementation/MultiJoystickMachine.hpp"
#include "Implementation/MultiKeyboardMachine.hpp"
#include "Implementation/MultiMediaTarget.hpp"
@@ -38,7 +39,7 @@ namespace Dynamic {
If confidence for any machine becomes disproportionately low compared to
the others in the set, that machine stops running.
*/
class MultiMachine: public ::Machine::DynamicMachine, public MultiCRTMachine::Delegate {
class MultiMachine: public ::Machine::DynamicMachine, public MultiTimedMachine::Delegate {
public:
/*!
Allows a potential MultiMachine creator to enquire as to whether there's any benefit in
@@ -52,21 +53,25 @@ class MultiMachine: public ::Machine::DynamicMachine, public MultiCRTMachine::De
Activity::Source *activity_source() final;
Configurable::Device *configurable_device() final;
CRTMachine::Machine *crt_machine() final;
JoystickMachine::Machine *joystick_machine() final;
MouseMachine::Machine *mouse_machine() final;
KeyboardMachine::Machine *keyboard_machine() final;
MediaTarget::Machine *media_target() final;
MachineTypes::TimedMachine *timed_machine() final;
MachineTypes::ScanProducer *scan_producer() final;
MachineTypes::AudioProducer *audio_producer() final;
MachineTypes::JoystickMachine *joystick_machine() final;
MachineTypes::KeyboardMachine *keyboard_machine() final;
MachineTypes::MouseMachine *mouse_machine() final;
MachineTypes::MediaTarget *media_target() final;
void *raw_pointer() final;
private:
void multi_crt_did_run_machines() final;
void did_run_machines(MultiTimedMachine *) final;
std::vector<std::unique_ptr<DynamicMachine>> machines_;
std::recursive_mutex machines_mutex_;
MultiConfigurable configurable_;
MultiCRTMachine crt_machine_;
MultiTimedMachine timed_machine_;
MultiScanProducer scan_producer_;
MultiAudioProducer audio_producer_;
MultiJoystickMachine joystick_machine_;
MultiKeyboardMachine keyboard_machine_;
MultiMediaTarget media_target_;

View File

@@ -21,8 +21,8 @@ std::unique_ptr<Catalogue> Analyser::Static::Acorn::GetDFSCatalogue(const std::s
auto catalogue = std::make_unique<Catalogue>();
Storage::Encodings::MFM::Parser parser(false, disk);
Storage::Encodings::MFM::Sector *names = parser.get_sector(0, 0, 0);
Storage::Encodings::MFM::Sector *details = parser.get_sector(0, 0, 1);
const Storage::Encodings::MFM::Sector *const names = parser.get_sector(0, 0, 0);
const Storage::Encodings::MFM::Sector *const details = parser.get_sector(0, 0, 1);
if(!names || !details) return nullptr;
if(names->samples.empty() || details->samples.empty()) return nullptr;
@@ -48,18 +48,18 @@ std::unique_ptr<Catalogue> Analyser::Static::Acorn::GetDFSCatalogue(const std::s
char name[10];
snprintf(name, 10, "%c.%.7s", names->samples[0][file_offset + 7] & 0x7f, &names->samples[0][file_offset]);
new_file.name = name;
new_file.load_address = (uint32_t)(details->samples[0][file_offset] | (details->samples[0][file_offset+1] << 8) | ((details->samples[0][file_offset+6]&0x0c) << 14));
new_file.execution_address = (uint32_t)(details->samples[0][file_offset+2] | (details->samples[0][file_offset+3] << 8) | ((details->samples[0][file_offset+6]&0xc0) << 10));
new_file.is_protected = !!(names->samples[0][file_offset + 7] & 0x80);
new_file.load_address = uint32_t(details->samples[0][file_offset] | (details->samples[0][file_offset+1] << 8) | ((details->samples[0][file_offset+6]&0x0c) << 14));
new_file.execution_address = uint32_t(details->samples[0][file_offset+2] | (details->samples[0][file_offset+3] << 8) | ((details->samples[0][file_offset+6]&0xc0) << 10));
new_file.is_protected = names->samples[0][file_offset + 7] & 0x80;
long data_length = static_cast<long>(details->samples[0][file_offset+4] | (details->samples[0][file_offset+5] << 8) | ((details->samples[0][file_offset+6]&0x30) << 12));
long data_length = long(details->samples[0][file_offset+4] | (details->samples[0][file_offset+5] << 8) | ((details->samples[0][file_offset+6]&0x30) << 12));
int start_sector = details->samples[0][file_offset+7] | ((details->samples[0][file_offset+6]&0x03) << 8);
new_file.data.reserve(static_cast<std::size_t>(data_length));
new_file.data.reserve(size_t(data_length));
if(start_sector < 2) continue;
while(data_length > 0) {
uint8_t sector = static_cast<uint8_t>(start_sector % 10);
uint8_t track = static_cast<uint8_t>(start_sector / 10);
uint8_t sector = uint8_t(start_sector % 10);
uint8_t track = uint8_t(start_sector / 10);
start_sector++;
Storage::Encodings::MFM::Sector *next_sector = parser.get_sector(0, track, sector);
@@ -84,7 +84,7 @@ std::unique_ptr<Catalogue> Analyser::Static::Acorn::GetADFSCatalogue(const std::
std::vector<uint8_t> root_directory;
root_directory.reserve(5 * 256);
for(uint8_t c = 2; c < 7; c++) {
Storage::Encodings::MFM::Sector *sector = parser.get_sector(0, 0, c);
const Storage::Encodings::MFM::Sector *const sector = parser.get_sector(0, 0, c);
if(!sector) return nullptr;
root_directory.insert(root_directory.end(), sector->samples[0].begin(), sector->samples[0].end());
}

View File

@@ -29,7 +29,7 @@ static std::vector<std::shared_ptr<Storage::Cartridge::Cartridge>>
if(segment.data.size() != 0x4000 && segment.data.size() != 0x2000) continue;
// is a copyright string present?
uint8_t copyright_offset = segment.data[7];
const uint8_t copyright_offset = segment.data[7];
if(
segment.data[copyright_offset] != 0x00 ||
segment.data[copyright_offset+1] != 0x28 ||
@@ -59,7 +59,6 @@ static std::vector<std::shared_ptr<Storage::Cartridge::Cartridge>>
Analyser::Static::TargetList Analyser::Static::Acorn::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
auto target = std::make_unique<Target>();
target->machine = Machine::Electron;
target->confidence = 0.5; // TODO: a proper estimation
target->has_dfs = false;
target->has_adfs = false;
@@ -84,8 +83,8 @@ Analyser::Static::TargetList Analyser::Static::Acorn::GetTargets(const Media &me
// check also for a continuous threading of BASIC lines; if none then this probably isn't BASIC code,
// so that's also justification to *RUN
std::size_t pointer = 0;
uint8_t *data = &files.front().data[0];
std::size_t data_size = files.front().data.size();
uint8_t *const data = &files.front().data[0];
const std::size_t data_size = files.front().data.size();
while(1) {
if(pointer >= data_size-1 || data[pointer] != 13) {
is_basic = false;

View File

@@ -41,24 +41,24 @@ static std::unique_ptr<File::Chunk> GetNextChunk(const std::shared_ptr<Storage::
char name[11];
std::size_t name_ptr = 0;
while(!tape->is_at_end() && name_ptr < sizeof(name)) {
name[name_ptr] = (char)parser.get_next_byte(tape);
name[name_ptr] = char(parser.get_next_byte(tape));
if(!name[name_ptr]) break;
name_ptr++;
++name_ptr;
}
name[sizeof(name)-1] = '\0';
new_chunk->name = name;
// addresses
new_chunk->load_address = (uint32_t)parser.get_next_word(tape);
new_chunk->execution_address = (uint32_t)parser.get_next_word(tape);
new_chunk->block_number = static_cast<uint16_t>(parser.get_next_short(tape));
new_chunk->block_length = static_cast<uint16_t>(parser.get_next_short(tape));
new_chunk->block_flag = static_cast<uint8_t>(parser.get_next_byte(tape));
new_chunk->next_address = (uint32_t)parser.get_next_word(tape);
new_chunk->load_address = uint32_t(parser.get_next_word(tape));
new_chunk->execution_address = uint32_t(parser.get_next_word(tape));
new_chunk->block_number = uint16_t(parser.get_next_short(tape));
new_chunk->block_length = uint16_t(parser.get_next_short(tape));
new_chunk->block_flag = uint8_t(parser.get_next_byte(tape));
new_chunk->next_address = uint32_t(parser.get_next_word(tape));
uint16_t calculated_header_crc = parser.get_crc();
uint16_t stored_header_crc = static_cast<uint16_t>(parser.get_next_short(tape));
stored_header_crc = static_cast<uint16_t>((stored_header_crc >> 8) | (stored_header_crc << 8));
uint16_t stored_header_crc = uint16_t(parser.get_next_short(tape));
stored_header_crc = uint16_t((stored_header_crc >> 8) | (stored_header_crc << 8));
new_chunk->header_crc_matched = stored_header_crc == calculated_header_crc;
if(!new_chunk->header_crc_matched) return nullptr;
@@ -66,13 +66,13 @@ static std::unique_ptr<File::Chunk> GetNextChunk(const std::shared_ptr<Storage::
parser.reset_crc();
new_chunk->data.reserve(new_chunk->block_length);
for(int c = 0; c < new_chunk->block_length; c++) {
new_chunk->data.push_back(static_cast<uint8_t>(parser.get_next_byte(tape)));
new_chunk->data.push_back(uint8_t(parser.get_next_byte(tape)));
}
if(new_chunk->block_length && !(new_chunk->block_flag&0x40)) {
uint16_t calculated_data_crc = parser.get_crc();
uint16_t stored_data_crc = static_cast<uint16_t>(parser.get_next_short(tape));
stored_data_crc = static_cast<uint16_t>((stored_data_crc >> 8) | (stored_data_crc << 8));
uint16_t stored_data_crc = uint16_t(parser.get_next_short(tape));
stored_data_crc = uint16_t((stored_data_crc >> 8) | (stored_data_crc << 8));
new_chunk->data_crc_matched = stored_data_crc == calculated_data_crc;
} else {
new_chunk->data_crc_matched = true;

View File

@@ -9,6 +9,7 @@
#ifndef Analyser_Static_Acorn_Target_h
#define Analyser_Static_Acorn_Target_h
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,11 +17,18 @@ namespace Analyser {
namespace Static {
namespace Acorn {
struct Target: public ::Analyser::Static::Target {
struct Target: public ::Analyser::Static::Target, public Reflection::StructImpl<Target> {
bool has_adfs = false;
bool has_dfs = false;
bool should_shift_restart = false;
std::string loading_command;
Target() : Analyser::Static::Target(Machine::Electron) {
if(needs_declare()) {
DeclareField(has_adfs);
DeclareField(has_dfs);
}
}
};
}

View File

@@ -182,7 +182,6 @@ static bool CheckBootSector(const std::shared_ptr<Storage::Disk::Disk> &disk, co
Analyser::Static::TargetList Analyser::Static::AmstradCPC::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
TargetList destination;
auto target = std::make_unique<Target>();
target->machine = Machine::AmstradCPC;
target->confidence = 0.5;
target->model = Target::Model::CPC6128;

View File

@@ -9,6 +9,8 @@
#ifndef Analyser_Static_AmstradCPC_Target_h
#define Analyser_Static_AmstradCPC_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,15 +18,17 @@ namespace Analyser {
namespace Static {
namespace AmstradCPC {
struct Target: public ::Analyser::Static::Target {
enum class Model {
CPC464,
CPC664,
CPC6128
};
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
ReflectableEnum(Model, CPC464, CPC664, CPC6128);
Model model = Model::CPC464;
std::string loading_command;
Target() : Analyser::Static::Target(Machine::AmstradCPC) {
if(needs_declare()) {
DeclareField(model);
AnnounceEnum(Model);
}
}
};
}

View File

@@ -11,7 +11,6 @@
Analyser::Static::TargetList Analyser::Static::AppleII::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
auto target = std::make_unique<Target>();
target->machine = Machine::AppleII;
target->media = media;
if(!target->media.disks.empty())

View File

@@ -9,27 +9,38 @@
#ifndef Target_h
#define Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
namespace Analyser {
namespace Static {
namespace AppleII {
struct Target: public ::Analyser::Static::Target {
enum class Model {
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
ReflectableEnum(Model,
II,
IIplus,
IIe,
EnhancedIIe
};
enum class DiskController {
);
ReflectableEnum(DiskController,
None,
SixteenSector,
ThirteenSector
};
);
Model model = Model::IIe;
DiskController disk_controller = DiskController::None;
Target() : Analyser::Static::Target(Machine::AppleII) {
if(needs_declare()) {
DeclareField(model);
DeclareField(disk_controller);
AnnounceEnum(Model);
AnnounceEnum(DiskController);
}
}
};
}

View File

@@ -16,24 +16,22 @@ using namespace Analyser::Static::Atari2600;
using Target = Analyser::Static::Atari2600::Target;
static void DeterminePagingFor2kCartridge(Target &target, const Storage::Cartridge::Cartridge::Segment &segment) {
// if this is a 2kb cartridge then it's definitely either unpaged or a CommaVid
uint16_t entry_address, break_address;
// If this is a 2kb cartridge then it's definitely either unpaged or a CommaVid.
const uint16_t entry_address = uint16_t(segment.data[0x7fc] | (segment.data[0x7fd] << 8)) & 0x1fff;
const uint16_t break_address = uint16_t(segment.data[0x7fe] | (segment.data[0x7ff] << 8)) & 0x1fff;
entry_address = (static_cast<uint16_t>(segment.data[0x7fc] | (segment.data[0x7fd] << 8))) & 0x1fff;
break_address = (static_cast<uint16_t>(segment.data[0x7fe] | (segment.data[0x7ff] << 8))) & 0x1fff;
// a CommaVid start address needs to be outside of its RAM
// A CommaVid start address needs to be outside of its RAM.
if(entry_address < 0x1800 || break_address < 0x1800) return;
std::function<std::size_t(uint16_t address)> high_location_mapper = [](uint16_t address) {
address &= 0x1fff;
return static_cast<std::size_t>(address - 0x1800);
return size_t(address - 0x1800);
};
Analyser::Static::MOS6502::Disassembly high_location_disassembly =
Analyser::Static::MOS6502::Disassemble(segment.data, high_location_mapper, {entry_address, break_address});
// assume that any kind of store that looks likely to be intended for large amounts of memory implies
// large amounts of memory
// Assume that any kind of store that looks likely to be intended for large amounts of memory implies
// large amounts of memory.
bool has_wide_area_store = false;
for(std::map<uint16_t, Analyser::Static::MOS6502::Instruction>::value_type &entry : high_location_disassembly.instructions_by_address) {
if(entry.second.operation == Analyser::Static::MOS6502::Instruction::STA) {
@@ -45,17 +43,17 @@ static void DeterminePagingFor2kCartridge(Target &target, const Storage::Cartrid
}
}
// conclude that this is a CommaVid if it attempted to write something to the CommaVid RAM locations;
// Conclude that this is a CommaVid if it attempted to write something to the CommaVid RAM locations;
// caveat: false positives aren't likely to be problematic; a false positive is a 2KB ROM that always addresses
// itself so as to land in ROM even if mapped as a CommaVid and this code is on the fence as to whether it
// attempts to modify itself but it probably doesn't
// attempts to modify itself but it probably doesn't.
if(has_wide_area_store) target.paging_model = Target::PagingModel::CommaVid;
}
static void DeterminePagingFor8kCartridge(Target &target, const Storage::Cartridge::Cartridge::Segment &segment, const Analyser::Static::MOS6502::Disassembly &disassembly) {
// Activision stack titles have their vectors at the top of the low 4k, not the top, and
// always list 0xf000 as both vectors; they do not repeat them, and, inexplicably, they all
// issue an SEI as their first instruction (maybe some sort of relic of the development environment?)
// issue an SEI as their first instruction (maybe some sort of relic of the development environment?).
if(
segment.data[4095] == 0xf0 && segment.data[4093] == 0xf0 && segment.data[4094] == 0x00 && segment.data[4092] == 0x00 &&
(segment.data[8191] != 0xf0 || segment.data[8189] != 0xf0 || segment.data[8190] != 0x00 || segment.data[8188] != 0x00) &&
@@ -65,7 +63,7 @@ static void DeterminePagingFor8kCartridge(Target &target, const Storage::Cartrid
return;
}
// make an assumption that this is the Atari paging model
// Make an assumption that this is the Atari paging model.
target.paging_model = Target::PagingModel::Atari8k;
std::set<uint16_t> internal_accesses;
@@ -91,7 +89,7 @@ static void DeterminePagingFor8kCartridge(Target &target, const Storage::Cartrid
}
static void DeterminePagingFor16kCartridge(Target &target, const Storage::Cartridge::Cartridge::Segment &segment, const Analyser::Static::MOS6502::Disassembly &disassembly) {
// make an assumption that this is the Atari paging model
// Make an assumption that this is the Atari paging model.
target.paging_model = Target::PagingModel::Atari16k;
std::set<uint16_t> internal_accesses;
@@ -111,7 +109,7 @@ static void DeterminePagingFor16kCartridge(Target &target, const Storage::Cartri
}
static void DeterminePagingFor64kCartridge(Target &target, const Storage::Cartridge::Cartridge::Segment &segment, const Analyser::Static::MOS6502::Disassembly &disassembly) {
// make an assumption that this is a Tigervision if there is a write to 3F
// Make an assumption that this is a Tigervision if there is a write to 3F.
target.paging_model =
(disassembly.external_stores.find(0x3f) != disassembly.external_stores.end()) ?
Target::PagingModel::Tigervision : Target::PagingModel::MegaBoy;
@@ -123,17 +121,15 @@ static void DeterminePagingForCartridge(Target &target, const Storage::Cartridge
return;
}
uint16_t entry_address, break_address;
entry_address = static_cast<uint16_t>(segment.data[segment.data.size() - 4] | (segment.data[segment.data.size() - 3] << 8));
break_address = static_cast<uint16_t>(segment.data[segment.data.size() - 2] | (segment.data[segment.data.size() - 1] << 8));
const uint16_t entry_address = uint16_t(segment.data[segment.data.size() - 4] | (segment.data[segment.data.size() - 3] << 8));
const uint16_t break_address = uint16_t(segment.data[segment.data.size() - 2] | (segment.data[segment.data.size() - 1] << 8));
std::function<std::size_t(uint16_t address)> address_mapper = [](uint16_t address) {
if(!(address & 0x1000)) return static_cast<std::size_t>(-1);
return static_cast<std::size_t>(address & 0xfff);
if(!(address & 0x1000)) return size_t(-1);
return size_t(address & 0xfff);
};
std::vector<uint8_t> final_4k(segment.data.end() - 4096, segment.data.end());
const std::vector<uint8_t> final_4k(segment.data.end() - 4096, segment.data.end());
Analyser::Static::MOS6502::Disassembly disassembly = Analyser::Static::MOS6502::Disassemble(final_4k, address_mapper, {entry_address, break_address});
switch(segment.data.size()) {
@@ -159,7 +155,7 @@ static void DeterminePagingForCartridge(Target &target, const Storage::Cartridge
break;
}
// check for a Super Chip. Atari ROM images [almost] always have the same value stored over RAM
// Check for a Super Chip. Atari ROM images [almost] always have the same value stored over RAM
// regions; when they don't they at least seem to have the first 128 bytes be the same as the
// next 128 bytes. So check for that.
if( target.paging_model != Target::PagingModel::CBSRamPlus &&
@@ -174,7 +170,7 @@ static void DeterminePagingForCartridge(Target &target, const Storage::Cartridge
target.uses_superchip = has_superchip;
}
// check for a Tigervision or Tigervision-esque scheme
// Check for a Tigervision or Tigervision-esque scheme
if(target.paging_model == Target::PagingModel::None && segment.data.size() > 4096) {
bool looks_like_tigervision = disassembly.external_stores.find(0x3f) != disassembly.external_stores.end();
if(looks_like_tigervision) target.paging_model = Target::PagingModel::Tigervision;
@@ -184,7 +180,6 @@ static void DeterminePagingForCartridge(Target &target, const Storage::Cartridge
Analyser::Static::TargetList Analyser::Static::Atari2600::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
// TODO: sanity checking; is this image really for an Atari 2600?
auto target = std::make_unique<Target>();
target->machine = Machine::Atari2600;
target->confidence = 0.5;
target->media.cartridges = media.cartridges;
target->paging_model = Target::PagingModel::None;

