// // 68000ArithmeticTests.m // Clock SignalTests // // Created by Thomas Harte on 28/06/2019. // // Largely ported from the tests of the Portable 68k Emulator. // #import #include "68000.hpp" #include "68000Mk2.hpp" #include #include #include namespace { struct RandomStore { using CollectionT = std::unordered_map>; CollectionT values; void flag(uint32_t address, uint8_t participant) { values[address].first |= participant; } bool has(uint32_t address, uint8_t participant) { auto entry = values.find(address); if(entry == values.end()) return false; return entry->second.first & participant; } uint8_t value(uint32_t address, uint8_t participant) { auto entry = values.find(address); if(entry != values.end()) { entry->second.first |= participant; return entry->second.second; } const uint8_t value = uint8_t(rand() >> 8); values[address] = std::make_pair(participant, value); return value; } void clear() { values.clear(); } }; struct Transaction { HalfCycles timestamp; uint8_t function_code = 0; uint32_t address = 0; uint16_t value = 0; bool address_strobe = false; bool read = false; int data_strobes = 0; bool operator !=(const Transaction &rhs) const { if(timestamp != rhs.timestamp) return true; // if(function_code != rhs.function_code) return true; if(address != rhs.address) return true; if(value != rhs.value) return true; if(address_strobe != rhs.address_strobe) return true; if(data_strobes != rhs.data_strobes) return true; return false; } void print() const { printf("%d: %d%d%d %c %c%c @ %06x %s %04x\n", timestamp.as(), (function_code >> 2) & 1, (function_code >> 1) & 1, (function_code >> 0) & 1, address_strobe ? 'a' : '-', (data_strobes & 1) ? 'b' : '-', (data_strobes & 2) ? 'w' : '-', address, read ? "->" : "<-", value); } }; struct HarmlessStopException {}; struct BusHandler { BusHandler(RandomStore &_store, uint8_t _participant) : store(_store), participant(_participant) {} void will_perform(uint32_t, uint16_t) { --instructions; if(instructions < 0) { throw HarmlessStopException{}; } } template HalfCycles perform_bus_operation(const Microcycle &cycle, bool is_supervisor) { Transaction transaction; // Fill all of the transaction record except the data field; will do that after // any potential read. if(cycle.operation & Microcycle::InterruptAcknowledge) { transaction.function_code = 0b111; } else { transaction.function_code = is_supervisor ? 0x4 : 0x0; transaction.function_code |= (cycle.operation & Microcycle::IsData) ? 0x1 : 0x2; } transaction.address_strobe = cycle.operation & (Microcycle::NewAddress | Microcycle::SameAddress); transaction.data_strobes = cycle.operation & (Microcycle::SelectByte | Microcycle::SelectWord); if(cycle.address) transaction.address = *cycle.address & 0xffff'ff; transaction.timestamp = time; transaction.read = cycle.operation & Microcycle::Read; time += cycle.length; // Do the operation... const uint32_t address = cycle.address ? (*cycle.address & 0xffff'ff) : 0; switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) { default: break; case Microcycle::SelectWord | Microcycle::Read: if(!store.has(address, participant)) { ram[address] = store.value(address, participant); } if(!store.has(address+1, participant)) { ram[address+1] = store.value(address+1, participant); } cycle.set_value16((ram[address] << 8) | ram[address + 1]); break; case Microcycle::SelectByte | Microcycle::Read: if(!store.has(address, participant)) { ram[address] = store.value(address, participant); } if(address & 1) { cycle.set_value8_low(ram[address]); } else { cycle.set_value8_high(ram[address]); } break; case Microcycle::SelectWord: ram[address] = cycle.value8_high(); ram[address+1] = cycle.value8_low(); store.flag(address, participant); store.flag(address+1, participant); break; case Microcycle::SelectByte: ram[address] = (address & 1) ? cycle.value8_low() : cycle.value8_high(); store.flag(address, participant); break; } // Add the data value if relevant. if(transaction.data_strobes) { transaction.value = cycle.value16(); } // Push back only if interesting. if(transaction.address_strobe || transaction.data_strobes || transaction.function_code == 7) { if(transaction_delay) { --transaction_delay; // Start counting time only from the first recorded transaction. if(!transaction_delay) { time = HalfCycles(0); } } else { transactions.push_back(transaction); } } return HalfCycles(0); } void flush() {} int transaction_delay; int instructions; HalfCycles time; std::vector transactions; std::array ram; void set_default_vectors() { // Establish that all exception vectors point to 1024-byte blocks of memory. for(int c = 0; c < 256; c++) { const uint32_t target = (c + 2) << 10; const uint32_t address = c << 2; ram[address + 0] = uint8_t(target >> 24); ram[address + 1] = uint8_t(target >> 16); ram[address + 2] = uint8_t(target >> 8); ram[address + 3] = uint8_t(target >> 0); store.flag(address+0, participant); store.flag(address+1, participant); store.flag(address+2, participant); store.flag(address+3, participant); } } RandomStore &store; const uint8_t participant; }; using OldProcessor = CPU::MC68000::Processor; using NewProcessor = CPU::MC68000Mk2::Processor; template struct Tester { Tester(RandomStore &store, uint8_t participant) : bus_handler(store, participant), processor(bus_handler) {} void run_instructions(int instructions) { bus_handler.instructions = instructions; try { processor.run_for(HalfCycles(5000)); // Arbitrary, but will definitely exceed any one instruction (by quite a distance). } catch (const HarmlessStopException &) {} } void reset_with_opcode(uint16_t opcode) { bus_handler.transactions.clear(); bus_handler.set_default_vectors(); const uint32_t address = 3 << 10; bus_handler.ram[address + 0] = uint8_t(opcode >> 8); bus_handler.ram[address + 1] = uint8_t(opcode >> 