// // LinearFilter.c // Clock Signal // // Created by Thomas Harte on 01/10/2011. // Copyright 2011 Thomas Harte. All rights reserved. // #include "FIRFilter.hpp" #include #ifndef M_PI static constexpr float M_PI = 3.1415926f; #endif using namespace SignalProcessing; /* A Kaiser-Bessel filter is a real time window filter. It looks at the last n samples of an incoming data source and computes a filtered value, which is the value you'd get after applying the specified filter, at the centre of the sampling window. Hence, if you request a 37 tap filter then filtering introduces a latency of 18 samples. Suppose you're receiving input at 44,100Hz and using 4097 taps, then you'll introduce a latency of 2048 samples, which is about 46ms. There's a correlation between the number of taps and the quality of the filtering. More samples = better filtering, at the cost of greater latency. Internally, applying the filter involves calculating a weighted sum of previous values, so increasing the number of taps is quite cheap in processing terms. Original source for this filter: "DIGITAL SIGNAL PROCESSING, II", IEEE Press, pages 123-126. */ /*! Evaluates the 0th order Bessel function at @c a. */ float FIRFilter::ino(float a) { float d = 0.0f; float ds = 1.0f; float s = 1.0f; do { d += 2.0f; ds *= (a * a) / (d * d); s += ds; } while(ds > s*1e-6f); return s; } void FIRFilter::coefficients_for_idealised_filter_response(short *filter_coefficients, float *A, float attenuation, std::size_t number_of_taps) { /* calculate alpha, which is the Kaiser-Bessel window shape factor */ float a; // to take the place of alpha in the normal derivation if(attenuation < 21.0f) { a = 0.0f; } else { if(attenuation > 50.0f) a = 0.1102f * (attenuation - 8.7f); else a = 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f); } std::vector filter_coefficients_float(number_of_taps); /* work out the right hand side of the filter coefficients */ std::size_t Np = (number_of_taps - 1) / 2; float I0 = ino(a); float Np_squared = float(Np * Np); for(unsigned int i = 0; i <= Np; ++i) { filter_coefficients_float[Np + i] = A[i] * ino(a * sqrtf(1.0f - (float(i * i) / Np_squared) )) / I0; } /* coefficients are symmetrical, so copy from right hand side to left side */ for(std::size_t i = 0; i < Np; ++i) { filter_coefficients_float[i] = filter_coefficients_float[number_of_taps - 1 - i]; } /* scale back up so that we retain 100% of input volume */ float coefficientTotal = 0.0f; for(std::size_t i = 0; i < number_of_taps; ++i) { coefficientTotal += filter_coefficients_float[i]; } /* we'll also need integer versions, potentially */ float coefficientMultiplier = 1.0f / coefficientTotal; for(std::size_t i = 0; i < number_of_taps; ++i) { filter_coefficients[i] = short(filter_coefficients_float[i] * FixedMultiplier * coefficientMultiplier); } } std::vector FIRFilter::get_coefficients() const { std::vector coefficients; for(const auto short_coefficient: filter_coefficients_) { coefficients.push_back(float(short_coefficient) / FixedMultiplier); } return coefficients; } FIRFilter::FIRFilter(std::size_t number_of_taps, float input_sample_rate, float low_frequency, float high_frequency, float attenuation) { // we must be asked to filter based on an odd number of // taps, and at least three if(number_of_taps < 3) number_of_taps = 3; if(attenuation < 21.0f) attenuation = 21.0f; // ensure we have an odd number of taps number_of_taps |= 1; // store instance variables filter_coefficients_.resize(number_of_taps); /* calculate idealised filter response */ std::size_t Np = (number_of_taps - 1) / 2; float two_over_sample_rate = 2.0f / input_sample_rate; // Clamp the high cutoff frequency. high_frequency = std::min(high_frequency, input_sample_rate * 0.5f); std::vector A(Np+1); A[0] = 2.0f * (high_frequency - low_frequency) / input_sample_rate; for(unsigned int i = 1; i <= Np; ++i) { float i_pi = float(i) * float(M_PI); A[i] = ( sinf(two_over_sample_rate * i_pi * high_frequency) - sinf(two_over_sample_rate * i_pi * low_frequency) ) / i_pi; } FIRFilter::coefficients_for_idealised_filter_response(filter_coefficients_.data(), A.data(), attenuation, number_of_taps); } FIRFilter::FIRFilter(const std::vector &coefficients) { for(const auto coefficient: coefficients) { filter_coefficients_.push_back(short(coefficient * FixedMultiplier)); } } FIRFilter FIRFilter::operator+(const FIRFilter &rhs) const { std::vector coefficients = get_coefficients(); std::vector rhs_coefficients = rhs.get_coefficients(); std::vector sum; for(std::size_t i = 0; i < coefficients.size(); ++i) { sum.push_back((coefficients[i] + rhs_coefficients[i]) / 2.0f); } return FIRFilter(sum); } FIRFilter FIRFilter::operator-() const { std::vector negative_coefficients; for(const auto coefficient: get_coefficients()) { negative_coefficients.push_back(1.0f - coefficient); } return FIRFilter(negative_coefficients); } FIRFilter FIRFilter::operator*(const FIRFilter &rhs) const { std::vector coefficients = get_coefficients(); std::vector rhs_coefficients = rhs.get_coefficients(); std::vector sum; for(std::size_t i = 0; i < coefficients.size(); ++i) { sum.push_back(coefficients[i] * rhs_coefficients[i]); } return FIRFilter(sum); }