View File

@@ -34,6 +34,8 @@ struct Target: public ::Analyser::Static::Target {
// TODO: shouldn't these be properties of the cartridge?
PagingModel paging_model = PagingModel::None;
bool uses_superchip = false;
Target() : Analyser::Static::Target(Machine::Atari2600) {}
};
}

View File

@@ -16,9 +16,8 @@ Analyser::Static::TargetList Analyser::Static::AtariST::GetTargets(const Media &
// As there is at least one usable media image, wave it through.
Analyser::Static::TargetList targets;
using Target = Analyser::Static::Target;
auto *target = new Target;
target->machine = Analyser::Machine::AtariST;
using Target = Analyser::Static::AtariST::Target;
auto *const target = new Target();
target->media = media;
targets.push_back(std::unique_ptr<Analyser::Static::Target>(target));

View File

@@ -9,11 +9,15 @@
#ifndef Analyser_Static_AtariST_Target_h
#define Analyser_Static_AtariST_Target_h
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
namespace Analyser {
namespace Static {
namespace AtariST {
struct Target: public ::Analyser::Static::Target {
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
Target() : Analyser::Static::Target(Machine::AtariST) {}
};
}

View File

@@ -22,7 +22,7 @@ static std::vector<std::shared_ptr<Storage::Cartridge::Cartridge>>
// the two bytes that will be first must be 0xaa and 0x55, either way around
auto *start = &segment.data[0];
if((data_size & static_cast<std::size_t>(~8191)) > 32768) {
if((data_size & size_t(~8191)) > 32768) {
start = &segment.data[segment.data.size() - 16384];
}
if(start[0] != 0xaa && start[0] != 0x55 && start[1] != 0xaa && start[1] != 0x55) continue;
@@ -54,8 +54,7 @@ static std::vector<std::shared_ptr<Storage::Cartridge::Cartridge>>
Analyser::Static::TargetList Analyser::Static::Coleco::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
TargetList targets;
auto target = std::make_unique<Target>();
target->machine = Machine::ColecoVision;
auto target = std::make_unique<Target>(Machine::ColecoVision);
target->confidence = 1.0f - 1.0f / 32768.0f;
target->media.cartridges = ColecoCartridgesFrom(media.cartridges);
if(!target->media.empty())

View File

@@ -38,7 +38,7 @@ class CommodoreGCRParser: public Storage::Disk::Controller {
@returns a sector if one was found; @c nullptr otherwise.
*/
std::shared_ptr<Sector> get_sector(uint8_t track, uint8_t sector) {
int difference = static_cast<int>(track) - static_cast<int>(track_);
int difference = int(track) - int(track_);
track_ = track;
if(difference) {
@@ -71,7 +71,7 @@ class CommodoreGCRParser: public Storage::Disk::Controller {
std::shared_ptr<Sector> sector_cache_[65536];
void process_input_bit(int value) {
shift_register_ = ((shift_register_ << 1) | static_cast<unsigned int>(value)) & 0x3ff;
shift_register_ = ((shift_register_ << 1) | unsigned(value)) & 0x3ff;
bit_count_++;
}
@@ -112,15 +112,15 @@ class CommodoreGCRParser: public Storage::Disk::Controller {
}
std::shared_ptr<Sector> get_sector(uint8_t sector) {
uint16_t sector_address = static_cast<uint16_t>((track_ << 8) | sector);
const uint16_t sector_address = uint16_t((track_ << 8) | sector);
if(sector_cache_[sector_address]) return sector_cache_[sector_address];
std::shared_ptr<Sector> first_sector = get_next_sector();
const std::shared_ptr<Sector> first_sector = get_next_sector();
if(!first_sector) return first_sector;
if(first_sector->sector == sector) return first_sector;
while(1) {
std::shared_ptr<Sector> next_sector = get_next_sector();
const std::shared_ptr<Sector> next_sector = get_next_sector();
if(next_sector->sector == first_sector->sector) return nullptr;
if(next_sector->sector == sector) return next_sector;
}
@@ -138,12 +138,12 @@ class CommodoreGCRParser: public Storage::Disk::Controller {
}
// get sector details, skip if this looks malformed
uint8_t checksum = static_cast<uint8_t>(get_next_byte());
sector->sector = static_cast<uint8_t>(get_next_byte());
sector->track = static_cast<uint8_t>(get_next_byte());
uint8_t checksum = uint8_t(get_next_byte());
sector->sector = uint8_t(get_next_byte());
sector->track = uint8_t(get_next_byte());
uint8_t disk_id[2];
disk_id[0] = static_cast<uint8_t>(get_next_byte());
disk_id[1] = static_cast<uint8_t>(get_next_byte());
disk_id[0] = uint8_t(get_next_byte());
disk_id[1] = uint8_t(get_next_byte());
if(checksum != (sector->sector ^ sector->track ^ disk_id[0] ^ disk_id[1])) continue;
// look for the following data
@@ -154,12 +154,12 @@ class CommodoreGCRParser: public Storage::Disk::Controller {
checksum = 0;
for(std::size_t c = 0; c < 256; c++) {
sector->data[c] = static_cast<uint8_t>(get_next_byte());
sector->data[c] = uint8_t(get_next_byte());
checksum ^= sector->data[c];
}
if(checksum == get_next_byte()) {
uint16_t sector_address = static_cast<uint16_t>((sector->track << 8) | sector->sector);
uint16_t sector_address = uint16_t((sector->track << 8) | sector->sector);
sector_cache_[sector_address] = sector;
return sector;
}
@@ -192,7 +192,7 @@ std::vector<File> Analyser::Static::Commodore::GetFiles(const std::shared_ptr<St
}
// parse directory
std::size_t header_pointer = static_cast<std::size_t>(-32);
std::size_t header_pointer = size_t(-32);
while(header_pointer+32+31 < directory.size()) {
header_pointer += 32;
@@ -216,7 +216,7 @@ std::vector<File> Analyser::Static::Commodore::GetFiles(const std::shared_ptr<St
}
new_file.name = Storage::Data::Commodore::petscii_from_bytes(&new_file.raw_name[0], 16, false);
std::size_t number_of_sectors = static_cast<std::size_t>(directory[header_pointer + 0x1e]) + (static_cast<std::size_t>(directory[header_pointer + 0x1f]) << 8);
std::size_t number_of_sectors = size_t(directory[header_pointer + 0x1e]) + (size_t(directory[header_pointer + 0x1f]) << 8);
new_file.data.reserve((number_of_sectors - 1) * 254 + 252);
bool is_first_sector = true;
@@ -227,7 +227,7 @@ std::vector<File> Analyser::Static::Commodore::GetFiles(const std::shared_ptr<St
next_track = sector->data[0];
next_sector = sector->data[1];
if(is_first_sector) new_file.starting_address = static_cast<uint16_t>(sector->data[2]) | static_cast<uint16_t>(sector->data[3] << 8);
if(is_first_sector) new_file.starting_address = uint16_t(sector->data[2]) | uint16_t(sector->data[3] << 8);
if(next_track)
new_file.data.insert(new_file.data.end(), sector->data.begin() + (is_first_sector ? 4 : 2), sector->data.end());
else

View File

@@ -23,7 +23,7 @@ bool Analyser::Static::Commodore::File::is_basic() {
// ... null-terminated code ...
// (with a next line address of 0000 indicating end of program)
while(1) {
if(static_cast<size_t>(line_address - starting_address) >= data.size() + 2) break;
if(size_t(line_address - starting_address) >= data.size() + 2) break;
uint16_t next_line_address = data[line_address - starting_address];
next_line_address |= data[line_address - starting_address + 1] << 8;
@@ -33,13 +33,13 @@ bool Analyser::Static::Commodore::File::is_basic() {
}
if(next_line_address < line_address + 5) break;
if(static_cast<size_t>(line_address - starting_address) >= data.size() + 5) break;
if(size_t(line_address - starting_address) >= data.size() + 5) break;
uint16_t next_line_number = data[line_address - starting_address + 2];
next_line_number |= data[line_address - starting_address + 3] << 8;
if(next_line_number <= line_number) break;
line_number = static_cast<uint16_t>(next_line_number);
line_number = uint16_t(next_line_number);
line_address = next_line_address;
}

View File

@@ -9,6 +9,8 @@
#ifndef Analyser_Static_Commodore_Target_h
#define Analyser_Static_Commodore_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,20 +18,20 @@ namespace Analyser {
namespace Static {
namespace Commodore {
struct Target: public ::Analyser::Static::Target {
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
enum class MemoryModel {
Unexpanded,
EightKB,
ThirtyTwoKB
};
enum class Region {
ReflectableEnum(Region,
American,
Danish,
Japanese,
European,
Swedish
};
);
/// Maps from a named memory model to a bank enabled/disabled set.
void set_memory_model(MemoryModel memory_model) {
@@ -54,6 +56,19 @@ struct Target: public ::Analyser::Static::Target {
Region region = Region::European;
bool has_c1540 = false;
std::string loading_command;
Target() : Analyser::Static::Target(Machine::Vic20) {
if(needs_declare()) {
DeclareField(enabled_ram.bank0);
DeclareField(enabled_ram.bank1);
DeclareField(enabled_ram.bank2);
DeclareField(enabled_ram.bank3);
DeclareField(enabled_ram.bank5);
DeclareField(region);
DeclareField(has_c1540);
AnnounceEnum(Region);
}
}
};
}

View File

@@ -26,12 +26,12 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
Instruction instruction;
instruction.address = address;
address++;
++address;
// get operation
uint8_t operation = memory[local_address];
// Get operation.
const uint8_t operation = memory[local_address];
// decode addressing mode
// Decode addressing mode.
switch(operation&0x1f) {
case 0x00:
if(operation >= 0x80) instruction.addressing_mode = Instruction::Immediate;
@@ -74,7 +74,7 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
break;
}
// decode operation
// Decode operation.
#define RM_INSTRUCTION(base, op) \
case base+0x09: case base+0x05: case base+0x15: case base+0x01: case base+0x11: case base+0x0d: case base+0x1d: case base+0x19: \
instruction.operation = op; \
@@ -222,14 +222,14 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
#undef M_INSTRUCTION
#undef IM_INSTRUCTION
// get operand
// Get operand.
switch(instruction.addressing_mode) {
// zero-byte operands
// Zero-byte operands.
case Instruction::Implied:
instruction.operand = 0;
break;
// one-byte operands
// One-byte operands.
case Instruction::Immediate:
case Instruction::ZeroPage: case Instruction::ZeroPageX: case Instruction::ZeroPageY:
case Instruction::IndexedIndirectX: case Instruction::IndirectIndexedY:
@@ -242,7 +242,7 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
}
break;
// two-byte operands
// Two-byte operands.
case Instruction::Absolute: case Instruction::AbsoluteX: case Instruction::AbsoluteY:
case Instruction::Indirect: {
std::size_t low_operand_address = address_mapper(address);
@@ -250,18 +250,18 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
if(low_operand_address >= memory.size() || high_operand_address >= memory.size()) return;
address += 2;
instruction.operand = memory[low_operand_address] | static_cast<uint16_t>(memory[high_operand_address] << 8);
instruction.operand = memory[low_operand_address] | uint16_t(memory[high_operand_address] << 8);
}
break;
}
// store the instruction away
// Store the instruction.
disassembly.disassembly.instructions_by_address[instruction.address] = instruction;
// TODO: something wider-ranging than this
if(instruction.addressing_mode == Instruction::Absolute || instruction.addressing_mode == Instruction::ZeroPage) {
std::size_t mapped_address = address_mapper(instruction.operand);
bool is_external = mapped_address >= memory.size();
const size_t mapped_address = address_mapper(instruction.operand);
const bool is_external = mapped_address >= memory.size();
switch(instruction.operation) {
default: break;
@@ -290,7 +290,7 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
}
}
// decide on overall flow control
// Decide on overall flow control.
if(instruction.operation == Instruction::RTS || instruction.operation == Instruction::RTI) return;
if(instruction.operation == Instruction::BRK) return; // TODO: check whether IRQ vector is within memory range
if(instruction.operation == Instruction::JSR) {
@@ -302,7 +302,7 @@ static void AddToDisassembly(PartialDisassembly &disassembly, const std::vector<
return;
}
if(instruction.addressing_mode == Instruction::Relative) {
uint16_t destination = static_cast<uint16_t>(address + (int8_t)instruction.operand);
uint16_t destination = uint16_t(address + int8_t(instruction.operand));
disassembly.remaining_entry_points.push_back(destination);
}
}

View File

@@ -1,9 +0,0 @@
//
// AddressMapper.cpp
// Clock Signal
//
// Created by Thomas Harte on 30/12/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "AddressMapper.hpp"

View File

@@ -21,7 +21,7 @@ namespace Disassembler {
*/
template <typename T> std::function<std::size_t(T)> OffsetMapper(T start_address) {
return [start_address](T argument) {
return static_cast<std::size_t>(argument - start_address);
return size_t(argument - start_address);
};
}

View File

@@ -33,7 +33,7 @@ class Accessor {
uint16_t word() {
uint8_t low = byte();
uint8_t high = byte();
return static_cast<uint16_t>(low | (high << 8));
return uint16_t(low | (high << 8));
}
bool overrun() {
@@ -562,7 +562,7 @@ struct Z80Disassembler {
int access_type =
((instruction.source == Instruction::Location::Operand_Indirect) ? 1 : 0) |
((instruction.destination == Instruction::Location::Operand_Indirect) ? 2 : 0);
uint16_t address = static_cast<uint16_t>(instruction.operand);
uint16_t address = uint16_t(instruction.operand);
bool is_internal = address_mapper(address) < memory.size();
switch(access_type) {
default: break;
@@ -594,7 +594,7 @@ struct Z80Disassembler {
instruction.operation == Instruction::Operation::JR ||
instruction.operation == Instruction::Operation::CALL ||
instruction.operation == Instruction::Operation::RST) {
disassembly.remaining_entry_points.push_back(static_cast<uint16_t>(instruction.operand));
disassembly.remaining_entry_points.push_back(uint16_t(instruction.operand));
}
// This is it if: an unconditional RET, RETI, RETN, JP or JR is found.

View File

@@ -20,8 +20,7 @@ namespace {
Analyser::Static::Target *AppleTarget(const Storage::Encodings::AppleGCR::Sector *sector_zero) {
using Target = Analyser::Static::AppleII::Target;
auto *target = new Target;
target->machine = Analyser::Machine::AppleII;
auto *const target = new Target;
if(sector_zero && sector_zero->encoding == Storage::Encodings::AppleGCR::Sector::Encoding::FiveAndThree) {
target->disk_controller = Target::DiskController::ThirteenSector;
@@ -34,8 +33,7 @@ Analyser::Static::Target *AppleTarget(const Storage::Encodings::AppleGCR::Sector
Analyser::Static::Target *OricTarget(const Storage::Encodings::AppleGCR::Sector *sector_zero) {
using Target = Analyser::Static::Oric::Target;
auto *target = new Target;
target->machine = Analyser::Machine::Oric;
auto *const target = new Target;
target->rom = Target::ROM::Pravetz;
target->disk_interface = Target::DiskInterface::Pravetz;
target->loading_command = "CALL 800\n";
@@ -49,8 +47,8 @@ Analyser::Static::TargetList Analyser::Static::DiskII::GetTargets(const Media &m
if(media.disks.empty()) return {};
// Grab track 0, sector 0: the boot sector.
auto track_zero = media.disks.front()->get_track_at_position(Storage::Disk::Track::Address(0, Storage::Disk::HeadPosition(0)));
auto sector_map = Storage::Encodings::AppleGCR::sectors_from_segment(
const auto track_zero = media.disks.front()->get_track_at_position(Storage::Disk::Track::Address(0, Storage::Disk::HeadPosition(0)));
const auto sector_map = Storage::Encodings::AppleGCR::sectors_from_segment(
Storage::Disk::track_serialisation(*track_zero, Storage::Time(1, 50000)));
const Storage::Encodings::AppleGCR::Sector *sector_zero = nullptr;
@@ -77,7 +75,7 @@ Analyser::Static::TargetList Analyser::Static::DiskII::GetTargets(const Media &m
// If the boot sector looks like it's intended for the Oric, create an Oric.
// Otherwise go with the Apple II.
auto disassembly = Analyser::Static::MOS6502::Disassemble(sector_zero->data, Analyser::Static::Disassembler::OffsetMapper(0xb800), {0xb800});
const auto disassembly = Analyser::Static::MOS6502::Disassemble(sector_zero->data, Analyser::Static::Disassembler::OffsetMapper(0xb800), {0xb800});
bool did_read_shift_register = false;
bool is_oric = false;

View File

@@ -27,7 +27,7 @@ static std::unique_ptr<Analyser::Static::Target> CartridgeTarget(
std::vector<Storage::Cartridge::Cartridge::Segment> output_segments;
if(segment.data.size() & 0x1fff) {
std::vector<uint8_t> truncated_data;
std::vector<uint8_t>::difference_type truncated_size = static_cast<std::vector<uint8_t>::difference_type>(segment.data.size()) & ~0x1fff;
std::vector<uint8_t>::difference_type truncated_size = std::vector<uint8_t>::difference_type(segment.data.size()) & ~0x1fff;
truncated_data.insert(truncated_data.begin(), segment.data.begin(), segment.data.begin() + truncated_size);
output_segments.emplace_back(start_address, truncated_data);
} else {
@@ -35,7 +35,6 @@ static std::unique_ptr<Analyser::Static::Target> CartridgeTarget(
}
auto target = std::make_unique<Analyser::Static::MSX::Target>();
target->machine = Analyser::Machine::MSX;
target->confidence = confidence;
if(type == Analyser::Static::MSX::Cartridge::Type::None) {
@@ -97,7 +96,7 @@ static Analyser::Static::TargetList CartridgeTargetsFrom(
// Reject cartridge if the ROM header wasn't found.
if(!found_start) continue;
uint16_t init_address = static_cast<uint16_t>(segment.data[2] | (segment.data[3] << 8));
uint16_t init_address = uint16_t(segment.data[2] | (segment.data[3] << 8));
// TODO: check for a rational init address?
// If this ROM is less than 48kb in size then it's an ordinary ROM. Just emplace it and move on.
@@ -147,7 +146,7 @@ static Analyser::Static::TargetList CartridgeTargetsFrom(
// ) &&
// ((next_iterator->second.operand >> 13) != (0x4000 >> 13))
// ) {
// const uint16_t address = static_cast<uint16_t>(next_iterator->second.operand);
// const uint16_t address = uint16_t(next_iterator->second.operand);
// switch(iterator->second.operand) {
// case 0x6000:
// if(address >= 0x6000 && address < 0x8000) {
@@ -208,13 +207,13 @@ static Analyser::Static::TargetList CartridgeTargetsFrom(
if( instruction_pair.second.operation == Instruction::Operation::LD &&
instruction_pair.second.destination == Instruction::Location::Operand_Indirect &&
instruction_pair.second.source == Instruction::Location::A) {
address_counts[static_cast<uint16_t>(instruction_pair.second.operand)]++;
address_counts[uint16_t(instruction_pair.second.operand)]++;
}
}
// Weight confidences by number of observed hits.
float total_hits =
static_cast<float>(
float(
address_counts[0x6000] + address_counts[0x6800] +
address_counts[0x7000] + address_counts[0x7800] +
address_counts[0x77ff] + address_counts[0x8000] +
@@ -226,35 +225,35 @@ static Analyser::Static::TargetList CartridgeTargetsFrom(
segment,
start_address,
Analyser::Static::MSX::Cartridge::ASCII8kb,
static_cast<float>( address_counts[0x6000] +
address_counts[0x6800] +
address_counts[0x7000] +
address_counts[0x7800]) / total_hits));
float( address_counts[0x6000] +
address_counts[0x6800] +
address_counts[0x7000] +
address_counts[0x7800]) / total_hits));
targets.push_back(CartridgeTarget(
segment,
start_address,
Analyser::Static::MSX::Cartridge::ASCII16kb,
static_cast<float>( address_counts[0x6000] +
address_counts[0x7000] +
address_counts[0x77ff]) / total_hits));
float( address_counts[0x6000] +
address_counts[0x7000] +
address_counts[0x77ff]) / total_hits));
if(!is_ascii) {
targets.push_back(CartridgeTarget(
segment,
start_address,
Analyser::Static::MSX::Cartridge::Konami,
static_cast<float>( address_counts[0x6000] +
address_counts[0x8000] +
address_counts[0xa000]) / total_hits));
float( address_counts[0x6000] +
address_counts[0x8000] +
address_counts[0xa000]) / total_hits));
}
if(!is_ascii) {
targets.push_back(CartridgeTarget(
segment,
start_address,
Analyser::Static::MSX::Cartridge::KonamiWithSCC,
static_cast<float>( address_counts[0x5000] +
address_counts[0x7000] +
address_counts[0x9000] +
address_counts[0xb000]) / total_hits));
float( address_counts[0x5000] +
address_counts[0x7000] +
address_counts[0x9000] +
address_counts[0xb000]) / total_hits));
}
}
@@ -295,7 +294,6 @@ Analyser::Static::TargetList Analyser::Static::MSX::GetTargets(const Media &medi
target->has_disk_drive = !media.disks.empty();
if(!target->media.empty()) {
target->machine = Machine::MSX;
target->confidence = 0.5;
destination.push_back(std::move(target));
}

