// // Video.hpp // Clock Signal // // Created by Thomas Harte on 18/03/2021. // Copyright © 2021 Thomas Harte. All rights reserved. // #ifndef Video_hpp #define Video_hpp #include "../../../Outputs/CRT/CRT.hpp" #include "../../../ClockReceiver/ClockReceiver.hpp" #include namespace Sinclair { namespace ZXSpectrum { enum class VideoTiming { Plus3 }; /* Timing notes: As of the +2a/+3: 311 lines, 228 cycles/line Delays begin at 14361, follow the pattern 1, 0, 7, 6, 5, 4, 3, 2; run for 129 cycles/line. Possibly delays only affect actual reads and writes; documentation is unclear. Unknowns, to me, presently: How long the interrupt line held for. So... Probably two bytes of video and attribute are fetched in each 8-cycle block, with 16 such blocks therefore providing the whole visible display, an island within 28.5 blocks horizontally. 14364 is 228*63, so I I guess almost 63 lines run from the start of vertical blank through to the top of the display, implying 56 lines on to vertical blank. */ template class Video { private: struct Timings { int cycles_per_line; int lines_per_frame; int first_delay; int first_border; int delays[16]; }; static constexpr Timings get_timings() { constexpr Timings result = { .cycles_per_line = 228 * 2, .lines_per_frame = 311, .first_delay = 14361 * 2, .first_border = 14490 * 2, .delays = { 2, 1, 0, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, } }; return result; } public: void run_for(HalfCycles duration) { constexpr auto timings = get_timings(); constexpr int first_line = timings.first_delay / timings.cycles_per_line; constexpr int sync_position = 166 * 2; constexpr int sync_length = 14 * 2; constexpr int burst_position = sync_position + 40; constexpr int burst_length = 17; int cycles_remaining = duration.as(); while(cycles_remaining) { int line = time_since_interrupt_ / timings.cycles_per_line; int offset = time_since_interrupt_ % timings.cycles_per_line; const int cycles_this_line = std::min(cycles_remaining, timings.cycles_per_line - offset); const int end_offset = offset + cycles_this_line; if(!line && !offset) { ++flash_counter_; flash_mask_ = uint8_t(flash_counter_ >> 4); flash_counter_ &= 31; } if(line < 3) { // Output sync line. crt_.output_sync(cycles_this_line); } else if((line < first_line) || (line >= first_line+192)) { // Output plain border line. if(offset < sync_position) { const int border_duration = std::min(sync_position, end_offset) - offset; output_border(border_duration); offset += border_duration; } if(offset >= sync_position && offset < sync_position + sync_length && end_offset > offset) { const int sync_duration = std::min(sync_position + sync_length, end_offset) - offset; crt_.output_sync(sync_duration); offset += sync_duration; } if(offset >= sync_position + sync_length && offset < burst_position && end_offset > offset) { const int blank_duration = std::min(burst_position, end_offset) - offset; crt_.output_blank(blank_duration); offset += blank_duration; } if(offset >= burst_position && offset < burst_position+burst_length && end_offset > offset) { const int burst_duration = std::min(burst_position + burst_length, end_offset) - offset; crt_.output_default_colour_burst(burst_duration); offset += burst_duration; } if(offset >= burst_position+burst_length && end_offset > offset) { const int border_duration = end_offset - offset; output_border(border_duration); } } else { // Output pixel line. if(offset < 256) { const int pixel_duration = std::min(256, end_offset) - offset; if(!offset) { const int pixel_line = line - first_line; pixel_target_ = crt_.begin_data(256); attribute_address_ = ((pixel_line / 8) * 32) + 6144; pixel_address_ = ((pixel_line & 0x07) << 8) | ((pixel_line&0x38) << 2) | ((pixel_line&0xc0) << 5); } if(pixel_target_) { const int start_column = offset >> 3; const int end_column = (offset + pixel_duration) >> 3; for(int column = start_column; column < end_column; column++) { const uint8_t attributes = memory_[attribute_address_]; constexpr uint8_t masks[] = {0, 0xff}; const uint8_t pixels = memory_[pixel_address_] ^ masks[flash_mask_ & (attributes >> 7)]; const uint8_t colours[2] = { palette[(attributes & 0x78) >> 3], palette[((attributes & 0x40) >> 3) | (attributes & 0x07)], }; pixel_target_[0] = colours[(pixels >> 7) & 1]; pixel_target_[1] = colours[(pixels >> 6) & 