// // Atari2600.cpp // CLK // // Created by Thomas Harte on 14/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "Atari2600.hpp" #include #include using namespace Atari2600; static const char atari2600DataType[] = "Atari2600"; Machine::Machine() { _timestamp = 0; _horizontalTimer = 227; _lastOutputStateDuration = 0; _lastOutputState = OutputState::Sync; _crt = new Outputs::CRT(228, 256, 1, 4); reset(); } void Machine::get_output_pixel(uint8_t *pixel, int offset) { // get the playfield pixel const int x = offset >> 2; const int mirrored = (x / 20) & (_playfieldControl&1); const int index = mirrored ? x - 20 : 19 - (x%20); const int byte = 2 - (index >> 3); const int lowestBit = (byte&1)^1; const int bit = (index & 7)^(lowestBit | (lowestBit << 1) | (lowestBit << 2)); uint8_t playFieldPixel = (_playfield[byte] >> bit)&1; const uint8_t palette[16][3] = { {255, 255, 255}, {253, 250, 115}, {236, 199, 125}, {252, 187, 151}, {252, 180, 181}, {235, 177, 223}, {211, 178, 250}, {187, 182, 250}, {164, 186, 250}, {166, 201, 250}, {164, 224, 251}, {165, 251, 213}, {185, 251, 187}, {201, 250, 168}, {225, 235, 160}, {252, 223, 145} }; // TODO: almost everything! uint8_t outputColour = playFieldPixel ? _playfieldColour : _backgroundColour; pixel[0] = palette[outputColour >> 4][0]; pixel[1] = palette[outputColour >> 4][1]; pixel[2] = palette[outputColour >> 4][2]; pixel[3] = (outputColour & 14) << 4; } void Machine::output_pixels(int count) { while(count--) { // logic: if in vsync, output that; otherwise if in vblank then output that; // otherwise output a pixel if(_vSyncEnabled) { output_state(OutputState::Sync, nullptr); } else { // blank is decoded as 68 counts; sync and colour burst as 16 counts // it'll be about 43 cycles from start of hsync to start of visible frame, so... // guesses, until I can find information: 26 cycles blank, 16 sync, 40 blank, 160 pixels if(_horizontalTimer > 214) output_state(OutputState::Blank, nullptr); else if (_horizontalTimer > 188) output_state(OutputState::Sync, nullptr); else if (_horizontalTimer >= 160) output_state(OutputState::Blank, nullptr); else { if(_vBlankEnabled) { output_state(OutputState::Blank, nullptr); } else { uint8_t outputPixel[4]; get_output_pixel(outputPixel, 159 - _horizontalTimer); output_state(OutputState::Pixel, outputPixel); } } } // assumption here: signed shifts right; otherwise it's just // an attempt to avoid both the % operator and a conditional _horizontalTimer--; const int32_t sign_extension = _horizontalTimer >> 31; _horizontalTimer = (_horizontalTimer&~sign_extension) | (sign_extension&227); } } void Machine::output_state(OutputState state, uint8_t *pixel) { _lastOutputStateDuration++; if(state != _lastOutputState) { switch(_lastOutputState) { case OutputState::Blank: _crt->output_blank(_lastOutputStateDuration); break; case OutputState::Sync: _crt->output_sync(_lastOutputStateDuration); break; case OutputState::Pixel: _crt->output_data(_lastOutputStateDuration, atari2600DataType); break; } _lastOutputStateDuration = 0; _lastOutputState = state; if(state == OutputState::Pixel) { _crt->allocate_write_area(160); _outputBuffer = _crt->get_write_target_for_buffer(0); } } if(state == OutputState::Pixel && _outputBuffer) { _outputBuffer[(_lastOutputStateDuration * 4) + 0] = pixel[0]; _outputBuffer[(_lastOutputStateDuration * 4) + 1] = pixel[1]; _outputBuffer[(_lastOutputStateDuration * 4) + 2] = pixel[2]; _outputBuffer[(_lastOutputStateDuration * 4) + 3] = pixel[3]; } } int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { uint8_t returnValue = 0xff; int cycle_count = 1; output_pixels(3); _timestamp++; // check for a ROM access if ((address&0x1000) && isReadOperation(operation)) { // if(operation == CPU6502::BusOperation::ReadOpcode) printf("[%04x]\n", address); returnValue &= _rom[address&_romMask]; } // check for a RAM access if ((address&0x1280) == 0x80) { if(isReadOperation(operation)) { returnValue &= _ram[address&0x7f]; } else { _ram[address&0x7f] = *value; } } // check for a TIA access if (!(address&0x1080)) { if(isReadOperation(operation)) { } else { switch(address & 0x3f) { case 0: _vSyncEnabled = !!(*value & 0x02); break; case 1: _vBlankEnabled = !!(*value & 0x02); break; case 2: { cycle_count = _horizontalTimer / 3; output_pixels(3 * cycle_count); } break; case 3: _horizontalTimer = 227; break; case 0x06: _player0Colour = *value; break; case 0x07: _player1Colour = *value; break; case 0x08: _playfieldColour = *value; break; case 0x09: _backgroundColour = *value; break; case 0x0a: _playfieldControl = *value; break; case 0x0d: _playfield[0] = *value; break; case 0x0e: _playfield[1] = *value; break; case 0x0f: _playfield[2] = *value; break; } } // printf("Uncaught TIA %04x\n", address); } // check for a PIA access if ((address&0x1280) == 0x280) { if(isReadOperation(operation)) { switch(address & 0xf) { case 0x04: returnValue &= _piaTimerValue >> _piaTimerShift; break; } } else { switch(address & 0x0f) { case 0x04: _piaTimerShift = 0; _piaTimerValue = *value << 0; break; case 0x05: _piaTimerShift = 3; _piaTimerValue = *value << 3; break; case 0x06: _piaTimerShift = 6; _piaTimerValue = *value << 6; break; case 0x07: _piaTimerShift = 10; _piaTimerValue = *value << 10; break; } } // printf("Uncaught PIA %04x\n", address); } if(isReadOperation(operation)) { *value = returnValue; } _piaTimerValue -= cycle_count; return cycle_count; } void Machine::set_rom(size_t length, const uint8_t *data) { length = std::min((size_t)4096, length); memcpy(_rom, data, length); _romMask = length - 1; reset(); }