View File

@@ -44,7 +44,7 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
for(std::size_t c = 0; c < sizeof(header); ++c) {
int next_byte = Parser::get_byte(*file_speed, tape_player);
if(next_byte == -1) break;
header[c] = static_cast<uint8_t>(next_byte);
header[c] = uint8_t(next_byte);
}
bool bytes_are_same = true;
@@ -67,7 +67,7 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
// Read file name.
char name[7];
for(std::size_t c = 1; c < 6; ++c)
name[c] = static_cast<char>(Parser::get_byte(*file_speed, tape_player));
name[c] = char(Parser::get_byte(*file_speed, tape_player));
name[6] = '\0';
file.name = name;
@@ -82,7 +82,7 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
int byte = Parser::get_byte(*file_speed, tape_player);
if(byte == -1) break;
contains_end_of_file |= (byte == 0x1a);
file.data.push_back(static_cast<uint8_t>(byte));
file.data.push_back(uint8_t(byte));
}
if(c != -1) break;
if(contains_end_of_file) {
@@ -105,13 +105,13 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
for(c = 0; c < sizeof(locations); ++c) {
int byte = Parser::get_byte(*file_speed, tape_player);
if(byte == -1) break;
locations[c] = static_cast<uint8_t>(byte);
locations[c] = uint8_t(byte);
}
if(c != sizeof(locations)) continue;
file.starting_address = static_cast<uint16_t>(locations[0] | (locations[1] << 8));
end_address = static_cast<uint16_t>(locations[2] | (locations[3] << 8));
file.entry_address = static_cast<uint16_t>(locations[4] | (locations[5] << 8));
file.starting_address = uint16_t(locations[0] | (locations[1] << 8));
end_address = uint16_t(locations[2] | (locations[3] << 8));
file.entry_address = uint16_t(locations[4] | (locations[5] << 8));
if(end_address < file.starting_address) continue;
@@ -119,7 +119,7 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
while(length--) {
int byte = Parser::get_byte(*file_speed, tape_player);
if(byte == -1) continue;
file.data.push_back(static_cast<uint8_t>(byte));
file.data.push_back(uint8_t(byte));
}
files.push_back(std::move(file));
@@ -135,10 +135,10 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
next_address_buffer[1] = Parser::get_byte(*file_speed, tape_player);
if(next_address_buffer[0] == -1 || next_address_buffer[1] == -1) break;
file.data.push_back(static_cast<uint8_t>(next_address_buffer[0]));
file.data.push_back(static_cast<uint8_t>(next_address_buffer[1]));
file.data.push_back(uint8_t(next_address_buffer[0]));
file.data.push_back(uint8_t(next_address_buffer[1]));
uint16_t next_address = static_cast<uint16_t>(next_address_buffer[0] | (next_address_buffer[1] << 8));
uint16_t next_address = uint16_t(next_address_buffer[0] | (next_address_buffer[1] << 8));
if(!next_address) {
files.push_back(std::move(file));
break;
@@ -155,7 +155,7 @@ std::vector<File> Analyser::Static::MSX::GetFiles(const std::shared_ptr<Storage:
found_error = true;
break;
}
file.data.push_back(static_cast<uint8_t>(byte));
file.data.push_back(uint8_t(byte));
}
if(found_error) break;
}

View File

@@ -9,6 +9,8 @@
#ifndef Analyser_Static_MSX_Target_h
#define Analyser_Static_MSX_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,15 +18,24 @@ namespace Analyser {
namespace Static {
namespace MSX {
struct Target: public ::Analyser::Static::Target {
struct Target: public ::Analyser::Static::Target, public Reflection::StructImpl<Target> {
bool has_disk_drive = false;
std::string loading_command;
enum class Region {
ReflectableEnum(Region,
Japan,
USA,
Europe
} region = Region::USA;
);
Region region = Region::USA;
Target(): Analyser::Static::Target(Machine::MSX) {
if(needs_declare()) {
DeclareField(has_disk_drive);
DeclareField(region);
AnnounceEnum(Region);
}
}
};
}

View File

@@ -17,8 +17,7 @@ Analyser::Static::TargetList Analyser::Static::Macintosh::GetTargets(const Media
Analyser::Static::TargetList targets;
using Target = Analyser::Static::Macintosh::Target;
auto *target = new Target;
target->machine = Analyser::Machine::Macintosh;
auto *const target = new Target;
target->media = media;
targets.push_back(std::unique_ptr<Analyser::Static::Target>(target));

View File

@@ -9,19 +9,25 @@
#ifndef Analyser_Static_Macintosh_Target_h
#define Analyser_Static_Macintosh_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
namespace Analyser {
namespace Static {
namespace Macintosh {
struct Target: public ::Analyser::Static::Target {
enum class Model {
Mac128k,
Mac512k,
Mac512ke,
MacPlus
};
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
ReflectableEnum(Model, Mac128k, Mac512k, Mac512ke, MacPlus);
Model model = Model::MacPlus;
Target() : Analyser::Static::Target(Machine::Macintosh) {
// Boilerplate for declaring fields and potential values.
if(needs_declare()) {
DeclareField(model);
AnnounceEnum(Model);
}
}
};
}

View File

@@ -147,7 +147,6 @@ bool is_bd500(Storage::Encodings::MFM::Parser &parser) {
Analyser::Static::TargetList Analyser::Static::Oric::GetTargets(const Media &media, const std::string &file_name, TargetPlatform::IntType potential_platforms) {
auto target = std::make_unique<Target>();
target->machine = Machine::Oric;
target->confidence = 0.5;
int basic10_votes = 0;

View File

@@ -49,10 +49,10 @@ std::vector<File> Analyser::Static::Oric::GetFiles(const std::shared_ptr<Storage
}
// read end and start addresses
new_file.ending_address = static_cast<uint16_t>(parser.get_next_byte(tape, is_fast) << 8);
new_file.ending_address |= static_cast<uint16_t>(parser.get_next_byte(tape, is_fast));
new_file.starting_address = static_cast<uint16_t>(parser.get_next_byte(tape, is_fast) << 8);
new_file.starting_address |= static_cast<uint16_t>(parser.get_next_byte(tape, is_fast));
new_file.ending_address = uint16_t(parser.get_next_byte(tape, is_fast) << 8);
new_file.ending_address |= uint16_t(parser.get_next_byte(tape, is_fast));
new_file.starting_address = uint16_t(parser.get_next_byte(tape, is_fast) << 8);
new_file.starting_address |= uint16_t(parser.get_next_byte(tape, is_fast));
// skip an empty byte
parser.get_next_byte(tape, is_fast);
@@ -61,7 +61,7 @@ std::vector<File> Analyser::Static::Oric::GetFiles(const std::shared_ptr<Storage
char file_name[17];
int name_pos = 0;
while(name_pos < 16) {
file_name[name_pos] = (char)parser.get_next_byte(tape, is_fast);
file_name[name_pos] = char(parser.get_next_byte(tape, is_fast));
if(!file_name[name_pos]) break;
name_pos++;
}
@@ -72,7 +72,7 @@ std::vector<File> Analyser::Static::Oric::GetFiles(const std::shared_ptr<Storage
std::size_t body_length = new_file.ending_address - new_file.starting_address + 1;
new_file.data.reserve(body_length);
for(std::size_t c = 0; c < body_length; c++) {
new_file.data.push_back(static_cast<uint8_t>(parser.get_next_byte(tape, is_fast)));
new_file.data.push_back(uint8_t(parser.get_next_byte(tape, is_fast)));
}
// only one validation check: was there enough tape?

View File

@@ -9,6 +9,8 @@
#ifndef Analyser_Static_Oric_Target_h
#define Analyser_Static_Oric_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,25 +18,34 @@ namespace Analyser {
namespace Static {
namespace Oric {
struct Target: public ::Analyser::Static::Target {
enum class ROM {
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
ReflectableEnum(ROM,
BASIC10,
BASIC11,
Pravetz
};
);
enum class DiskInterface {
ReflectableEnum(DiskInterface,
None,
Microdisc,
Pravetz,
Jasmin,
BD500,
None
};
BD500
);
ROM rom = ROM::BASIC11;
DiskInterface disk_interface = DiskInterface::None;
std::string loading_command;
bool should_start_jasmin = false;
Target(): Analyser::Static::Target(Machine::Oric) {
if(needs_declare()) {
DeclareField(rom);
DeclareField(disk_interface);
AnnounceEnum(ROM);
AnnounceEnum(DiskInterface);
}
}
};
}

View File

@@ -20,8 +20,6 @@ Analyser::Static::TargetList Analyser::Static::Sega::GetTargets(const Media &med
TargetList targets;
auto target = std::make_unique<Target>();
target->machine = Machine::MasterSystem;
// Files named .sg are treated as for the SG1000; otherwise assume a Master System.
if(file_name.size() >= 2 && *(file_name.end() - 2) == 's' && *(file_name.end() - 1) == 'g') {
target->model = Target::Model::SG1000;

View File

@@ -9,23 +9,27 @@
#ifndef Analyser_Static_Sega_Target_h
#define Analyser_Static_Sega_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
namespace Analyser {
namespace Static {
namespace Sega {
struct Target: public ::Analyser::Static::Target {
struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Target> {
enum class Model {
SG1000,
MasterSystem,
MasterSystem2,
};
enum class Region {
ReflectableEnum(Region,
Japan,
USA,
Europe,
Brazil
};
);
enum class PagingScheme {
Sega,
@@ -35,6 +39,13 @@ struct Target: public ::Analyser::Static::Target {
Model model = Model::MasterSystem;
Region region = Region::Japan;
PagingScheme paging_scheme = PagingScheme::Sega;
Target() : Analyser::Static::Target(Machine::MasterSystem) {
if(needs_declare()) {
DeclareField(region);
AnnounceEnum(Region);
}
}
};
#define is_master_system(v) v >= Analyser::Static::Sega::Target::Model::MasterSystem

View File

@@ -35,6 +35,16 @@ struct Media {
bool empty() const {
return disks.empty() && tapes.empty() && cartridges.empty() && mass_storage_devices.empty();
}
Media &operator +=(const Media &rhs) {
#define append(name) name.insert(name.end(), rhs.name.begin(), rhs.name.end());
append(disks);
append(tapes);
append(cartridges);
append(mass_storage_devices);
#undef append
return *this;
}
};
/*!
@@ -42,11 +52,12 @@ struct Media {
and instructions on how to launch the software attached, plus a measure of confidence in this target's correctness.
*/
struct Target {
Target(Machine machine) : machine(machine) {}
virtual ~Target() {}
Machine machine;
Media media;
float confidence;
float confidence = 0.0f;
};
typedef std::vector<std::unique_ptr<Target>> TargetList;

View File

@@ -34,7 +34,7 @@ Analyser::Static::TargetList Analyser::Static::ZX8081::GetTargets(const Media &m
std::vector<Storage::Data::ZX8081::File> files = GetFiles(media.tapes.front());
media.tapes.front()->reset();
if(!files.empty()) {
Target *target = new Target;
Target *const target = new Target;
destination.push_back(std::unique_ptr<::Analyser::Static::Target>(target));
target->machine = Machine::ZX8081;

View File

@@ -9,6 +9,8 @@
#ifndef Analyser_Static_ZX8081_Target_h
#define Analyser_Static_ZX8081_Target_h
#include "../../../Reflection/Enum.hpp"
#include "../../../Reflection/Struct.hpp"
#include "../StaticAnalyser.hpp"
#include <string>
@@ -16,17 +18,26 @@ namespace Analyser {
namespace Static {
namespace ZX8081 {
struct Target: public ::Analyser::Static::Target {
enum class MemoryModel {
struct Target: public ::Analyser::Static::Target, public Reflection::StructImpl<Target> {
ReflectableEnum(MemoryModel,
Unexpanded,
SixteenKB,
SixtyFourKB
};
);
MemoryModel memory_model = MemoryModel::Unexpanded;
bool is_ZX81 = false;
bool ZX80_uses_ZX81_ROM = false;
std::string loading_command;
Target(): Analyser::Static::Target(Machine::ZX8081) {
if(needs_declare()) {
DeclareField(memory_model);
DeclareField(is_ZX81);
DeclareField(ZX80_uses_ZX81_ROM);
AnnounceEnum(MemoryModel);
}
}
};
}

View File

@@ -67,7 +67,7 @@ class Source {
}
/// @returns the current preferred clocking strategy.
virtual Preference preferred_clocking() = 0;
virtual Preference preferred_clocking() const = 0;
private:
Observer *observer_ = nullptr;

View File

@@ -824,11 +824,11 @@ void WD1770::set_head_loaded(bool head_loaded) {
if(head_loaded) posit_event(int(Event1770::HeadLoad));
}
bool WD1770::get_head_loaded() {
bool WD1770::get_head_loaded() const {
return head_is_loaded_;
}
ClockingHint::Preference WD1770::preferred_clocking() {
ClockingHint::Preference WD1770::preferred_clocking() const {
if(status_.busy) return ClockingHint::Preference::RealTime;
return Storage::Disk::MFMController::preferred_clocking();
}

View File

@@ -62,18 +62,18 @@ class WD1770: public Storage::Disk::MFMController {
};
/// @returns The current value of the IRQ line output.
inline bool get_interrupt_request_line() { return status_.interrupt_request; }
inline bool get_interrupt_request_line() const { return status_.interrupt_request; }
/// @returns The current value of the DRQ line output.
inline bool get_data_request_line() { return status_.data_request; }
inline bool get_data_request_line() const { return status_.data_request; }
class Delegate {
public:
virtual void wd1770_did_change_output(WD1770 *wd1770) = 0;
};
inline void set_delegate(Delegate *delegate) { delegate_ = delegate; }
inline void set_delegate(Delegate *delegate) { delegate_ = delegate; }
ClockingHint::Preference preferred_clocking() final;
ClockingHint::Preference preferred_clocking() const final;
protected:
virtual void set_head_load_request(bool head_load);
@@ -81,12 +81,12 @@ class WD1770: public Storage::Disk::MFMController {
void set_head_loaded(bool head_loaded);
/// @returns The last value posted to @c set_head_loaded.
bool get_head_loaded();
bool get_head_loaded() const;
private:
Personality personality_;
inline bool has_motor_on_line() { return (personality_ != P1793 ) && (personality_ != P1773); }
inline bool has_head_load_line() { return (personality_ == P1793 ); }
const Personality personality_;
bool has_motor_on_line() const { return (personality_ != P1793 ) && (personality_ != P1773); }
bool has_head_load_line() const { return (personality_ == P1793 ); }
struct Status {
bool write_protect = false;

View File

@@ -112,7 +112,7 @@ template <class T> class MOS6522: public MOS6522Storage {
void run_for(const Cycles cycles);
/// @returns @c true if the IRQ line is currently active; @c false otherwise.
bool get_interrupt_line();
bool get_interrupt_line() const;
/// Updates the port handler to the current time and then requests that it flush.
void flush();

View File

@@ -69,7 +69,7 @@ template <typename T> void MOS6522<T>::write(int address, uint8_t value) {
// Timer 1
case 0x6: case 0x4: registers_.timer_latch[0] = (registers_.timer_latch[0]&0xff00) | value; break;
case 0x5: case 0x7:
registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | static_cast<uint16_t>(value << 8);
registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8);
registers_.interrupt_flags &= ~InterruptFlag::Timer1;
if(address == 0x05) {
registers_.next_timer[0] = registers_.timer_latch[0];
@@ -82,7 +82,7 @@ template <typename T> void MOS6522<T>::write(int address, uint8_t value) {
case 0x8: registers_.timer_latch[1] = value; break;
case 0x9:
registers_.interrupt_flags &= ~InterruptFlag::Timer2;
registers_.next_timer[1] = registers_.timer_latch[1] | static_cast<uint16_t>(value << 8);
registers_.next_timer[1] = registers_.timer_latch[1] | uint16_t(value << 8);
timer_is_running_[1] = true;
reevaluate_interrupts();
break;
@@ -281,11 +281,11 @@ template <typename T> void MOS6522<T>::do_phase2() {
registers_.timer[1] --;
if(registers_.next_timer[0] >= 0) {
registers_.timer[0] = static_cast<uint16_t>(registers_.next_timer[0]);
registers_.timer[0] = uint16_t(registers_.next_timer[0]);
registers_.next_timer[0] = -1;
}
if(registers_.next_timer[1] >= 0) {
registers_.timer[1] = static_cast<uint16_t>(registers_.next_timer[1]);
registers_.timer[1] = uint16_t(registers_.next_timer[1]);
registers_.next_timer[1] = -1;
}
@@ -383,9 +383,9 @@ template <typename T> void MOS6522<T>::run_for(const Cycles cycles) {
}
/*! @returns @c true if the IRQ line is currently active; @c false otherwise. */
template <typename T> bool MOS6522<T>::get_interrupt_line() {
template <typename T> bool MOS6522<T>::get_interrupt_line() const {
uint8_t interrupt_status = registers_.interrupt_flags & registers_.interrupt_enable & 0x7f;
return !!interrupt_status;
return interrupt_status;
}
template <typename T> void MOS6522<T>::evaluate_cb2_output() {

View File

@@ -51,7 +51,7 @@ template <class T> class MOS6532 {
case 0x04: case 0x05: case 0x06: case 0x07:
if(address & 0x10) {
timer_.writtenShift = timer_.activeShift = (decodedAddress - 0x04) * 3 + (decodedAddress / 0x07); // i.e. 0, 3, 6, 10
timer_.value = (static_cast<unsigned int>(value) << timer_.activeShift) ;
timer_.value = (unsigned(value) << timer_.activeShift) ;
timer_.interrupt_enabled = !!(address&0x08);
interrupt_status_ &= ~InterruptFlag::Timer;
evaluate_interrupts();
@@ -79,7 +79,7 @@ template <class T> class MOS6532 {
// Timer and interrupt control
case 0x04: case 0x06: {
uint8_t value = static_cast<uint8_t>(timer_.value >> timer_.activeShift);
uint8_t value = uint8_t(timer_.value >> timer_.activeShift);
timer_.interrupt_enabled = !!(address&0x08);
interrupt_status_ &= ~InterruptFlag::Timer;
evaluate_interrupts();
@@ -107,7 +107,7 @@ template <class T> class MOS6532 {
}
inline void run_for(const Cycles cycles) {
unsigned int number_of_cycles = static_cast<unsigned int>(cycles.as_integral());
unsigned int number_of_cycles = unsigned(cycles.as_integral());
// permit counting _to_ zero; counting _through_ zero initiates the other behaviour
if(timer_.value >= number_of_cycles) {
@@ -122,7 +122,7 @@ template <class T> class MOS6532 {
}
MOS6532() {
timer_.value = static_cast<unsigned int>((rand() & 0xff) << 10);
timer_.value = unsigned((rand() & 0xff) << 10);
}
inline void set_port_did_change(int port) {
@@ -142,7 +142,7 @@ template <class T> class MOS6532 {
}
}
inline bool get_inerrupt_line() {
inline bool get_inerrupt_line() const {
return interrupt_line_;
}