1]; pixel_target_[2] = colours[(pixels >> 5) & 1]; pixel_target_[3] = colours[(pixels >> 4) & 1]; pixel_target_[4] = colours[(pixels >> 3) & 1]; pixel_target_[5] = colours[(pixels >> 2) & 1]; pixel_target_[6] = colours[(pixels >> 1) & 1]; pixel_target_[7] = colours[(pixels >> 0) & 1]; pixel_target_ += 8; ++pixel_address_; ++attribute_address_; } } offset += pixel_duration; if(offset == 256) { crt_.output_data(256); pixel_target_ = nullptr; } } if(offset >= 256 && offset < sync_position && end_offset > offset) { const int border_duration = std::min(sync_position, end_offset) - offset; output_border(border_duration); offset += border_duration; } if(offset >= sync_position && offset < sync_position+sync_length && end_offset > offset) { const int sync_duration = std::min(sync_position + sync_length, end_offset) - offset; crt_.output_sync(sync_duration); offset += sync_duration; } if(offset >= sync_position + sync_length && offset < burst_position && end_offset > offset) { const int blank_duration = std::min(burst_position, end_offset) - offset; crt_.output_blank(blank_duration); offset += blank_duration; } if(offset >= burst_position && offset < burst_position+burst_length && end_offset > offset) { const int burst_duration = std::min(burst_position + burst_length, end_offset) - offset; crt_.output_default_colour_burst(burst_duration); offset += burst_duration; } if(offset >= burst_position + burst_length && end_offset > offset) { const int border_duration = end_offset - offset; output_border(border_duration); } } cycles_remaining -= cycles_this_line; time_since_interrupt_ = (time_since_interrupt_ + cycles_this_line) % (timings.cycles_per_line * timings.lines_per_frame); } } private: // TODO: how long is the interrupt line held for? static constexpr int interrupt_duration = 48; void output_border(int duration) { uint8_t *const colour_pointer = crt_.begin_data(1); if(colour_pointer) *colour_pointer = border_colour_; crt_.output_level(duration); } public: Video() : crt_(227 * 2, 2, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red2Green2Blue2) { // Show only the centre 80% of the TV frame. crt_.set_display_type(Outputs::Display::DisplayType::RGB); crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.1f, 0.8f, 0.8f)); } void set_video_source(const uint8_t *source) { memory_ = source; } HalfCycles get_next_sequence_point() { if(time_since_interrupt_ < interrupt_duration) { return HalfCycles(interrupt_duration - time_since_interrupt_); } constexpr auto timings = get_timings(); return timings.cycles_per_line * timings.lines_per_frame - time_since_interrupt_; } bool get_interrupt_line() const { return time_since_interrupt_ < interrupt_duration; } int access_delay(HalfCycles offset) const { constexpr auto timings = get_timings(); const int delay_time = (time_since_interrupt_ + offset.as()) % (timings.cycles_per_line * timings.lines_per_frame); if(delay_time < timings.first_delay) return 0; const int time_since = delay_time - timings.first_delay; const int lines = time_since / timings.cycles_per_line; if(lines >= 192) return 0; const int line_position = time_since % timings.cycles_per_line; if(line_position >= timings.first_border - timings.first_delay) return 0; return timings.delays[line_position & 7]; } void set_border_colour(uint8_t colour) { border_colour_ = palette[colour]; } /// Sets the scan target. void set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); } /// Gets the current scan status. Outputs::Display::ScanStatus get_scaled_scan_status() const { return crt_.get_scaled_scan_status(); } /*! Sets the type of display the CRT will request. */ void set_display_type(Outputs::Display::DisplayType type) { crt_.set_display_type(type); } private: int time_since_interrupt_ = 0; Outputs::CRT::CRT crt_; const uint8_t *memory_ = nullptr; uint8_t border_colour_ = 0; uint8_t *pixel_target_ = nullptr; int attribute_address_ = 0; int pixel_address_ = 0; uint8_t flash_mask_ = 0; int flash_counter_ = 0; #define RGB(r, g, b) (r << 4) | (g << 2) | b static constexpr uint8_t palette[] = { RGB(0, 0, 0), RGB(0, 0, 2), RGB(2, 0, 0), RGB(2, 0, 2), RGB(0, 2, 0), RGB(0, 2, 2), RGB(2, 2, 0), RGB(2, 2, 2), RGB(0, 0, 0), RGB(0, 0, 3), RGB(3, 0, 0), RGB(3, 0, 3), RGB(0, 3, 0), RGB(0, 3, 3), RGB(3, 3, 0), RGB(3, 3, 3), }; #undef RGB }; } } #endif /* Video_hpp */