View File

@@ -98,7 +98,7 @@ static uint8_t noise_pattern[] = {
#define shift(r) shift_registers_[r] = (shift_registers_[r] << 1) | (((shift_registers_[r]^0x80)&control_registers_[r]) >> 7)
#define increment(r) shift_registers_[r] = (shift_registers_[r]+1)%8191
#define update(r, m, up) counters_[r]++; if((counters_[r] >> m) == 0x80) { up(r); counters_[r] = static_cast<unsigned int>(control_registers_[r]&0x7f) << m; }
#define update(r, m, up) counters_[r]++; if((counters_[r] >> m) == 0x80) { up(r); counters_[r] = unsigned(control_registers_[r]&0x7f) << m; }
// Note on slightly askew test: as far as I can make out, if the value in the register is 0x7f then what's supposed to happen
// is that the 0x7f is loaded, on the next clocked cycle the Vic spots a 0x7f, pumps the output, reloads, etc. No increment
// ever occurs. It's conditional. I don't really want two conditionals if I can avoid it so I'm incrementing regardless and
@@ -114,7 +114,7 @@ void AudioGenerator::get_samples(std::size_t number_of_samples, int16_t *target)
// this sums the output of all three sounds channels plus a DC offset for volume;
// TODO: what's the real ratio of this stuff?
target[c] = static_cast<int16_t>(
target[c] = int16_t(
(shift_registers_[0]&1) +
(shift_registers_[1]&1) +
(shift_registers_[2]&1) +
@@ -133,7 +133,7 @@ void AudioGenerator::skip_samples(std::size_t number_of_samples) {
}
void AudioGenerator::set_sample_volume_range(std::int16_t range) {
range_multiplier_ = static_cast<int16_t>(range / 64);
range_multiplier_ = int16_t(range / 64);
}
#undef shift

View File

@@ -81,13 +81,14 @@ template <class BusHandler> class MOS6560 {
}
void set_clock_rate(double clock_rate) {
speaker_.set_input_rate(static_cast<float>(clock_rate / 4.0));
speaker_.set_input_rate(float(clock_rate / 4.0));
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); }
Outputs::Display::ScanStatus get_scaled_scan_status() const { return crt_.get_scaled_scan_status() / 4.0f; }
void set_display_type(Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); }
Outputs::Speaker::Speaker *get_speaker() { return &speaker_; }
Outputs::Display::DisplayType get_display_type() const { return crt_.get_display_type(); }
Outputs::Speaker::Speaker *get_speaker() { return &speaker_; }
void set_high_frequency_cutoff(float cutoff) {
speaker_.set_high_frequency_cutoff(cutoff);
@@ -234,7 +235,7 @@ template <class BusHandler> class MOS6560 {
if(column_counter_&1) {
fetch_address = registers_.character_cell_start_address + (character_code_*(registers_.tall_characters ? 16 : 8)) + current_character_row_;
} else {
fetch_address = static_cast<uint16_t>(registers_.video_matrix_start_address + video_matrix_address_counter_);
fetch_address = uint16_t(registers_.video_matrix_start_address + video_matrix_address_counter_);
video_matrix_address_counter_++;
if(
(current_character_row_ == 15) ||
@@ -370,7 +371,7 @@ template <class BusHandler> class MOS6560 {
case 0x2:
registers_.number_of_columns = value & 0x7f;
registers_.video_matrix_start_address = static_cast<uint16_t>((registers_.video_matrix_start_address & 0x3c00) | ((value & 0x80) << 2));
registers_.video_matrix_start_address = uint16_t((registers_.video_matrix_start_address & 0x3c00) | ((value & 0x80) << 2));
break;
case 0x3:
@@ -379,8 +380,8 @@ template <class BusHandler> class MOS6560 {
break;
case 0x5:
registers_.character_cell_start_address = static_cast<uint16_t>((value & 0x0f) << 10);
registers_.video_matrix_start_address = static_cast<uint16_t>((registers_.video_matrix_start_address & 0x0200) | ((value & 0xf0) << 6));
registers_.character_cell_start_address = uint16_t((value & 0x0f) << 10);
registers_.video_matrix_start_address = uint16_t((registers_.video_matrix_start_address & 0x0200) | ((value & 0xf0) << 6));
break;
case 0xa:
@@ -419,11 +420,11 @@ template <class BusHandler> class MOS6560 {
/*
Reads from a 6560 register.
*/
uint8_t read(int address) {
uint8_t read(int address) const {
address &= 0xf;
switch(address) {
default: return registers_.direct_values[address];
case 0x03: return static_cast<uint8_t>(raster_value() << 7) | (registers_.direct_values[3] & 0x7f);
case 0x03: return uint8_t(raster_value() << 7) | (registers_.direct_values[3] & 0x7f);
case 0x04: return (raster_value() >> 1) & 0xff;
}
}
@@ -461,11 +462,11 @@ template <class BusHandler> class MOS6560 {
// counters that cover an entire field
int horizontal_counter_ = 0, vertical_counter_ = 0;
const int lines_this_field() {
int lines_this_field() const {
// Necessary knowledge here: only the NTSC 6560 supports interlaced video.
return registers_.interlaced ? (is_odd_frame_ ? 262 : 263) : timing_.lines_per_progressive_field;
}
const int raster_value() {
int raster_value() const {
const int bonus_line = (horizontal_counter_ + timing_.line_counter_increment_offset) / timing_.cycles_per_line;
const int line = vertical_counter_ + bonus_line;
const int final_line = lines_this_field();
@@ -480,7 +481,7 @@ template <class BusHandler> class MOS6560 {
}
// Cf. http://www.sleepingelephant.com/ipw-web/bulletin/bb/viewtopic.php?f=14&t=7237&start=15#p80737
}
bool is_odd_frame() {
bool is_odd_frame() const {
return is_odd_frame_ || !registers_.interlaced;
}

View File

@@ -167,8 +167,8 @@ template <class T> class CRTC6845 {
private:
inline void perform_bus_cycle_phase1() {
// Skew theory of operation: keep a history of the last three states, and apply whichever is selected.
character_is_visible_shifter_ = (character_is_visible_shifter_ << 1) | static_cast<unsigned int>(character_is_visible_);
bus_state_.display_enable = (static_cast<int>(character_is_visible_shifter_) & display_skew_mask_) && line_is_visible_;
character_is_visible_shifter_ = (character_is_visible_shifter_ << 1) | unsigned(character_is_visible_);
bus_state_.display_enable = (int(character_is_visible_shifter_) & display_skew_mask_) && line_is_visible_;
bus_handler_.perform_bus_cycle_phase1(bus_state_);
}
@@ -240,7 +240,7 @@ template <class T> class CRTC6845 {
inline void do_end_of_frame() {
line_counter_ = 0;
line_is_visible_ = true;
line_address_ = static_cast<uint16_t>((registers_[12] << 8) | registers_[13]);
line_address_ = uint16_t((registers_[12] << 8) | registers_[13]);
bus_state_.refresh_address = line_address_;
}

View File

@@ -120,7 +120,7 @@ void ACIA::consider_transmission() {
}
}
ClockingHint::Preference ACIA::preferred_clocking() {
ClockingHint::Preference ACIA::preferred_clocking() const {
// Real-time clocking is required if a transmission is ongoing; this is a courtesy for whomever
// is on the receiving end.
if(transmit.transmission_data_time_remaining() > 0) return ClockingHint::Preference::RealTime;

View File

@@ -86,7 +86,7 @@ class ACIA: public ClockingHint::Source, private Serial::Line::ReadDelegate {
Serial::Line request_to_send;
// ClockingHint::Source.
ClockingHint::Preference preferred_clocking() final;
ClockingHint::Preference preferred_clocking() const final;
struct InterruptDelegate {
virtual void acia6850_did_change_interrupt_status(ACIA *acia) = 0;

View File

@@ -20,7 +20,7 @@
using namespace Motorola::MFP68901;
ClockingHint::Preference MFP68901::preferred_clocking() {
ClockingHint::Preference MFP68901::preferred_clocking() const {
// Rule applied: if any timer is actively running and permitted to produce an
// interrupt, request real-time running.
return

View File

@@ -76,7 +76,7 @@ class MFP68901: public ClockingHint::Source {
void set_interrupt_delegate(InterruptDelegate *delegate);
// ClockingHint::Source.
ClockingHint::Preference preferred_clocking() final;
ClockingHint::Preference preferred_clocking() const final;
private:
// MARK: - Timers

View File

@@ -79,10 +79,10 @@ namespace {
i8272::i8272(BusHandler &bus_handler, Cycles clock_rate) :
Storage::Disk::MFMController(clock_rate),
bus_handler_(bus_handler) {
posit_event(static_cast<int>(Event8272::CommandByte));
posit_event(int(Event8272::CommandByte));
}
ClockingHint::Preference i8272::preferred_clocking() {
ClockingHint::Preference i8272::preferred_clocking() const {
const auto mfm_controller_preferred_clocking = Storage::Disk::MFMController::preferred_clocking();
if(mfm_controller_preferred_clocking != ClockingHint::Preference::None) return mfm_controller_preferred_clocking;
return is_sleeping_ ? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime;
@@ -97,7 +97,7 @@ void i8272::run_for(Cycles cycles) {
if(delay_time_ > 0) {
if(cycles.as_integral() >= delay_time_) {
delay_time_ = 0;
posit_event(static_cast<int>(Event8272::Timer));
posit_event(int(Event8272::Timer));
} else {
delay_time_ -= cycles.as_integral();
}
@@ -114,7 +114,7 @@ void i8272::run_for(Cycles cycles) {
while(steps--) {
// Perform a step.
int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1;
LOG("Target " << PADDEC(0) << drives_[c].target_head_position << " versus believed " << static_cast<int>(drives_[c].head_position));
LOG("Target " << PADDEC(0) << drives_[c].target_head_position << " versus believed " << int(drives_[c].head_position));
select_drive(c);
get_drive().step(Storage::Disk::HeadPosition(direction));
if(drives_[c].target_head_position >= 0) drives_[c].head_position += direction;
@@ -156,7 +156,7 @@ void i8272::run_for(Cycles cycles) {
// check for busy plus ready disabled
if(is_executing_ && !get_drive().get_is_ready()) {
posit_event(static_cast<int>(Event8272::NoLongerReady));
posit_event(int(Event8272::NoLongerReady));
}
is_sleeping_ = !delay_time_ && !drives_seeking_ && !head_timers_running_;
@@ -177,7 +177,7 @@ void i8272::write(int address, uint8_t value) {
} else {
// accumulate latest byte in the command byte sequence
command_.push_back(value);
posit_event(static_cast<int>(Event8272::CommandByte));
posit_event(int(Event8272::CommandByte));
}
}
@@ -186,7 +186,7 @@ uint8_t i8272::read(int address) {
if(result_stack_.empty()) return 0xff;
uint8_t result = result_stack_.back();
result_stack_.pop_back();
if(result_stack_.empty()) posit_event(static_cast<int>(Event8272::ResultEmpty));
if(result_stack_.empty()) posit_event(int(Event8272::ResultEmpty));
return result;
} else {
@@ -198,16 +198,16 @@ uint8_t i8272::read(int address) {
#define END_SECTION() }
#define MS_TO_CYCLES(x) x * 8000
#define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = static_cast<int>(mask); return; case __LINE__:
#define WAIT_FOR_TIME(ms) resume_point_ = __LINE__; interesting_event_mask_ = static_cast<int>(Event8272::Timer); delay_time_ = MS_TO_CYCLES(ms); is_sleeping_ = false; update_clocking_observer(); case __LINE__: if(delay_time_) return;
#define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = int(mask); return; case __LINE__:
#define WAIT_FOR_TIME(ms) resume_point_ = __LINE__; interesting_event_mask_ = int(Event8272::Timer); delay_time_ = MS_TO_CYCLES(ms); is_sleeping_ = false; update_clocking_observer(); case __LINE__: if(delay_time_) return;
#define PASTE(x, y) x##y
#define CONCAT(x, y) PASTE(x, y)
#define FIND_HEADER() \
set_data_mode(DataMode::Scanning); \
CONCAT(find_header, __LINE__): WAIT_FOR_EVENT(static_cast<int>(Event::Token) | static_cast<int>(Event::IndexHole)); \
if(event_type == static_cast<int>(Event::IndexHole)) { index_hole_limit_--; } \
CONCAT(find_header, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \
if(event_type == int(Event::IndexHole)) { index_hole_limit_--; } \
else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \
\
if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \
@@ -215,8 +215,8 @@ uint8_t i8272::read(int address) {
#define FIND_DATA() \
set_data_mode(DataMode::Scanning); \
CONCAT(find_data, __LINE__): WAIT_FOR_EVENT(static_cast<int>(Event::Token) | static_cast<int>(Event::IndexHole)); \
if(event_type == static_cast<int>(Event::Token)) { \
CONCAT(find_data, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \
if(event_type == int(Event::Token)) { \
if(get_latest_token().type == Token::Byte || get_latest_token().type == Token::Sync) goto CONCAT(find_data, __LINE__); \
}
@@ -264,8 +264,8 @@ uint8_t i8272::read(int address) {
}
void i8272::posit_event(int event_type) {
if(event_type == static_cast<int>(Event::IndexHole)) index_hole_count_++;
if(event_type == static_cast<int>(Event8272::NoLongerReady)) {
if(event_type == int(Event::IndexHole)) index_hole_count_++;
if(event_type == int(Event8272::NoLongerReady)) {
SetNotReady();
goto abort;
}
@@ -425,12 +425,12 @@ void i8272::posit_event(int event_type) {
// Performs the read data or read deleted data command.
read_data:
LOG(PADHEX(2) << "Read [deleted] data ["
<< static_cast<int>(command_[2]) << " "
<< static_cast<int>(command_[3]) << " "
<< static_cast<int>(command_[4]) << " "
<< static_cast<int>(command_[5]) << " ... "
<< static_cast<int>(command_[6]) << " "
<< static_cast<int>(command_[8]) << "]");
<< int(command_[2]) << " "
<< int(command_[3]) << " "
<< int(command_[4]) << " "
<< int(command_[5]) << " ... "
<< int(command_[6]) << " "
<< int(command_[8]) << "]");
read_next_data:
goto read_write_find_header;
@@ -439,7 +439,7 @@ void i8272::posit_event(int event_type) {
read_data_found_header:
FIND_DATA();
ClearControlMark();
if(event_type == static_cast<int>(Event::Token)) {
if(event_type == int(Event::Token)) {
if(get_latest_token().type != Token::Data && get_latest_token().type != Token::DeletedData) {
// Something other than a data mark came next, impliedly an ID or index mark.
SetMissingAddressMark();
@@ -470,24 +470,24 @@ void i8272::posit_event(int event_type) {
//
// TODO: consider DTL.
read_data_get_byte:
WAIT_FOR_EVENT(static_cast<int>(Event::Token) | static_cast<int>(Event::IndexHole));
if(event_type == static_cast<int>(Event::Token)) {
WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole));
if(event_type == int(Event::Token)) {
result_stack_.push_back(get_latest_token().byte_value);
distance_into_section_++;
SetDataRequest();
SetDataDirectionToProcessor();
WAIT_FOR_EVENT(static_cast<int>(Event8272::ResultEmpty) | static_cast<int>(Event::Token) | static_cast<int>(Event::IndexHole));
WAIT_FOR_EVENT(int(Event8272::ResultEmpty) | int(Event::Token) | int(Event::IndexHole));
}
switch(event_type) {
case static_cast<int>(Event8272::ResultEmpty): // The caller read the byte in time; proceed as normal.
case int(Event8272::ResultEmpty): // The caller read the byte in time; proceed as normal.
ResetDataRequest();
if(distance_into_section_ < (128 << size_)) goto read_data_get_byte;
break;
case static_cast<int>(Event::Token): // The caller hasn't read the old byte yet and a new one has arrived
case int(Event::Token): // The caller hasn't read the old byte yet and a new one has arrived
SetOverrun();
goto abort;
break;
case static_cast<int>(Event::IndexHole):
case int(Event::IndexHole):
SetEndOfCylinder();
goto abort;
break;
@@ -515,12 +515,12 @@ void i8272::posit_event(int event_type) {
write_data:
LOG(PADHEX(2) << "Write [deleted] data ["
<< static_cast<int>(command_[2]) << " "
<< static_cast<int>(command_[3]) << " "
<< static_cast<int>(command_[4]) << " "
<< static_cast<int>(command_[5]) << " ... "
<< static_cast<int>(command_[6]) << " "
<< static_cast<int>(command_[8]) << "]");
<< int(command_[2]) << " "
<< int(command_[3]) << " "
<< int(command_[4]) << " "
<< int(command_[5]) << " ... "
<< int(command_[6]) << " "
<< int(command_[8]) << "]");
if(get_drive().get_is_read_only()) {
SetNotWriteable();
@@ -571,7 +571,7 @@ void i8272::posit_event(int event_type) {
// Performs the read ID command.
read_id:
// Establishes the drive and head being addressed, and whether in double density mode.
LOG(PADHEX(2) << "Read ID [" << static_cast<int>(command_[0]) << " " << static_cast<int>(command_[1]) << "]");
LOG(PADHEX(2) << "Read ID [" << int(command_[0]) << " " << int(command_[1]) << "]");
// Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes.
// If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found.
@@ -594,10 +594,10 @@ void i8272::posit_event(int event_type) {
// Performs read track.
read_track:
LOG(PADHEX(2) << "Read track ["
<< static_cast<int>(command_[2]) << " "
<< static_cast<int>(command_[3]) << " "
<< static_cast<int>(command_[4]) << " "
<< static_cast<int>(command_[5]) << "]");
<< int(command_[2]) << " "
<< int(command_[3]) << " "
<< int(command_[4]) << " "
<< int(command_[5]) << "]");
// Wait for the index hole.
WAIT_FOR_EVENT(Event::IndexHole);
@@ -627,7 +627,7 @@ void i8272::posit_event(int event_type) {
distance_into_section_++;
SetDataRequest();
// TODO: other possible exit conditions; find a way to merge with the read_data version of this.
WAIT_FOR_EVENT(static_cast<int>(Event8272::ResultEmpty));
WAIT_FOR_EVENT(int(Event8272::ResultEmpty));
ResetDataRequest();
if(distance_into_section_ < (128 << header_[2])) goto read_track_get_byte;
@@ -664,13 +664,13 @@ void i8272::posit_event(int event_type) {
expects_input_ = true;
distance_into_section_ = 0;
format_track_write_header:
WAIT_FOR_EVENT(static_cast<int>(Event::DataWritten) | static_cast<int>(Event::IndexHole));
WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole));
switch(event_type) {
case static_cast<int>(Event::IndexHole):
case int(Event::IndexHole):
SetOverrun();
goto abort;
break;
case static_cast<int>(Event::DataWritten):
case int(Event::DataWritten):
header_[distance_into_section_] = input_;
write_byte(input_);
has_input_ = false;
@@ -683,10 +683,10 @@ void i8272::posit_event(int event_type) {
}
LOG(PADHEX(2) << "W:"
<< static_cast<int>(header_[0]) << " "
<< static_cast<int>(header_[1]) << " "
<< static_cast<int>(header_[2]) << " "
<< static_cast<int>(header_[3]) << ", "
<< int(header_[0]) << " "
<< int(header_[1]) << " "
<< int(header_[2]) << " "
<< int(header_[3]) << ", "
<< get_crc_generator().get_value());
write_crc();
@@ -706,8 +706,8 @@ void i8272::posit_event(int event_type) {
// Otherwise, pad out to the index hole.
format_track_pad:
write_byte(get_is_double_density() ? 0x4e : 0xff);
WAIT_FOR_EVENT(static_cast<int>(Event::DataWritten) | static_cast<int>(Event::IndexHole));
if(event_type != static_cast<int>(Event::IndexHole)) goto format_track_pad;
WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole));
if(event_type != int(Event::IndexHole)) goto format_track_pad;
end_writing();
@@ -758,7 +758,7 @@ void i8272::posit_event(int event_type) {
// up in run_for understands to mean 'keep going until track 0 is active').
if(command_.size() > 2) {
drives_[drive].target_head_position = command_[2];
LOG(PADHEX(2) << "Seek to " << static_cast<int>(command_[2]));
LOG(PADHEX(2) << "Seek to " << int(command_[2]));
} else {
drives_[drive].target_head_position = -1;
drives_[drive].head_position = 0;
@@ -789,7 +789,7 @@ void i8272::posit_event(int event_type) {
// If a drive was found, return its results. Otherwise return a single 0x80.
if(found_drive != -1) {
drives_[found_drive].phase = Drive::NotSeeking;
status_[0] = static_cast<uint8_t>(found_drive);
status_[0] = uint8_t(found_drive);
main_status_ &= ~(1 << found_drive);
SetSeekEnd();
@@ -819,7 +819,7 @@ void i8272::posit_event(int event_type) {
int drive = command_[1] & 3;
select_drive(drive);
result_stack_= {
static_cast<uint8_t>(
uint8_t(
(command_[1] & 7) | // drive and head number
0x08 | // single sided
(get_drive().get_is_track_zero() ? 0x10 : 0x00) |
@@ -853,9 +853,9 @@ void i8272::posit_event(int event_type) {
// Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack, so the
// last thing in it will be returned first.
post_result:
LOGNBR(PADHEX(2) << "Result to " << static_cast<int>(command_[0] & 0x1f) << ", main " << static_cast<int>(main_status_) << "; ");
LOGNBR(PADHEX(2) << "Result to " << int(command_[0] & 0x1f) << ", main " << int(main_status_) << "; ");
for(std::size_t c = 0; c < result_stack_.size(); c++) {
LOGNBR(" " << static_cast<int>(result_stack_[result_stack_.size() - 1 - c]));
LOGNBR(" " << int(result_stack_[result_stack_.size() - 1 - c]));
}
LOGNBR(std::endl);

View File

@@ -39,7 +39,7 @@ class i8272 : public Storage::Disk::MFMController {
void set_dma_acknowledge(bool dack);
void set_terminal_count(bool tc);
ClockingHint::Preference preferred_clocking() final;
ClockingHint::Preference preferred_clocking() const final;
protected:
virtual void select_drive(int number) = 0;
@@ -68,7 +68,7 @@ class i8272 : public Storage::Disk::MFMController {
NoLongerReady = (1 << 6)
};
void posit_event(int type) final;
int interesting_event_mask_ = static_cast<int>(Event8272::CommandByte);
int interesting_event_mask_ = int(Event8272::CommandByte);
int resume_point_ = 0;
bool is_access_command_ = false;

View File

@@ -16,7 +16,7 @@ void z8530::reset() {
// TODO.
}
bool z8530::get_interrupt_line() {
bool z8530::get_interrupt_line() const {
return
(master_interrupt_control_ & 0x8) &&
(
@@ -253,7 +253,7 @@ void z8530::Channel::set_dcd(bool level) {
}
}
bool z8530::Channel::get_interrupt_line() {
bool z8530::Channel::get_interrupt_line() const {
return
(interrupt_mask_ & 1) && external_status_interrupt_;
// TODO: other potential causes of an interrupt.

View File

@@ -33,7 +33,7 @@ class z8530 {
std::uint8_t read(int address);
void write(int address, std::uint8_t value);
void reset();
bool get_interrupt_line();
bool get_interrupt_line() const;
struct Delegate {
virtual void did_change_interrupt_status(z8530 *, bool new_status) = 0;
@@ -53,7 +53,7 @@ class z8530 {
uint8_t read(bool data, uint8_t pointer);
void write(bool data, uint8_t pointer, uint8_t value);
void set_dcd(bool level);
bool get_interrupt_line();
bool get_interrupt_line() const;
private:
uint8_t data_ = 0xff;

View File

@@ -33,7 +33,7 @@ struct ReverseTable {
ReverseTable() {
for(int c = 0; c < 256; ++c) {
map[c] = static_cast<uint8_t>(
map[c] = uint8_t(
((c & 0x80) >> 7) |
((c & 0x40) >> 5) |
((c & 0x20) >> 3) |
@@ -129,6 +129,10 @@ void TMS9918::set_display_type(Outputs::Display::DisplayType display_type) {
crt_.set_display_type(display_type);
}
Outputs::Display::DisplayType TMS9918::get_display_type() {
return crt_.get_display_type();
}
void Base::LineBuffer::reset_sprite_collection() {
sprites_stopped = false;
active_sprite_slot = 0;
@@ -140,7 +144,7 @@ void Base::LineBuffer::reset_sprite_collection() {
void Base::posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_position, int screen_row) {
if(!(status_ & StatusSpriteOverflow)) {
status_ = static_cast<uint8_t>((status_ & ~0x1f) | (sprite_number & 0x1f));
status_ = uint8_t((status_ & ~0x1f) | (sprite_number & 0x1f));
}
if(buffer.sprites_stopped)
return;
@@ -527,7 +531,7 @@ void TMS9918::write(int address, uint8_t value) {
// The RAM pointer is always set on a second write, regardless of
// whether the caller is intending to enqueue a VDP operation.
ram_pointer_ = (ram_pointer_ & 0x00ff) | static_cast<uint16_t>(value << 8);
ram_pointer_ = (ram_pointer_ & 0x00ff) | uint16_t(value << 8);
write_phase_ = false;
if(value & 0x80) {
@@ -661,7 +665,7 @@ uint8_t TMS9918::get_current_line() {
}
}
return static_cast<uint8_t>(source_row);
return uint8_t(source_row);
}
uint8_t TMS9918::get_latched_horizontal_counter() {

View File

@@ -50,6 +50,9 @@ class TMS9918: public Base {
/*! Sets the type of display the CRT will request. */
void set_display_type(Outputs::Display::DisplayType);
/*! Gets the type of display the CRT will request. */
Outputs::Display::DisplayType get_display_type();
/*!
Runs the VCP for the number of cycles indicate; it is an implicit assumption of the code
that the input clock rate is 3579545 Hz, the NTSC colour clock rate.

View File

@@ -352,9 +352,9 @@ class Base {
if(master_system_.cram_is_selected) {
// Adjust the palette.
master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack(
static_cast<uint8_t>(((read_ahead_buffer_ >> 0) & 3) * 255 / 3),
static_cast<uint8_t>(((read_ahead_buffer_ >> 2) & 3) * 255 / 3),
static_cast<uint8_t>(((read_ahead_buffer_ >> 4) & 3) * 255 / 3)
uint8_t(((read_ahead_buffer_ >> 0) & 3) * 255 / 3),
uint8_t(((read_ahead_buffer_ >> 2) & 3) * 255 / 3),
uint8_t(((read_ahead_buffer_ >> 4) & 3) * 255 / 3)
);
// Schedule a CRAM dot; this is scheduled for wherever it should appear
@@ -518,7 +518,7 @@ class Base {
fetch_columns_4(location+12, column+4);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | static_cast<size_t>(write_pointer_.row >> 3) * 40);
const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
switch(start) {
@@ -731,7 +731,7 @@ class Base {
const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\
const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \
line_buffer.names[column].flags = ram_[address+1]; \
line_buffer.names[column].offset = static_cast<size_t>( \
line_buffer.names[column].offset = size_t( \
(((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \
) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \
}
@@ -785,7 +785,7 @@ class Base {
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{static_cast<size_t>((scrolled_row & 7) << 2), 28 ^ static_cast<size_t>((scrolled_row & 7) << 2)}
{size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {

View File

@@ -234,7 +234,7 @@ template <bool is_stereo> void AY38910<is_stereo>::evaluate_output_volume() {
}
}
template <bool is_stereo> bool AY38910<is_stereo>::is_zero_level() {
template <bool is_stereo> bool AY38910<is_stereo>::is_zero_level() const {
// Confirm that the AY is trivially at the zero level if all three volume controls are set to fixed zero.
return output_registers_[0x8] == 0 && output_registers_[0x9] == 0 && output_registers_[0xa] == 0;
}

View File

@@ -107,7 +107,7 @@ template <bool is_stereo> class AY38910: public ::Outputs::Speaker::SampleSource
// to satisfy ::Outputs::Speaker (included via ::Outputs::Filter.
void get_samples(std::size_t number_of_samples, int16_t *target);
bool is_zero_level();
bool is_zero_level() const;
void set_sample_volume_range(std::int16_t range);
static constexpr bool get_is_stereo() { return is_stereo; }

View File

@@ -33,6 +33,6 @@ void Toggle::set_output(bool enabled) {
});
}
bool Toggle::get_output() {
bool Toggle::get_output() const {
return is_enabled_;
}

View File

@@ -24,10 +24,9 @@ class Toggle: public Outputs::Speaker::SampleSource {
void get_samples(std::size_t number_of_samples, std::int16_t *target);
void set_sample_volume_range(std::int16_t range);
void skip_samples(const std::size_t number_of_samples);
static constexpr bool get_is_stereo() { return false; }
void set_output(bool enabled);
bool get_output();
bool get_output() const;
private:
// Accessed on the calling thread.

View File

@@ -85,13 +85,13 @@ void DiskII::run_for(const Cycles cycles) {
--flux_duration_;
if(!flux_duration_) inputs_ |= input_flux;
}
state_ = state_machine_[static_cast<std::size_t>(address)];
state_ = state_machine_[size_t(address)];
switch(state_ & 0xf) {
default: shift_register_ = 0; break; // clear
case 0x8: break; // nop
default: shift_register_ = 0; break; // clear
case 0x8: break; // nop
case 0x9: shift_register_ = static_cast<uint8_t>(shift_register_ << 1); break; // shift left, bringing in a zero
case 0xd: shift_register_ = static_cast<uint8_t>((shift_register_ << 1) | 1); break; // shift left, bringing in a one
case 0x9: shift_register_ = uint8_t(shift_register_ << 1); break; // shift left, bringing in a zero
case 0xd: shift_register_ = uint8_t((shift_register_ << 1) | 1); break; // shift left, bringing in a one
case 0xa: // shift right, bringing in write protected status
shift_register_ = (shift_register_ >> 1) | (is_write_protected() ? 0x80 : 0x00);
@@ -105,7 +105,7 @@ void DiskII::run_for(const Cycles cycles) {
return;
}
break;
case 0xb: shift_register_ = data_input_; break; // load data register from data bus
case 0xb: shift_register_ = data_input_; break; // load data register from data bus
}
// Currently writing?
@@ -225,7 +225,7 @@ void DiskII::set_component_prefers_clocking(ClockingHint::Source *component, Clo
decide_clocking_preference();
}
ClockingHint::Preference DiskII::preferred_clocking() {
ClockingHint::Preference DiskII::preferred_clocking() const {
return clocking_preference_;
}

View File

@@ -76,7 +76,7 @@ class DiskII :
void set_disk(const std::shared_ptr<Storage::Disk::Disk> &disk, int drive);
// As per Sleeper.
ClockingHint::Preference preferred_clocking() final;
ClockingHint::Preference preferred_clocking() const final;
// The Disk II functions as a potential target for @c Activity::Sources.
void set_activity_observer(Activity::Observer *observer);

View File

@@ -15,7 +15,7 @@ using namespace Konami;
SCC::SCC(Concurrency::DeferringAsyncTaskQueue &task_queue) :
task_queue_(task_queue) {}
bool SCC::is_zero_level() {
bool SCC::is_zero_level() const {
return !(channel_enable_ & 0x1f);
}
@@ -87,13 +87,13 @@ void SCC::write(uint16_t address, uint8_t value) {
void SCC::evaluate_output_volume() {
transient_output_level_ =
static_cast<int16_t>(
int16_t(
((
(channel_enable_ & 0x01) ? static_cast<int8_t>(waves_[0].samples[channels_[0].offset]) * channels_[0].amplitude : 0 +
(channel_enable_ & 0x02) ? static_cast<int8_t>(waves_[1].samples[channels_[1].offset]) * channels_[1].amplitude : 0 +
(channel_enable_ & 0x04) ? static_cast<int8_t>(waves_[2].samples[channels_[2].offset]) * channels_[2].amplitude : 0 +
(channel_enable_ & 0x08) ? static_cast<int8_t>(waves_[3].samples[channels_[3].offset]) * channels_[3].amplitude : 0 +
(channel_enable_ & 0x10) ? static_cast<int8_t>(waves_[3].samples[channels_[4].offset]) * channels_[4].amplitude : 0
(channel_enable_ & 0x01) ? int8_t(waves_[0].samples[channels_[0].offset]) * channels_[0].amplitude : 0 +
(channel_enable_ & 0x02) ? int8_t(waves_[1].samples[channels_[1].offset]) * channels_[1].amplitude : 0 +
(channel_enable_ & 0x04) ? int8_t(waves_[2].samples[channels_[2].offset]) * channels_[2].amplitude : 0 +
(channel_enable_ & 0x08) ? int8_t(waves_[3].samples[channels_[3].offset]) * channels_[3].amplitude : 0 +
(channel_enable_ & 0x10) ? int8_t(waves_[3].samples[channels_[4].offset]) * channels_[4].amplitude : 0
) * master_volume_) / (255*15*5)
// Five channels, each with 8-bit samples and 4-bit volumes implies a natural range of 0 to 255*15*5.
);

View File

@@ -27,7 +27,7 @@ class SCC: public ::Outputs::Speaker::SampleSource {
SCC(Concurrency::DeferringAsyncTaskQueue &task_queue);
/// As per ::SampleSource; provides a broadphase test for silence.
bool is_zero_level();
bool is_zero_level() const;
/// As per ::SampleSource; provides audio output.
void get_samples(std::size_t number_of_samples, std::int16_t *target);

View File

@@ -0,0 +1,264 @@
//
// EnvelopeGenerator.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef EnvelopeGenerator_h
#define EnvelopeGenerator_h
#include <optional>
#include <functional>
#include "LowFrequencyOscillator.hpp"
namespace Yamaha {
namespace OPL {
/*!
Models an OPL-style envelope generator.
Damping is optional; if damping is enabled then if there is a transition to key-on while
attenuation is less than maximum then attenuation will be quickly transitioned to maximum
before the attack phase can begin.
in real hardware damping is used by the envelope generators associated with
carriers, with phases being reset upon the transition from damping to attack.
This code considers application of tremolo to be a function of the envelope generator;
this is largely for logical conformity with the phase generator that necessarily has to
apply vibrato.
TODO: use envelope_precision.
*/
template <int envelope_precision, int period_precision> class EnvelopeGenerator {
public:
/*!
Advances the envelope generator a single step, given the current state of the low-frequency oscillator, @c oscillator.
*/
void update(const LowFrequencyOscillator &oscillator) {
// Apply tremolo, which is fairly easy.
tremolo_ = tremolo_enable_ * oscillator.tremolo << 4;
// Something something something...
const int key_scaling_rate = key_scale_rate_ >> key_scale_rate_shift_;
switch(phase_) {
case Phase::Damp:
update_decay(oscillator, 12 << 2);
if(attenuation_ == 511) {
(*will_attack_)();
phase_ = Phase::Attack;
}
break;
case Phase::Attack:
update_attack(oscillator, attack_rate_ + key_scaling_rate);
// Two possible terminating conditions: (i) the attack rate is 15; (ii) full volume has been reached.
if(attenuation_ <= 0) {
attenuation_ = 0;
phase_ = Phase::Decay;
}
break;
case Phase::Decay:
update_decay(oscillator, decay_rate_ + key_scaling_rate);
if(attenuation_ >= sustain_level_) {
attenuation_ = sustain_level_;
phase_ = use_sustain_level_ ? Phase::Sustain : Phase::Release;
}
break;
case Phase::Sustain:
// Nothing to do.
break;
case Phase::Release:
update_decay(oscillator, release_rate_ + key_scaling_rate);
break;
}
}
/*!
@returns The current attenuation from this envelope generator. This is independent of the envelope precision.
*/
int attenuation() const {
// TODO: if this envelope is fully released, should tremolo still be able to vocalise it?
return (attenuation_ << 3) + tremolo_;
}
/*!
Enables or disables damping on this envelope generator. If damping is enabled then this envelope generator will
use the damping phase when necessary (i.e. when transitioning to key on if attenuation is not already at maximum)
and in any case will call @c will_attack before transitioning from any other state to attack.
@param will_attack Supply a will_attack callback to enable damping mode; supply nullopt to disable damping mode.
*/
void set_should_damp(const std::optional<std::function<void(void)>> &will_attack) {
will_attack_ = will_attack;
}
/*!
Sets the current state of the key-on input.
*/
void set_key_on(bool key_on) {
// Do nothing if this is not a leading or trailing edge.
if(key_on == key_on_) return;
key_on_ = key_on;
// Always transition to release upon a key off.
if(!key_on_) {
phase_ = Phase::Release;
return;
}
// On key on: if this is an envelope generator with damping, and damping is required,
// schedule that. If damping is not required, announce a pending attack now and
// transition to attack.
if(will_attack_) {
if(attenuation_ != 511) {
phase_ = Phase::Damp;
return;
}
(*will_attack_)();
}
phase_ = Phase::Attack;
}
/*!
Sets the attack rate, which should be in the range 015.
*/
void set_attack_rate(int rate) {
attack_rate_ = rate << 2;
}
/*!
Sets the decay rate, which should be in the range 015.
*/
void set_decay_rate(int rate) {
decay_rate_ = rate << 2;
}
/*!
Sets the release rate, which should be in the range 015.
*/
void set_release_rate(int rate) {
release_rate_ = rate << 2;
}
/*!
Sets the sustain level, which should be in the range 015.
*/
void set_sustain_level(int level) {
sustain_level_ = level << 3;
// TODO: verify the shift level here. Especially re: precision.
}
/*!
Enables or disables use of the sustain level. If this is disabled, the envelope proceeds
directly from decay to release.
*/
void set_use_sustain_level(bool use) {
use_sustain_level_ = use;
}
/*!
Enables or disables key-rate scaling.
*/
void set_key_scaling_rate_enabled(bool enabled) {
key_scale_rate_shift_ = int(enabled) * 2;
}
/*!
Enables or disables application of the low-frequency oscillator's tremolo.
*/
void set_tremolo_enabled(bool enabled) {
tremolo_enable_ = int(enabled);
}
/*!
Sets the current period associated with the channel that owns this envelope generator;
this is used to select a key scaling rate if key-rate scaling is enabled.
*/
void set_period(int period, int octave) {
key_scale_rate_ = (octave << 1) | (period >> (period_precision - 1));
}
private:
enum class Phase {
Attack, Decay, Sustain, Release, Damp
} phase_ = Phase::Release;
int attenuation_ = 511, tremolo_ = 0;
bool key_on_ = false;
std::optional<std::function<void(void)>> will_attack_;
int key_scale_rate_ = 0;
int key_scale_rate_shift_ = 0;
int tremolo_enable_ = 0;
int attack_rate_ = 0;
int decay_rate_ = 0;
int release_rate_ = 0;
int sustain_level_ = 0;
bool use_sustain_level_ = false;
static constexpr int dithering_patterns[4][8] = {
{0, 1, 0, 1, 0, 1, 0, 1},
{0, 1, 0, 1, 1, 1, 0, 1},
{0, 1, 1, 1, 0, 1, 1, 1},
{0, 1, 1, 1, 1, 1, 1, 1},
};
void update_attack(const LowFrequencyOscillator &oscillator, int rate) {
// Special case: no attack.
if(rate < 4) {
return;
}
// Special case: instant attack.
if(rate >= 60) {
attenuation_ = 0;
return;
}
// Work out the number of cycles between each adjustment tick, and stop now
// if not at the next adjustment boundary.
const int shift_size = 13 - (std::min(rate, 52) >> 2);
if(oscillator.counter & ((1 << shift_size) - 1)) {
return;
}
// Apply dithered adjustment.
const int rate_shift = (rate > 55);
const int step = dithering_patterns[rate & 3][(oscillator.counter >> shift_size) & 7];
attenuation_ -= ((attenuation_ >> (3 - rate_shift)) + 1) * step;
}
void update_decay(const LowFrequencyOscillator &oscillator, int rate) {
// Special case: no decay.
if(rate < 4) {
return;
}
// Work out the number of cycles between each adjustment tick, and stop now
// if not at the next adjustment boundary.
const int shift_size = 13 - (std::min(rate, 52) >> 2);
if(oscillator.counter & ((1 << shift_size) - 1)) {
return;
}
// Apply dithered adjustment and clamp.
const int rate_shift = 1 + (rate > 59) + (rate > 55);
attenuation_ += dithering_patterns[rate & 3][(oscillator.counter >> shift_size) & 7] * (4 << rate_shift);
attenuation_ = std::min(attenuation_, 511);
}
};
}
}
#endif /* EnvelopeGenerator_h */

View File

@@ -0,0 +1,58 @@
//
// KeyLevelScaler.hpp
// Clock Signal
//
// Created by Thomas Harte on 02/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef KeyLevelScaler_h
#define KeyLevelScaler_h
namespace Yamaha {
namespace OPL {
template <int frequency_precision> class KeyLevelScaler {
public:
/*!
Sets the current period associated with the channel that owns this envelope generator;
this is used to select a key scaling rate if key-rate scaling is enabled.
*/
void set_period(int period, int octave) {
constexpr int key_level_scales[16] = {0, 48, 64, 74, 80, 86, 90, 94, 96, 100, 102, 104, 106, 108, 110, 112};
constexpr int masks[2] = {~0, 0};
// A two's complement assumption is embedded below; the use of masks relies
// on the sign bit to clamp to zero.
level_ = key_level_scales[period >> (frequency_precision - 4)];
level_ -= 16 * (octave ^ 7);
level_ &= masks[(level_ >> ((sizeof(int) * 8) - 1)) & 1];
}
/*!
Enables or disables key-rate scaling.
*/
void set_key_scaling_level(int level) {
// '7' is just a number large enough to render all possible scaling coefficients as 0.
constexpr int key_level_scale_shifts[4] = {7, 1, 2, 0};
shift_ = key_level_scale_shifts[level];
}
/*!
@returns The current attenuation level due to key-level scaling.
*/
int attenuation() const {
return level_ >> shift_;
}
private:
int level_ = 0;
int shift_ = 0;
};
}
}
#endif /* KeyLevelScaler_h */

View File

@@ -0,0 +1,68 @@
//
// LowFrequencyOscillator.hpp
// Clock Signal
//
// Created by Thomas Harte on 23/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef LowFrequencyOscillator_hpp
#define LowFrequencyOscillator_hpp
#include "../../../Numeric/LFSR.hpp"
namespace Yamaha {
namespace OPL {
/*!
Models the output of the OPL low-frequency oscillator, which provides a couple of optional fixed-frequency
modifications to an operator: tremolo and vibrato. Also exposes a global time counter, which oscillators use
as part of their ADSR envelope.
*/
class LowFrequencyOscillator {
public:
/// Current attenuation due to tremolo / amplitude modulation, between 0 and 26.
int tremolo = 0;
/// A number between 0 and 7 indicating the current vibrato offset; this should be combined by operators
/// with their frequency number to get the actual vibrato.
int vibrato = 0;
/// A counter of the number of operator update cycles (i.e. input clock / 72) since an arbitrary time.
int counter = 0;
/// Describes the current output of the LFSR; will be either 0 or 1.
int lfsr = 0;
/// Updates the oscillator outputs. Should be called at the (input clock/72) rate.
void update() {
++counter;
// This produces output of:
//
// four instances of 0, four instances of 1... _three_ instances of 26,
// four instances of 25, four instances of 24... _three_ instances of 0.
//
// ... advancing once every 64th update.
const int tremolo_index = (counter >> 6) % 210;
const int tremolo_levels[2] = {tremolo_index >> 2, 52 - ((tremolo_index+1) >> 2)};
tremolo = tremolo_levels[tremolo_index / 107];
// Vibrato is relatively simple: it's just three bits from the counter.
vibrato = (counter >> 10) & 7;
}
/// Updartes the LFSR output. Should be called at the input clock rate.
void update_lfsr() {
lfsr = noise_source_.next();
}
private:
// This is the correct LSFR per forums.submarine.org.uk.
Numeric::LFSR<int, 0x800302> noise_source_;
};
}
}
#endif /* LowFrequencyOscillator_hpp */

View File

@@ -0,0 +1,40 @@
//
// OPLBase.hpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef OPLBase_h
#define OPLBase_h
#include "../../../Outputs/Speaker/Implementation/SampleSource.hpp"
#include "../../../Concurrency/AsyncTaskQueue.hpp"
namespace Yamaha {
namespace OPL {
template <typename Child> class OPLBase: public ::Outputs::Speaker::SampleSource {
public:
void write(uint16_t address, uint8_t value) {
if(address & 1) {
static_cast<Child *>(this)->write_register(selected_register_, value);
} else {
selected_register_ = value;
}
}
protected:
OPLBase(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {}
Concurrency::DeferringAsyncTaskQueue &task_queue_;
private:
uint8_t selected_register_ = 0;
};
}
}
#endif /* OPLBase_h */

View File

@@ -0,0 +1,125 @@
//
// PhaseGenerator.h
// Clock Signal
//
// Created by Thomas Harte on 30/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef PhaseGenerator_h
#define PhaseGenerator_h
#include <cassert>
#include "LowFrequencyOscillator.hpp"
#include "Tables.hpp"
namespace Yamaha {
namespace OPL {
/*!
Models an OPL-style phase generator of templated precision; having been told its period ('f-num'), octave ('block') and
multiple, and whether to apply vibrato, this will then appropriately update and return phase.
*/
template <int precision> class PhaseGenerator {
public:
/*!
Advances the phase generator a single step, given the current state of the low-frequency oscillator, @c oscillator.
*/
void update(const LowFrequencyOscillator &oscillator) {
constexpr int vibrato_shifts[4] = {3, 1, 0, 1};
constexpr int vibrato_signs[2] = {1, -1};
// Get just the top three bits of the period_.
const int top_freq = period_ >> (precision - 3);
// Cacluaute applicable vibrato as a function of (i) the top three bits of the
// oscillator period; (ii) the current low-frequency oscillator vibrato output; and
// (iii) whether vibrato is enabled.
const int vibrato = (top_freq >> vibrato_shifts[oscillator.vibrato & 3]) * vibrato_signs[oscillator.vibrato >> 2] * enable_vibrato_;
// Apply phase update with vibrato from the low-frequency oscillator.
phase_ += (multiple_ * ((period_ << 1) + vibrato) << octave_) >> 1;
}
/*!
@returns Current phase; real hardware provides only the low ten bits of this result.
*/
int phase() const {
// My table if multipliers is multiplied by two, so shift by one more
// than the stated precision.
return phase_ >> precision_shift;
}
/*!
@returns Current phase, scaled up by (1 << precision).
*/
int scaled_phase() const {
return phase_ >> 1;
}
/*!
Applies feedback based on two historic samples of a total output level,
plus the degree of feedback to apply
*/
void apply_feedback(LogSign first, LogSign second, int level) {
constexpr int masks[] = {0, ~0, ~0, ~0, ~0, ~0, ~0, ~0};
phase_ += ((second.level(precision) + first.level(precision)) >> (8 - level)) & masks[level];
}
/*!
Sets the multiple for this phase generator, in the same terms as an OPL programmer,
i.e. a 4-bit number that is used as a lookup into the internal multiples table.
*/
void set_multiple(int multiple) {
// This encodes the MUL -> multiple table given on page 12,
// multiplied by two.
constexpr int multipliers[] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
assert(multiple < 16);
multiple_ = multipliers[multiple];
}
/*!
Sets the period of this generator, along with its current octave.
Yamaha tends to refer to the period as the 'f-number', and used both 'octave' and 'block' for octave.
*/
void set_period(int period, int octave) {
period_ = period;
octave_ = octave;
assert(octave_ < 8);
assert(period_ < (1 << precision));
}
/*!
Enables or disables vibrato.
*/
void set_vibrato_enabled(bool enabled) {
enable_vibrato_ = int(enabled);
}
/*!
Resets the current phase.
*/
void reset() {
phase_ = 0;
}
private:
static constexpr int precision_shift = 1 + precision;
int phase_ = 0;
int multiple_ = 0;
int period_ = 0;
int octave_ = 0;
int enable_vibrato_ = 0;
};
}
}
#endif /* PhaseGenerator_h */

View File

@@ -0,0 +1,227 @@
//
// Tables.hpp
// Clock Signal
//
// Created by Thomas Harte on 15/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef Tables_hpp
#define Tables_hpp
namespace Yamaha {
namespace OPL {
/*
These are the OPL's built-in log-sin and exponentiation tables, as recovered by
Matthew Gambrell and Olli Niemitalo in 'OPLx decapsulated'. Despite the formulas
being well known, I've elected not to generate these at runtime because even if I
did, I'd just end up with the proper values laid out in full in a unit test, and
they're very compact.
*/
/*!
Represents both the logarithm of a value and its sign.
It's actually the negative logarithm, in base two, in fixed point.
*/
struct LogSign {
int log;
int sign;
void reset() {
log = 0;
sign = 1;
}
LogSign &operator +=(int attenuation) {
log += attenuation;
return *this;
}
LogSign &operator +=(LogSign log_sign) {
log += log_sign.log;
sign *= log_sign.sign;
return *this;
}
int level(int fractional = 0) const;
};
/*!
@returns Negative log sin of x, assuming a 1024-unit circle.
*/
constexpr LogSign negative_log_sin(int x) {
/// Defines the first quadrant of 1024-unit negative log to the base two of sine (that conveniently misses sin(0)).
///
/// Expected branchless usage for a full 1024 unit output:
///
/// constexpr int multiplier[] = { 1, -1 };
/// constexpr int mask[] = { 0, 255 };
///
/// value = exp( log_sin[angle & 255] ^ mask[(angle >> 8) & 1]) * multitplier[(angle >> 9) & 1]
///
/// ... where exp(x) = 2 ^ -x / 256
constexpr int16_t log_sin[] = {
2137, 1731, 1543, 1419, 1326, 1252, 1190, 1137,
1091, 1050, 1013, 979, 949, 920, 894, 869,
846, 825, 804, 785, 767, 749, 732, 717,
701, 687, 672, 659, 646, 633, 621, 609,
598, 587, 576, 566, 556, 546, 536, 527,
518, 509, 501, 492, 484, 476, 468, 461,
453, 446, 439, 432, 425, 418, 411, 405,
399, 392, 386, 380, 375, 369, 363, 358,
352, 347, 341, 336, 331, 326, 321, 316,
311, 307, 302, 297, 293, 289, 284, 280,
276, 271, 267, 263, 259, 255, 251, 248,
244, 240, 236, 233, 229, 226, 222, 219,
215, 212, 209, 205, 202, 199, 196, 193,
190, 187, 184, 181, 178, 175, 172, 169,
167, 164, 161, 159, 156, 153, 151, 148,
146, 143, 141, 138, 136, 134, 131, 129,
127, 125, 122, 120, 118, 116, 114, 112,
110, 108, 106, 104, 102, 100, 98, 96,
94, 92, 91, 89, 87, 85, 83, 82,
80, 78, 77, 75, 74, 72, 70, 69,
67, 66, 64, 63, 62, 60, 59, 57,
56, 55, 53, 52, 51, 49, 48, 47,
46, 45, 43, 42, 41, 40, 39, 38,
37, 36, 35, 34, 33, 32, 31, 30,
29, 28, 27, 26, 25, 24, 23, 23,
22, 21, 20, 20, 19, 18, 17, 17,
16, 15, 15, 14, 13, 13, 12, 12,
11, 10, 10, 9, 9, 8, 8, 7,
7, 7, 6, 6, 5, 5, 5, 4,
4, 4, 3, 3, 3, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0
};
constexpr int16_t sign[] = { 1, -1 };
constexpr int16_t mask[] = { 0, 255 };
return {
.log = log_sin[(x & 255) ^ mask[(x >> 8) & 1]],
.sign = sign[(x >> 9) & 1]
};
}
/*!
Computes the linear value represented by the log-sign @c ls, shifted left by @c fractional prior
to loss of precision.
*/
constexpr int power_two(LogSign ls, int fractional = 0) {
/// A derivative of the exponent table in a real OPL2; mapped_exp[x] = (source[c ^ 0xff] << 1) | 0x800.
///
/// The ahead-of-time transformation represents fixed work the OPL2 does when reading its table
/// independent on the input.
///
/// The original table is a 0.10 fixed-point representation of 2^x - 1 with bit 10 implicitly set, where x is
/// in 0.8 fixed point.
///
/// Since the log_sin table represents sine in a negative base-2 logarithm, values from it would need
/// to be negatived before being put into the original table. That's haned with the ^ 0xff. The | 0x800 is to
/// set the implicit bit 10 (subject to the shift).
///
/// The shift by 1 is to allow the chip's exploitation of the recursive symmetry of the exponential table to
/// be achieved more easily. Specifically, to convert a logarithmic attenuation to a linear one, just perform:
///
/// result = mapped_exp[x & 0xff] >> (x >> 8)
constexpr int16_t mapped_exp[] = {
4084, 4074, 4062, 4052, 4040, 4030, 4020, 4008,
3998, 3986, 3976, 3966, 3954, 3944, 3932, 3922,
3912, 3902, 3890, 3880, 3870, 3860, 3848, 3838,
3828, 3818, 3808, 3796, 3786, 3776, 3766, 3756,
3746, 3736, 3726, 3716, 3706, 3696, 3686, 3676,
3666, 3656, 3646, 3636, 3626, 3616, 3606, 3596,
3588, 3578, 3568, 3558, 3548, 3538, 3530, 3520,
3510, 3500, 3492, 3482, 3472, 3464, 3454, 3444,
3434, 3426, 3416, 3408, 3398, 3388, 3380, 3370,
3362, 3352, 3344, 3334, 3326, 3316, 3308, 3298,
3290, 3280, 3272, 3262, 3254, 3246, 3236, 3228,
3218, 3210, 3202, 3192, 3184, 3176, 3168, 3158,
3150, 3142, 3132, 3124, 3116, 3108, 3100, 3090,
3082, 3074, 3066, 3058, 3050, 3040, 3032, 3024,
3016, 3008, 3000, 2992, 2984, 2976, 2968, 2960,
2952, 2944, 2936, 2928, 2920, 2912, 2904, 2896,
2888, 2880, 2872, 2866, 2858, 2850, 2842, 2834,
2826, 2818, 2812, 2804, 2796, 2788, 2782, 2774,
2766, 2758, 2752, 2744, 2736, 2728, 2722, 2714,
2706, 2700, 2692, 2684, 2678, 2670, 2664, 2656,
2648, 2642, 2634, 2628, 2620, 2614, 2606, 2600,
2592, 2584, 2578, 2572, 2564, 2558, 2550, 2544,
2536, 2530, 2522, 2516, 2510, 2502, 2496, 2488,
2482, 2476, 2468, 2462, 2456, 2448, 2442, 2436,
2428, 2422, 2416, 2410, 2402, 2396, 2390, 2384,
2376, 2370, 2364, 2358, 2352, 2344, 2338, 2332,
2326, 2320, 2314, 2308, 2300, 2294, 2288, 2282,
2276, 2270, 2264, 2258, 2252, 2246, 2240, 2234,
2228, 2222, 2216, 2210, 2204, 2198, 2192, 2186,
2180, 2174, 2168, 2162, 2156, 2150, 2144, 2138,
2132, 2128, 2122, 2116, 2110, 2104, 2098, 2092,
2088, 2082, 2076, 2070, 2064, 2060, 2054, 2048,
};
return ((mapped_exp[ls.log & 0xff] << fractional) >> (ls.log >> 8)) * ls.sign;
}
/*
Credit for the fixed register lists goes to Nuke.YKT; I found them at:
https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2#ym2413_instrument_rom
The arrays below begin with channel 1, then each line is a single channel defined
in exactly the same terms as the OPL's user-defined channel.
*/
constexpr uint8_t opll_patch_set[] = {
0x71, 0x61, 0x1e, 0x17, 0xd0, 0x78, 0x00, 0x17,
0x13, 0x41, 0x1a, 0x0d, 0xd8, 0xf7, 0x23, 0x13,
0x13, 0x01, 0x99, 0x00, 0xf2, 0xc4, 0x11, 0x23,
0x31, 0x61, 0x0e, 0x07, 0xa8, 0x64, 0x70, 0x27,
0x32, 0x21, 0x1e, 0x06, 0xe0, 0x76, 0x00, 0x28,
0x31, 0x22, 0x16, 0x05, 0xe0, 0x71, 0x00, 0x18,
0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x10, 0x07,
0x23, 0x21, 0x2d, 0x14, 0xa2, 0x72, 0x00, 0x07,
0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17,
0x41, 0x61, 0x0b, 0x18, 0x85, 0xf7, 0x71, 0x07,
0x13, 0x01, 0x83, 0x11, 0xfa, 0xe4, 0x10, 0x04,
0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12,
0x61, 0x50, 0x0c, 0x05, 0xc2, 0xf5, 0x20, 0x42,
0x01, 0x01, 0x55, 0x03, 0xc9, 0x95, 0x03, 0x02,
0x61, 0x41, 0x89, 0x03, 0xf1, 0xe4, 0x40, 0x13,
};
constexpr uint8_t vrc7_patch_set[] = {
0x03, 0x21, 0x05, 0x06, 0xe8, 0x81, 0x42, 0x27,
0x13, 0x41, 0x14, 0x0d, 0xd8, 0xf6, 0x23, 0x12,
0x11, 0x11, 0x08, 0x08, 0xfa, 0xb2, 0x20, 0x12,
0x31, 0x61, 0x0c, 0x07, 0xa8, 0x64, 0x61, 0x27,
0x32, 0x21, 0x1e, 0x06, 0xe1, 0x76, 0x01, 0x28,
0x02, 0x01, 0x06, 0x00, 0xa3, 0xe2, 0xf4, 0xf4,
0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x11, 0x07,
0x23, 0x21, 0x22, 0x17, 0xa2, 0x72, 0x01, 0x17,
0x35, 0x11, 0x25, 0x00, 0x40, 0x73, 0x72, 0x01,
0xb5, 0x01, 0x0f, 0x0f, 0xa8, 0xa5, 0x51, 0x02,
0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12,
0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x18, 0x16,
0x01, 0x02, 0xd3, 0x05, 0xc9, 0x95, 0x03, 0x02,
0x61, 0x63, 0x0c, 0x00, 0x94, 0xc0, 0x33, 0xf6,
0x21, 0x72, 0x0d, 0x00, 0xc1, 0xd5, 0x56, 0x06,
};
constexpr uint8_t percussion_patch_set[] = {
0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d,
0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x48,
0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55,
};
inline int LogSign::level(int fractional) const {
return power_two(*this, fractional);
}
}
}
#endif /* Tables_hpp */

View File

@@ -0,0 +1,92 @@
//
// WaveformGenerator.hpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef WaveformGenerator_h
#define WaveformGenerator_h
#include "Tables.hpp"
#include "LowFrequencyOscillator.hpp"
namespace Yamaha {
namespace OPL {
enum class Waveform {
Sine, HalfSine, AbsSine, PulseSine
};
template <int phase_precision> class WaveformGenerator {
public:
/*!
@returns The output of waveform @c form at [integral] phase @c phase.
*/
static constexpr LogSign wave(Waveform form, int phase) {
constexpr int waveforms[4][4] = {
{1023, 1023, 1023, 1023}, // Sine: don't mask in any quadrant.
{511, 511, 0, 0}, // Half sine: keep the first half intact, lock to 0 in the second half.
{511, 511, 511, 511}, // AbsSine: endlessly repeat the first half of the sine wave.
{255, 0, 255, 0}, // PulseSine: act as if the first quadrant is in the first and third; lock the other two to 0.
};
return negative_log_sin(phase & waveforms[int(form)][(phase >> 8) & 3]);
}
/*!
@returns The output of waveform @c form at [scaled] phase @c scaled_phase given the modulation input @c modulation.
*/
static constexpr LogSign wave(Waveform form, int scaled_phase, LogSign modulation) {
const int scaled_phase_offset = modulation.level(phase_precision);
const int phase = (scaled_phase + scaled_phase_offset) >> phase_precision;
return wave(form, phase);
}
/*!
@returns Snare output, calculated from the current LFSR state as captured in @c oscillator and an operator's phase.
*/
static constexpr LogSign snare(const LowFrequencyOscillator &oscillator, int phase) {
// If noise is 0, output is positive.
// If noise is 1, output is negative.
// If (noise ^ sign) is 0, output is 0. Otherwise it is max.
const int sign = phase & 0x200;
const int level = ((phase >> 9) & 1) ^ oscillator.lfsr;
return negative_log_sin(sign + (level << 8));
}
/*!
@returns Cymbal output, calculated from an operator's phase and a modulator's phase.
*/
static constexpr LogSign cymbal(int carrier_phase, int modulator_phase) {
return negative_log_sin(256 + (phase_combination(carrier_phase, modulator_phase) << 9));
}
/*!
@returns High-hat output, calculated from the current LFSR state as captured in @c oscillator, an operator's phase and a modulator's phase.
*/
static constexpr LogSign high_hat(const LowFrequencyOscillator &oscillator, int carrier_phase, int modulator_phase) {
constexpr int angles[] = {0x234, 0xd0, 0x2d0, 0x34};
return negative_log_sin(angles[
phase_combination(carrier_phase, modulator_phase) |
(oscillator.lfsr << 1)
]);
}
private:
/*!
@returns The phase bit used for cymbal and high-hat generation, which is a function of two operators' phases.
*/
static constexpr int phase_combination(int carrier_phase, int modulator_phase) {
return (
((carrier_phase >> 5) ^ (carrier_phase >> 3)) &
((modulator_phase >> 7) ^ (modulator_phase >> 2)) &
((carrier_phase >> 5) ^ (modulator_phase >> 3))
) & 1;
}
};
}
}
#endif /* WaveformGenerator_h */

443
Components/OPx/OPLL.cpp Normal file
View File

@@ -0,0 +1,443 @@
//
// OPLL.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "OPLL.hpp"
#include <cassert>
using namespace Yamaha::OPL;
OPLL::OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, int audio_divider, bool is_vrc7):
OPLBase(task_queue), audio_divider_(audio_divider), is_vrc7_(is_vrc7) {
// Due to the way that sound mixing works on the OPLL, the audio divider may not
// be larger than 4.
assert(audio_divider <= 4);
// Setup the rhythm envelope generators.
// Treat the bass exactly as if it were a melodic channel.
rhythm_envelope_generators_[BassCarrier].set_should_damp([this] {
// Propagate attack mode to the modulator, and reset both phases.
rhythm_envelope_generators_[BassModulator].set_key_on(true);
phase_generators_[6 + 0].reset();
phase_generators_[6 + 9].reset();
});
// Set the other drums to damp, but only the TomTom to affect phase.
rhythm_envelope_generators_[TomTom].set_should_damp([this] {
phase_generators_[8 + 9].reset();
});
rhythm_envelope_generators_[Snare].set_should_damp({});
rhythm_envelope_generators_[Cymbal].set_should_damp({});
rhythm_envelope_generators_[HighHat].set_should_damp({});
// Crib the proper rhythm envelope generator settings by installing
// the rhythm instruments and copying them over.
rhythm_mode_enabled_ = true;
install_instrument(6);
install_instrument(7);
install_instrument(8);
rhythm_envelope_generators_[BassCarrier] = envelope_generators_[6];
rhythm_envelope_generators_[BassModulator] = envelope_generators_[6 + 9];
rhythm_envelope_generators_[HighHat] = envelope_generators_[7 + 9];
rhythm_envelope_generators_[Cymbal] = envelope_generators_[8];
rhythm_envelope_generators_[TomTom] = envelope_generators_[8 + 9];
rhythm_envelope_generators_[Snare] = envelope_generators_[7];
// Return to ordinary default mode.
rhythm_mode_enabled_ = false;
// Set up damping for the melodic channels.
for(int c = 0; c < 9; ++c) {
envelope_generators_[c].set_should_damp([this, c] {
// Propagate attack mode to the modulator, and reset both phases.
envelope_generators_[c + 9].set_key_on(true);
phase_generators_[c + 0].reset();
phase_generators_[c + 9].reset();
});
}
// Set default instrument.
for(int c = 0; c < 9; ++c) {
install_instrument(c);
}
}
// MARK: - Machine-facing programmatic input.
void OPLL::write_register(uint8_t address, uint8_t value) {
// The OPLL doesn't have timers or other non-audio functions, so all writes
// go to the audio queue.
task_queue_.defer([this, address, value] {
// The first 8 locations are used to define the custom instrument, and have
// exactly the same format as the patch set arrays at the head of this file.
if(address < 8) {
custom_instrument_[address] = value;
// Update all channels that refer to instrument 0.
for(int c = 0; c < 9; ++c) {
if(!channels_[c].instrument) {
install_instrument(c);
}
}
return;
}
// Register 0xe enables or disables rhythm mode and contains the
// percussion key-on bits.
if(address == 0xe) {
const bool old_rhythm_mode = rhythm_mode_enabled_;
rhythm_mode_enabled_ = value & 0x20;
if(old_rhythm_mode != rhythm_mode_enabled_) {
// Change the instlled instruments for channels 6, 7 and 8
// if this was a transition into or out of rhythm mode.
install_instrument(6);
install_instrument(7);
install_instrument(8);
}
rhythm_envelope_generators_[HighHat].set_key_on(value & 0x01);
rhythm_envelope_generators_[Cymbal].set_key_on(value & 0x02);
rhythm_envelope_generators_[TomTom].set_key_on(value & 0x04);
rhythm_envelope_generators_[Snare].set_key_on(value & 0x08);
if(value & 0x10) {
rhythm_envelope_generators_[BassCarrier].set_key_on(true);
} else {
rhythm_envelope_generators_[BassCarrier].set_key_on(false);
rhythm_envelope_generators_[BassModulator].set_key_on(false);
}
return;
}
// That leaves only per-channel selections, for which the addressing
// is completely orthogonal; check that a valid channel is being requested.
const auto index = address & 0xf;
if(index > 8) return;
switch(address & 0xf0) {
default: break;
// Address 1x sets the low 8 bits of the period for channel x.
case 0x10:
channels_[index].period = (channels_[index].period & ~0xff) | value;
set_channel_period(index);
return;
// Address 2x Sets the octave and a single bit of the frequency, as well
// as setting key on and sustain mode.
case 0x20:
channels_[index].period = (channels_[index].period & 0xff) | ((value & 1) << 8);
channels_[index].octave = (value >> 1) & 7;
set_channel_period(index);
// In this implementation the first 9 envelope generators are for
// channel carriers, and their will_attack callback is used to trigger
// key-on for modulators. But key-off needs to be set to both envelope
// generators now.
if(value & 0x10) {
envelope_generators_[index].set_key_on(true);
} else {
envelope_generators_[index + 0].set_key_on(false);
envelope_generators_[index + 9].set_key_on(false);
}
// Set sustain bit to both the relevant operators.
channels_[index].use_sustain = value & 0x20;
set_use_sustain(index);
return;
// Address 3x selects the instrument and attenuation for a channel;
// in rhythm mode some of the nibbles that ordinarily identify instruments
// instead nominate additional attenuations. This code reads those back
// from the stored instrument values.
case 0x30:
channels_[index].attenuation = value & 0xf;
// Install an instrument only if it's new.
if(channels_[index].instrument != value >> 4) {
channels_[index].instrument = value >> 4;
if(index < 6 || !rhythm_mode_enabled_) {
install_instrument(index);
}
}
return;
}
});
}
void OPLL::set_channel_period(int channel) {
phase_generators_[channel + 0].set_period(channels_[channel].period, channels_[channel].octave);
phase_generators_[channel + 9].set_period(channels_[channel].period, channels_[channel].octave);
envelope_generators_[channel + 0].set_period(channels_[channel].period, channels_[channel].octave);
envelope_generators_[channel + 9].set_period(channels_[channel].period, channels_[channel].octave);
key_level_scalers_[channel + 0].set_period(channels_[channel].period, channels_[channel].octave);
key_level_scalers_[channel + 9].set_period(channels_[channel].period, channels_[channel].octave);
}
const uint8_t *OPLL::instrument_definition(int instrument, int channel) {
// Divert to the appropriate rhythm instrument if in rhythm mode.
if(channel >= 6 && rhythm_mode_enabled_) {
return &percussion_patch_set[(channel - 6) * 8];
}
// Instrument 0 is the custom instrument.
if(!instrument) return custom_instrument_;
// Instruments other than 0 are taken from the fixed set.
const int index = (instrument - 1) * 8;
return is_vrc7_ ? &vrc7_patch_set[index] : &opll_patch_set[index];
}
void OPLL::install_instrument(int channel) {
auto &carrier_envelope = envelope_generators_[channel + 0];
auto &carrier_phase = phase_generators_[channel + 0];
auto &carrier_scaler = key_level_scalers_[channel + 0];
auto &modulator_envelope = envelope_generators_[channel + 9];
auto &modulator_phase = phase_generators_[channel + 9];
auto &modulator_scaler = key_level_scalers_[channel + 9];
const uint8_t *const instrument = instrument_definition(channels_[channel].instrument, channel);
// Bytes 0 (modulator) and 1 (carrier):
//
// b0-b3: multiplier;
// b4: key-scale rate enable;
// b5: sustain-level enable;
// b6: vibrato enable;
// b7: tremolo enable.
modulator_phase.set_multiple(instrument[0] & 0xf);
channels_[channel].modulator_key_rate_scale_multiplier = (instrument[0] >> 4) & 1;
modulator_phase.set_vibrato_enabled(instrument[0] & 0x40);
modulator_envelope.set_tremolo_enabled(instrument[0] & 0x80);
carrier_phase.set_multiple(instrument[1] & 0xf);
channels_[channel].carrier_key_rate_scale_multiplier = (instrument[1] >> 4) & 1;
carrier_phase.set_vibrato_enabled(instrument[1] & 0x40);
carrier_envelope.set_tremolo_enabled(instrument[1] & 0x80);
// Pass off bit 5.
set_use_sustain(channel);
// Byte 2:
//
// b0b5: modulator attenuation;
// b6b7: modulator key-scale level.
modulator_scaler.set_key_scaling_level(instrument[3] >> 6);
channels_[channel].modulator_attenuation = instrument[2] & 0x3f;
// Byte 3:
//
// b0b2: modulator feedback level;
// b3: modulator waveform selection;
// b4: carrier waveform selection;
// b5: [unused]
// b6b7: carrier key-scale level.
channels_[channel].modulator_feedback = instrument[3] & 7;
channels_[channel].modulator_waveform = Waveform((instrument[3] >> 3) & 1);
channels_[channel].carrier_waveform = Waveform((instrument[3] >> 4) & 1);
carrier_scaler.set_key_scaling_level(instrument[3] >> 6);
// Bytes 4 (modulator) and 5 (carrier):
//
// b0b3: decay rate;
// b4b7: attack rate.
modulator_envelope.set_decay_rate(instrument[4] & 0xf);
modulator_envelope.set_attack_rate(instrument[4] >> 4);
carrier_envelope.set_decay_rate(instrument[5] & 0xf);
carrier_envelope.set_attack_rate(instrument[5] >> 4);
// Bytes 6 (modulator) and 7 (carrier):
//
// b0b3: release rate;
// b4b7: sustain level.
modulator_envelope.set_release_rate(instrument[6] & 0xf);
modulator_envelope.set_sustain_level(instrument[6] >> 4);
carrier_envelope.set_release_rate(instrument[7] & 0xf);
carrier_envelope.set_sustain_level(instrument[7] >> 4);
}
void OPLL::set_use_sustain(int channel) {
const uint8_t *const instrument = instrument_definition(channels_[channel].instrument, channel);
envelope_generators_[channel + 0].set_use_sustain_level((instrument[1] & 0x20) || channels_[channel].use_sustain);
envelope_generators_[channel + 9].set_use_sustain_level((instrument[0] & 0x20) || channels_[channel].use_sustain);
}
// MARK: - Output generation.
void OPLL::set_sample_volume_range(std::int16_t range) {
total_volume_ = range;
}
void OPLL::get_samples(std::size_t number_of_samples, std::int16_t *target) {
// Both the OPLL and the OPL2 divide the input clock by 72 to get the base tick frequency;
// unlike the OPL2 the OPLL time-divides the output for 'mixing'.
const int update_period = 72 / audio_divider_;
const int channel_output_period = 4 / audio_divider_;
// TODO: the conditional below is terrible. Fix.
while(number_of_samples--) {
if(!audio_offset_) update_all_channels();
*target = output_levels_[audio_offset_ / channel_output_period];
++target;
audio_offset_ = (audio_offset_ + 1) % update_period;
}
}
void OPLL::update_all_channels() {
oscillator_.update();
// Update all phase generators. That's guaranteed.
for(int c = 0; c < 18; ++c) {
phase_generators_[c].update(oscillator_);
}
// Update the ADSR envelopes that are guaranteed to be melodic.
for(int c = 0; c < 6; ++c) {
envelope_generators_[c + 0].update(oscillator_);
envelope_generators_[c + 9].update(oscillator_);
}
#define VOLUME(x) int16_t(((x) * total_volume_) >> 12)
if(rhythm_mode_enabled_) {
// Advance the rhythm envelope generators.
for(int c = 0; c < 6; ++c) {
rhythm_envelope_generators_[c].update(oscillator_);
}
// Fill in the melodic channels.
output_levels_[3] = VOLUME(melodic_output(0));
output_levels_[4] = VOLUME(melodic_output(1));
output_levels_[5] = VOLUME(melodic_output(2));
output_levels_[9] = VOLUME(melodic_output(3));
output_levels_[10] = VOLUME(melodic_output(4));
output_levels_[11] = VOLUME(melodic_output(5));
// Bass drum, which is a regular FM effect.
output_levels_[2] = output_levels_[15] = VOLUME(bass_drum());
oscillator_.update_lfsr();
// Tom tom, which is a single operator.
output_levels_[1] = output_levels_[14] = VOLUME(tom_tom());
oscillator_.update_lfsr();
// Snare.
output_levels_[6] = output_levels_[16] = VOLUME(snare_drum());
oscillator_.update_lfsr();
// Cymbal.
output_levels_[7] = output_levels_[17] = VOLUME(cymbal());
oscillator_.update_lfsr();
// High-hat.
output_levels_[0] = output_levels_[13] = VOLUME(high_hat());
oscillator_.update_lfsr();
// Unutilised slots.
output_levels_[8] = output_levels_[12] = 0;
oscillator_.update_lfsr();
} else {
for(int c = 6; c < 9; ++c) {
envelope_generators_[c + 0].update(oscillator_);
envelope_generators_[c + 9].update(oscillator_);
}
// All melodic. Fairly easy.
output_levels_[0] = output_levels_[1] = output_levels_[2] =
output_levels_[6] = output_levels_[7] = output_levels_[8] =
output_levels_[12] = output_levels_[13] = output_levels_[14] = 0;
output_levels_[3] = VOLUME(melodic_output(0));
output_levels_[4] = VOLUME(melodic_output(1));
output_levels_[5] = VOLUME(melodic_output(2));
output_levels_[9] = VOLUME(melodic_output(3));
output_levels_[10] = VOLUME(melodic_output(4));
output_levels_[11] = VOLUME(melodic_output(5));
output_levels_[15] = VOLUME(melodic_output(6));
output_levels_[16] = VOLUME(melodic_output(7));
output_levels_[17] = VOLUME(melodic_output(8));
}
#undef VOLUME
// TODO: batch updates of the LFSR.
}
// TODO: verify attenuation scales pervasively below.
#define ATTENUATION(x) ((x) << 7)
int OPLL::melodic_output(int channel) {
// The modulator always updates after the carrier, oddly enough. So calculate actual output first, based on the modulator's last value.
auto carrier = WaveformGenerator<period_precision>::wave(channels_[channel].carrier_waveform, phase_generators_[channel].scaled_phase(), channels_[channel].modulator_output);
carrier += envelope_generators_[channel].attenuation() + ATTENUATION(channels_[channel].attenuation) + key_level_scalers_[channel].attenuation();
// Get the modulator's new value.
auto modulation = WaveformGenerator<period_precision>::wave(channels_[channel].modulator_waveform, phase_generators_[channel + 9].phase());
modulation += envelope_generators_[channel + 9].attenuation() + (channels_[channel].modulator_attenuation << 5) + key_level_scalers_[channel + 9].attenuation();
// Apply feedback, if any.
phase_generators_[channel + 9].apply_feedback(channels_[channel].modulator_output, modulation, channels_[channel].modulator_feedback);
channels_[channel].modulator_output = modulation;
return carrier.level();
}
int OPLL::bass_drum() {
// Use modulator 6 and carrier 6, attenuated as per the bass-specific envelope generators and the attenuation level for channel 6.
auto modulation = WaveformGenerator<period_precision>::wave(Waveform::Sine, phase_generators_[6 + 9].phase());
modulation += rhythm_envelope_generators_[RhythmIndices::BassModulator].attenuation();
auto carrier = WaveformGenerator<period_precision>::wave(Waveform::Sine, phase_generators_[6].scaled_phase(), modulation);
carrier += rhythm_envelope_generators_[RhythmIndices::BassCarrier].attenuation() + ATTENUATION(channels_[6].attenuation);
return carrier.level();
}
int OPLL::tom_tom() {
// Use modulator 8 and the 'instrument' selection for channel 8 as an attenuation.
auto tom_tom = WaveformGenerator<period_precision>::wave(Waveform::Sine, phase_generators_[8 + 9].phase());
tom_tom += rhythm_envelope_generators_[RhythmIndices::TomTom].attenuation();
tom_tom += ATTENUATION(channels_[8].instrument);
return tom_tom.level();
}
int OPLL::snare_drum() {
// Use modulator 7 and the carrier attenuation level for channel 7.
LogSign snare = WaveformGenerator<period_precision>::snare(oscillator_, phase_generators_[7 + 9].phase());
snare += rhythm_envelope_generators_[RhythmIndices::Snare].attenuation();
snare += ATTENUATION(channels_[7].attenuation);
return snare.level();
}
int OPLL::cymbal() {
// Use modulator 7, carrier 8 and the attenuation level for channel 8.
LogSign cymbal = WaveformGenerator<period_precision>::cymbal(phase_generators_[8].phase(), phase_generators_[7 + 9].phase());
cymbal += rhythm_envelope_generators_[RhythmIndices::Cymbal].attenuation();
cymbal += ATTENUATION(channels_[8].attenuation);
return cymbal.level();
}
int OPLL::high_hat() {
// Use modulator 7, carrier 8 a and the 'instrument' selection for channel 7 as an attenuation.
LogSign high_hat = WaveformGenerator<period_precision>::high_hat(oscillator_, phase_generators_[8].phase(), phase_generators_[7 + 9].phase());
high_hat += rhythm_envelope_generators_[RhythmIndices::HighHat].attenuation();
high_hat += ATTENUATION(channels_[7].instrument);
return high_hat.level();
}
#undef ATTENUATION

131
Components/OPx/OPLL.hpp Normal file
View File

@@ -0,0 +1,131 @@
//
// OPLL.hpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef OPLL_hpp
#define OPLL_hpp
#include "Implementation/OPLBase.hpp"
#include "Implementation/EnvelopeGenerator.hpp"
#include "Implementation/KeyLevelScaler.hpp"
#include "Implementation/PhaseGenerator.hpp"
#include "Implementation/LowFrequencyOscillator.hpp"
#include "Implementation/WaveformGenerator.hpp"
#include <atomic>
namespace Yamaha {
namespace OPL {
class OPLL: public OPLBase<OPLL> {
public:
/// Creates a new OPLL or VRC7.
OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, int audio_divider = 1, bool is_vrc7 = false);
/// As per ::SampleSource; provides audio output.
void get_samples(std::size_t number_of_samples, std::int16_t *target);
void set_sample_volume_range(std::int16_t range);
// The OPLL is generally 'half' as loud as it's told to be. This won't strictly be true in
// rhythm mode, but it's correct for melodic output.
double get_average_output_peak() const { return 0.5; }
/// Reads from the OPL.
uint8_t read(uint16_t address);
private:
friend OPLBase<OPLL>;
void write_register(uint8_t address, uint8_t value);
int audio_divider_ = 0;
int audio_offset_ = 0;
std::atomic<int> total_volume_;
int16_t output_levels_[18];
void update_all_channels();
int melodic_output(int channel);
int bass_drum();
int tom_tom();
int snare_drum();
int cymbal();
int high_hat();
static constexpr int period_precision = 9;
static constexpr int envelope_precision = 7;
// Standard melodic phase and envelope generators;
//
// These are assigned as:
//
// [x], 0 <= x < 9 = carrier for channel x;
// [x+9] = modulator for channel x.
//
PhaseGenerator<period_precision> phase_generators_[18];
EnvelopeGenerator<envelope_precision, period_precision> envelope_generators_[18];
KeyLevelScaler<period_precision> key_level_scalers_[18];
// Dedicated rhythm envelope generators and attenuations.
EnvelopeGenerator<envelope_precision, period_precision> rhythm_envelope_generators_[6];
enum RhythmIndices {
HighHat = 0,
Cymbal = 1,
TomTom = 2,
Snare = 3,
BassCarrier = 4,
BassModulator = 5
};
// Channel specifications.
struct Channel {
int octave = 0;
int period = 0;
int instrument = 0;
int attenuation = 0;
int modulator_attenuation = 0;
Waveform carrier_waveform = Waveform::Sine;
Waveform modulator_waveform = Waveform::Sine;
int carrier_key_rate_scale_multiplier = 0;
int modulator_key_rate_scale_multiplier = 0;
LogSign modulator_output;
int modulator_feedback = 0;
bool use_sustain = false;
} channels_[9];
// The low-frequency oscillator.
LowFrequencyOscillator oscillator_;
bool rhythm_mode_enabled_ = false;
bool is_vrc7_ = false;
// Contains the current configuration of the custom instrument.
uint8_t custom_instrument_[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// Helpers to push per-channel information.
/// Pushes the current octave and period to channel @c channel.
void set_channel_period(int channel);
/// Installs the appropriate instrument on channel @c channel.
void install_instrument(int channel);
/// Sets whether the sustain level is used for channel @c channel based on its current instrument
/// and the user's selection.
void set_use_sustain(int channel);
/// @returns The 8-byte definition of instrument @c instrument.
const uint8_t *instrument_definition(int instrument, int channel);
};
}
}
#endif /* OPLL_hpp */

View File

@@ -39,9 +39,9 @@ SN76489::SN76489(Personality personality, Concurrency::DeferringAsyncTaskQueue &
void SN76489::set_sample_volume_range(std::int16_t range) {
// Build a volume table.
double multiplier = pow(10.0, -0.1);
double volume = static_cast<float>(range) / 4.0f; // As there are four channels.
double volume = float(range) / 4.0f; // As there are four channels.
for(int c = 0; c < 16; ++c) {
volumes_[c] = (int)round(volume);
volumes_[c] = int(round(volume));
volume *= multiplier;
}
volumes_[15] = 0;
@@ -65,7 +65,7 @@ void SN76489::write(uint8_t value) {
if(value & 0x80) {
channels_[channel].divider = (channels_[channel].divider & ~0xf) | (value & 0xf);
} else {
channels_[channel].divider = static_cast<uint16_t>((channels_[channel].divider & 0xf) | ((value & 0x3f) << 4));
channels_[channel].divider = uint16_t((channels_[channel].divider & 0xf) | ((value & 0x3f) << 4));
}
} else {
// writes to the noise register always reset the shifter
@@ -77,7 +77,7 @@ void SN76489::write(uint8_t value) {
noise_mode_ = shifter_is_16bit_ ? Periodic16 : Periodic15;
}
channels_[3].divider = static_cast<uint16_t>(0x10 << (value & 3));
channels_[3].divider = uint16_t(0x10 << (value & 3));
// Special case: if these bits are both set, the noise channel should track channel 2,
// which is marked with a divider of 0xffff.
if(channels_[3].divider == 0x80) channels_[3].divider = 0xffff;
@@ -86,12 +86,12 @@ void SN76489::write(uint8_t value) {
});
}
bool SN76489::is_zero_level() {
bool SN76489::is_zero_level() const {
return channels_[0].volume == 0xf && channels_[1].volume == 0xf && channels_[2].volume == 0xf && channels_[3].volume == 0xf;
}
void SN76489::evaluate_output_volume() {
output_volume_ = static_cast<int16_t>(
output_volume_ = int16_t(
channels_[0].level * volumes_[channels_[0].volume] +
channels_[1].level * volumes_[channels_[1].volume] +
channels_[2].level * volumes_[channels_[2].volume] +

View File

@@ -30,7 +30,7 @@ class SN76489: public Outputs::Speaker::SampleSource {
// As per SampleSource.
void get_samples(std::size_t number_of_samples, std::int16_t *target);
bool is_zero_level();
bool is_zero_level() const;
void set_sample_volume_range(std::int16_t range);
static constexpr bool get_is_stereo() { return false; }

View File

@@ -89,7 +89,7 @@ void Line::reset_writing() {
events_.clear();
}
bool Line::read() {
bool Line::read() const {
return level_;
}
@@ -136,5 +136,5 @@ void Line::update_delegate(bool level) {
Cycles::IntType Line::minimum_write_cycles_for_read_delegate_bit() {
if(!read_delegate_) return 0;
return 1 + (read_delegate_bit_length_ * static_cast<unsigned int>(clock_rate_.as_integral())).get<int>();
return 1 + (read_delegate_bit_length_ * unsigned(clock_rate_.as_integral())).get<int>();
}

View File

@@ -59,7 +59,7 @@ class Line {
void reset_writing();
/// @returns The instantaneous level of this line.
bool read();
bool read() const;
struct ReadDelegate {
virtual bool serial_line_did_produce_bit(Line *line, int bit) = 0;

View File

@@ -1,100 +0,0 @@
//
// BestEffortUpdater.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "BestEffortUpdater.hpp"
#include <cmath>
using namespace Concurrency;
BestEffortUpdater::BestEffortUpdater() :
update_thread_([this]() {
this->update_loop();
}) {}
BestEffortUpdater::~BestEffortUpdater() {
// Sever the delegate now, as soon as possible, then wait for any
// pending tasks to finish.
set_delegate(nullptr);
flush();
// Wind up the update thread.
should_quit_ = true;
update();
update_thread_.join();
}
void BestEffortUpdater::update(int flags) {
// Bump the requested target time and set the update requested flag.
{
std::lock_guard<decltype(update_mutex_)> lock(update_mutex_);
has_skipped_ = update_requested_;
update_requested_ = true;
flags_ |= flags;
target_time_ = std::chrono::high_resolution_clock::now().time_since_epoch().count();
}
update_condition_.notify_one();
}
void BestEffortUpdater::update_loop() {
while(true) {
std::unique_lock<decltype(update_mutex_)> lock(update_mutex_);
is_updating_ = false;
// Wait to be signalled.
update_condition_.wait(lock, [this]() -> bool {
return update_requested_;
});
// Possibly this signalling really means 'quit'.
if(should_quit_) return;
// Note update started, crib the target time.
auto target_time = target_time_;
update_requested_ = false;
// If this was actually the first update request, silently swallow it.
if(!has_previous_time_point_) {
has_previous_time_point_ = true;
previous_time_point_ = target_time;
continue;
}
// Release the lock on requesting new updates.
is_updating_ = true;
const int flags = flags_;
flags_ = 0;
lock.unlock();
// Invoke the delegate, if supplied, in order to run.
const int64_t integer_duration = std::max(target_time - previous_time_point_, int64_t(0));
const auto delegate = delegate_.load();
if(delegate) {
// Cap running at 1/5th of a second, to avoid doing a huge amount of work after any
// brief system interruption.
const double duration = std::min(double(integer_duration) / 1e9, 0.2);
const double elapsed_duration = delegate->update(this, duration, has_skipped_, flags);
previous_time_point_ += int64_t(elapsed_duration * 1e9);
has_skipped_ = false;
}
}
}
void BestEffortUpdater::flush() {
// Spin lock; this is allowed to be slow.
while(true) {
std::lock_guard<decltype(update_mutex_)> lock(update_mutex_);
if(!is_updating_) return;
}
}
void BestEffortUpdater::set_delegate(Delegate *const delegate) {
delegate_.store(delegate);
}

View File

@@ -1,82 +0,0 @@
//
// BestEffortUpdater.hpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#ifndef BestEffortUpdater_hpp
#define BestEffortUpdater_hpp
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <thread>
#include "../ClockReceiver/TimeTypes.hpp"
namespace Concurrency {
/*!
Accepts timing cues from multiple threads and ensures that a delegate receives calls to total
a certain number of cycles per second, that those calls are strictly serialised, and that no
backlog of calls accrues.
No guarantees about the thread that the delegate will be called on are made.
*/
class BestEffortUpdater {
public:
BestEffortUpdater();
~BestEffortUpdater();
/// A delegate receives timing cues.
struct Delegate {
/*!
Instructs the delegate to run for at least @c duration, providing hints as to whether multiple updates were requested before the previous had completed
(as @c did_skip_previous_update) and providing the union of any flags supplied to @c update.
@returns The amount of time actually run for.
*/
virtual Time::Seconds update(BestEffortUpdater *updater, Time::Seconds duration, bool did_skip_previous_update, int flags) = 0;
};
/// Sets the current delegate.
void set_delegate(Delegate *);
/*!
If the delegate is not currently in the process of an `update` call, calls it now to catch up to the current time.
The call is asynchronous; this method will return immediately.
*/
void update(int flags = 0);
/// Blocks until any ongoing update is complete; may spin.
void flush();
private:
std::atomic<bool> should_quit_;
std::atomic<bool> is_updating_;
int64_t target_time_;
int flags_ = 0;
bool update_requested_;
std::mutex update_mutex_;
std::condition_variable update_condition_;
decltype(target_time_) previous_time_point_;
bool has_previous_time_point_ = false;
std::atomic<bool> has_skipped_ = false;
std::atomic<Delegate *>delegate_ = nullptr;
void update_loop();
// This is deliberately at the bottom, to ensure it constructs after the various
// mutexs, conditions, etc, that it'll depend upon.
std::thread update_thread_;
};
}
#endif /* BestEffortUpdater_hpp */

View File

@@ -1,27 +0,0 @@
//
// Configurable.cpp
// Clock Signal
//
// Created by Thomas Harte on 18/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "Configurable.hpp"
using namespace Configurable;
ListSelection *BooleanSelection::list_selection() {
return new ListSelection(value ? "yes" : "no");
}
ListSelection *ListSelection::list_selection() {
return new ListSelection(value);
}
BooleanSelection *ListSelection::boolean_selection() {
return new BooleanSelection(value != "no" && value != "n" && value != "false" && value != "f");
}
BooleanSelection *BooleanSelection::boolean_selection() {
return new BooleanSelection(value);
}

View File

@@ -9,89 +9,37 @@
#ifndef Configurable_h
#define Configurable_h
#include <map>
#include "../Reflection/Struct.hpp"
#include <memory>
#include <string>
#include <vector>
namespace Configurable {
/*!
The Option class hierarchy provides a way for components, machines, etc, to provide a named
list of typed options to which they can respond.
*/
struct Option {
std::string long_name;
std::string short_name;
virtual ~Option() {}
Option(const std::string &long_name, const std::string &short_name) : long_name(long_name), short_name(short_name) {}
virtual bool operator==(const Option &rhs) {
return long_name == rhs.long_name && short_name == rhs.short_name;
}
};
struct BooleanOption: public Option {
BooleanOption(const std::string &long_name, const std::string &short_name) : Option(long_name, short_name) {}
};
struct ListOption: public Option {
std::vector<std::string> options;
ListOption(const std::string &long_name, const std::string &short_name, const std::vector<std::string> &options) : Option(long_name, short_name), options(options) {}
virtual bool operator==(const Option &rhs) {
const ListOption *list_rhs = dynamic_cast<const ListOption *>(&rhs);
if(!list_rhs) return false;
return long_name == rhs.long_name && short_name == rhs.short_name && options == list_rhs->options;
}
};
struct BooleanSelection;
struct ListSelection;
/*!
Selections are responses to Options.
*/
struct Selection {
virtual ~Selection() {}
virtual ListSelection *list_selection() = 0;
virtual BooleanSelection *boolean_selection() = 0;
};
struct BooleanSelection: public Selection {
bool value;
ListSelection *list_selection();
BooleanSelection *boolean_selection();
BooleanSelection(bool value) : value(value) {}
};
struct ListSelection: public Selection {
std::string value;
ListSelection *list_selection();
BooleanSelection *boolean_selection();
ListSelection(const std::string value) : value(value) {}
};
using SelectionSet = std::map<std::string, std::unique_ptr<Selection>>;
/*!
A Configuratble provides the options that it responds to and allows selections to be set.
A Configurable::Device provides a reflective struct listing the available runtime options for this machine.
You can ordinarily either get or set a machine's current options, or else construct a new instance of
its options with one of the OptionsTypes defined below.
*/
struct Device {
virtual std::vector<std::unique_ptr<Option>> get_options() = 0;
virtual void set_selections(const SelectionSet &selection_by_option) = 0;
virtual SelectionSet get_accurate_selections() = 0;
virtual SelectionSet get_user_friendly_selections() = 0;
/// Sets the current options. The caller must ensure that the object passed in is either an instance of the machine's
/// Options struct, or else was previously returned by get_options.
virtual void set_options(const std::unique_ptr<Reflection::Struct> &options) = 0;
/// @returns An options object
virtual std::unique_ptr<Reflection::Struct> get_options() = 0;
};
template <typename T> T *selection(const Configurable::SelectionSet &selections_by_option, const std::string &name) {
auto selection = selections_by_option.find(name);
if(selection == selections_by_option.end()) return nullptr;
return dynamic_cast<T *>(selection->second.get());
}
/*!
'Accurate' options should correspond to the way that this device was usually used during its lifespan.
E.g. a ColecoVision might accurately be given composite output.
'User-friendly' options should be more like those that a user today might most expect from an emulator.
E.g. the ColecoVision might bump itself up to S-Video output.
*/
enum class OptionsType {
Accurate,
UserFriendly
};
}

View File

@@ -1,108 +0,0 @@
//
// StandardOptions.cpp
// Clock Signal
//
// Created by Thomas Harte on 20/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "StandardOptions.hpp"
namespace {
/*!
Appends a Boolean selection of @c selection for option @c name to @c selection_set.
*/
void append_bool(Configurable::SelectionSet &selection_set, const std::string &name, bool selection) {
selection_set[name] = std::make_unique<Configurable::BooleanSelection>(selection);
}
/*!
Enquires for a Boolean selection for option @c name from @c selections_by_option, storing it to @c result if found.
*/
bool get_bool(const Configurable::SelectionSet &selections_by_option, const std::string &name, bool &result) {
auto selection = Configurable::selection<Configurable::BooleanSelection>(selections_by_option, name);
if(!selection) return false;
result = selection->value;
return true;
}
}
// MARK: - Standard option list builder
std::vector<std::unique_ptr<Configurable::Option>> Configurable::standard_options(Configurable::StandardOptions mask) {
std::vector<std::unique_ptr<Configurable::Option>> options;
if(mask & QuickLoadTape) options.emplace_back(new Configurable::BooleanOption("Load Tapes Quickly", "quickload"));
if(mask & (DisplayRGB | DisplayCompositeColour | DisplayCompositeMonochrome | DisplaySVideo)) {
std::vector<std::string> display_options;
if(mask & DisplayCompositeColour) display_options.emplace_back("composite");
if(mask & DisplayCompositeMonochrome) display_options.emplace_back("composite-mono");
if(mask & DisplaySVideo) display_options.emplace_back("svideo");
if(mask & DisplayRGB) display_options.emplace_back("rgb");
options.emplace_back(new Configurable::ListOption("Display", "display", display_options));
}
if(mask & AutomaticTapeMotorControl) options.emplace_back(new Configurable::BooleanOption("Automatic Tape Motor Control", "autotapemotor"));
if(mask & QuickBoot) options.emplace_back(new Configurable::BooleanOption("Boot Quickly", "quickboot"));
return options;
}
// MARK: - Selection appenders
void Configurable::append_quick_load_tape_selection(Configurable::SelectionSet &selection_set, bool selection) {
append_bool(selection_set, "quickload", selection);
}
void Configurable::append_automatic_tape_motor_control_selection(SelectionSet &selection_set, bool selection) {
append_bool(selection_set, "autotapemotor", selection);
}
void Configurable::append_display_selection(Configurable::SelectionSet &selection_set, Display selection) {
std::string string_selection;
switch(selection) {
default:
case Display::RGB: string_selection = "rgb"; break;
case Display::SVideo: string_selection = "svideo"; break;
case Display::CompositeMonochrome: string_selection = "composite-mono"; break;
case Display::CompositeColour: string_selection = "composite"; break;
}
selection_set["display"] = std::make_unique<Configurable::ListSelection>(string_selection);
}
void Configurable::append_quick_boot_selection(Configurable::SelectionSet &selection_set, bool selection) {
append_bool(selection_set, "quickboot", selection);
}
// MARK: - Selection parsers
bool Configurable::get_quick_load_tape(const Configurable::SelectionSet &selections_by_option, bool &result) {
return get_bool(selections_by_option, "quickload", result);
}
bool Configurable::get_automatic_tape_motor_control_selection(const SelectionSet &selections_by_option, bool &result) {
return get_bool(selections_by_option, "autotapemotor", result);
}
bool Configurable::get_display(const Configurable::SelectionSet &selections_by_option, Configurable::Display &result) {
auto display = Configurable::selection<Configurable::ListSelection>(selections_by_option, "display");
if(display) {
if(display->value == "rgb") {
result = Configurable::Display::RGB;
return true;
}
if(display->value == "svideo") {
result = Configurable::Display::SVideo;
return true;
}
if(display->value == "composite") {
result = Configurable::Display::CompositeColour;
return true;
}
if(display->value == "composite-mono") {
result = Configurable::Display::CompositeMonochrome;
return true;
}
}
return false;
}
bool Configurable::get_quick_boot(const Configurable::SelectionSet &selections_by_option, bool &result) {
return get_bool(selections_by_option, "quickboot", result);
}

View File

@@ -9,87 +9,56 @@
#ifndef StandardOptions_hpp
#define StandardOptions_hpp
#include "Configurable.hpp"
#include "../Reflection/Enum.hpp"
namespace Configurable {
enum StandardOptions {
DisplayRGB = (1 << 0),
DisplaySVideo = (1 << 1),
DisplayCompositeColour = (1 << 2),
DisplayCompositeMonochrome = (1 << 3),
QuickLoadTape = (1 << 4),
AutomaticTapeMotorControl = (1 << 5),
QuickBoot = (1 << 6),
};
enum class Display {
ReflectableEnum(Display,
RGB,
SVideo,
CompositeColour,
CompositeMonochrome
);
//===
// From here downward are a bunch of templates for individual option flags.
// Using them saves you marginally in syntax, but the primary gain is to
// ensure unified property naming.
//===
template <typename Owner> class DisplayOption {
public:
Configurable::Display output;
DisplayOption(Configurable::Display output) : output(output) {}
protected:
void declare_display_option() {
static_cast<Owner *>(this)->declare(&output, "output");
AnnounceEnumNS(Configurable, Display);
}
};
/*!
@returns An option list comprised of the standard names for all the options indicated by @c mask.
*/
std::vector<std::unique_ptr<Option>> standard_options(StandardOptions mask);
template <typename Owner> class QuickloadOption {
public:
bool quickload;
QuickloadOption(bool quickload) : quickload(quickload) {}
/*!
Appends to @c selection_set a selection of @c selection for QuickLoadTape.
*/
void append_quick_load_tape_selection(SelectionSet &selection_set, bool selection);
protected:
void declare_quickload_option() {
static_cast<Owner *>(this)->declare(&quickload, "quickload");
}
};
/*!
Appends to @c selection_set a selection of @c selection for AutomaticTapeMotorControl.
*/
void append_automatic_tape_motor_control_selection(SelectionSet &selection_set, bool selection);
template <typename Owner> class QuickbootOption {
public:
bool quickboot;
QuickbootOption(bool quickboot) : quickboot(quickboot) {}
/*!
Appends to @c selection_set a selection of @c selection for DisplayRGBComposite.
*/
void append_display_selection(SelectionSet &selection_set, Display selection);
/*!
Appends to @c selection_set a selection of @c selection for QuickBoot.
*/
void append_quick_boot_selection(SelectionSet &selection_set, bool selection);
/*!
Attempts to discern a QuickLoadTape selection from @c selections_by_option.
@param selections_by_option The user selections.
@param result The location to which the selection will be stored if found.
@returns @c true if a selection is found; @c false otherwise.
*/
bool get_quick_load_tape(const SelectionSet &selections_by_option, bool &result);
/*!
Attempts to discern an AutomaticTapeMotorControl selection from @c selections_by_option.
@param selections_by_option The user selections.
@param result The location to which the selection will be stored if found.
@returns @c true if a selection is found; @c false otherwise.
*/
bool get_automatic_tape_motor_control_selection(const SelectionSet &selections_by_option, bool &result);
/*!
Attempts to discern a display RGB/composite selection from @c selections_by_option.
@param selections_by_option The user selections.
@param result The location to which the selection will be stored if found.
@returns @c true if a selection is found; @c false otherwise.
*/
bool get_display(const SelectionSet &selections_by_option, Display &result);
/*!
Attempts to QuickBoot a QuickLoadTape selection from @c selections_by_option.
@param selections_by_option The user selections.
@param result The location to which the selection will be stored if found.
@returns @c true if a selection is found; @c false otherwise.
*/
bool get_quick_boot(const SelectionSet &selections_by_option, bool &result);
protected:
void declare_quickboot_option() {
static_cast<Owner *>(this)->declare(&quickboot, "quickboot");
}
};
}

View File

@@ -161,11 +161,11 @@ class ConcreteJoystick: public Joystick {
const bool is_digital_axis = input.is_digital_axis();
const bool is_analogue_axis = input.is_analogue_axis();
if(is_digital_axis || is_analogue_axis) {
const size_t required_size = static_cast<size_t>(input.info.control.index+1);
const size_t required_size = size_t(input.info.control.index+1);
if(stick_types_.size() < required_size) {
stick_types_.resize(required_size);
}
stick_types_[static_cast<size_t>(input.info.control.index)] = is_digital_axis ? StickType::Digital : StickType::Analogue;
stick_types_[size_t(input.info.control.index)] = is_digital_axis ? StickType::Digital : StickType::Analogue;
}
}
}

Some files were not shown because too many files have changed in this diff Show More