0); bus_handler.store.flag(address, bus_handler.participant); bus_handler.store.flag(address+1, bus_handler.participant); bus_handler.transaction_delay = 12; // i.e. ignore everything from the RESET sequence. bus_handler.time = HalfCycles(0); processor.reset(); } BusHandler bus_handler; M68000 processor; }; } @interface M68000OldVsNewTests : XCTestCase @end @implementation M68000OldVsNewTests - (void)testOldVsNew { RandomStore random_store; auto oldTester = std::make_unique>(random_store, 0x01); auto newTester = std::make_unique>(random_store, 0x02); InstructionSet::M68k::Predecoder decoder; // Use a fixed seed to guarantee continuity across repeated runs. srand(68000); std::set test_set = { // InstructionSet::M68k::Operation::ABCD, // Old implementation doesn't match flamewing tests, sometimes produces incorrect results. // InstructionSet::M68k::Operation::SBCD, // Old implementation doesn't match flamewing tests, sometimes produces incorrect results. // InstructionSet::M68k::Operation::MOVEb, // InstructionSet::M68k::Operation::MOVEw, // InstructionSet::M68k::Operation::MOVEl, // InstructionSet::M68k::Operation::MOVEtoSR, // Old implementation doesn't repeat a PC fetch. // InstructionSet::M68k::Operation::MOVEtoCCR, // Old implementation doesn't repeat a PC fetch. // InstructionSet::M68k::Operation::CMPAl, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::JSR, // Old implementation ends up skipping stack space if the destination throws an address error. // InstructionSet::M68k::Operation::CLRb, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::CLRw, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NEGXb, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NEGXw, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NEGb, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NEGw, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NOTb, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::NOTw, // Old implementation omits an idle cycle before -(An) // InstructionSet::M68k::Operation::MULU, // InstructionSet::M68k::Operation::MULS, // InstructionSet::M68k::Operation::DIVU, // InstructionSet::M68k::Operation::DIVS, // InstructionSet::M68k::Operation::TRAP, // Old implementation relocates the idle state near the end to the beginning. // InstructionSet::M68k::Operation::TRAPV, // Old implementation relocates the idle state near the end to the beginning. // InstructionSet::M68k::Operation::CHK, // Old implementation pauses four cycles too long. // InstructionSet::M68k::Operation::TAS, // Old implementation just doesn't match published cycle counts. }; int testsRun = 0; std::set failing_operations; for(int c = 0; c < 65536; c++) { // printf("%04x\n", c); // Test only defined opcodes that aren't STOP (which will never teminate). const auto instruction = decoder.decode(uint16_t(c)); if( instruction.operation == InstructionSet::M68k::Operation::Undefined || instruction.operation == InstructionSet::M68k::Operation::STOP ) { continue; } // If a whitelist is in place, adhere to it. if(!test_set.empty() && test_set.find(instruction.operation) == test_set.end()) { continue; } // Test each 1000 times. for(int test = 0; test < 100; test++) { ++testsRun; // Establish with certainty the initial memory state. random_store.clear(); newTester->reset_with_opcode(c); oldTester->reset_with_opcode(c); // Generate a random initial register state. auto oldState = oldTester->processor.get_state(); auto newState = newTester->processor.get_state(); for(int c = 0; c < 8; c++) { oldState.data[c] = newState.registers.data[c] = rand() ^ (rand() << 1); if(c != 7) oldState.address[c] = newState.registers.address[c] = rand() << 1; } // Fully to paper over the two 68000s' different ways of doing a faked // reset, pick a random status such that: // // (i) supervisor mode is active; // (ii) trace is inactive; and // (iii) interrupt level is 7. oldState.status = newState.registers.status = (rand() | (1 << 13) | (7 << 8)) & ~(1 << 15); oldState.user_stack_pointer = newState.registers.user_stack_pointer = rand() << 1; oldState.supervisor_stack_pointer = newState.registers.supervisor_stack_pointer = 0x800; newTester->processor.set_state(newState); oldTester->processor.set_state(oldState); // Run a single instruction. newTester->run_instructions(1); oldTester->run_instructions(1); // Grab final states. oldState = oldTester->processor.get_state(); newState = newTester->processor.get_state(); // Compare bus activity only if it doesn't look like an address // error occurred. Don't check those as the old 68000 appears to be wrong // most of the time about function codes, and that bleeds into the stacked data. // // Net effect will be 50% fewer transaction comparisons for instructions that // can trigger an address error. const auto &oldTransactions = oldTester->bus_handler.transactions; const auto &newTransactions = newTester->bus_handler.transactions; if(oldState.program_counter != 0x1404 || newState.registers.program_counter != 0x1404) { auto newIt = newTransactions.begin(); auto oldIt = oldTransactions.begin(); while(newIt != newTransactions.end() && oldIt != oldTransactions.end()) { if(*newIt != *oldIt) { printf("Mismatch in %s, test %d:\n", instruction.to_string().c_str(), test); auto repeatIt = newTransactions.begin(); while(repeatIt != newIt) { repeatIt->print(); ++repeatIt; } printf("---\n"); while(newIt != newTransactions.end()) { printf("n: "); newIt->print(); ++newIt; } printf("\n"); while(oldIt != oldTransactions.end()) { printf("o: "); oldIt->print(); ++oldIt; } printf("\n"); failing_operations.insert(instruction.operation); break; } ++newIt; ++oldIt; } } // Compare registers. bool mismatch = false; for(int c = 0; c < 8; c++) { mismatch |= oldState.data[c] != newState.registers.data[c]; if(c != 7) mismatch |= oldState.address[c] != newState.registers.address[c]; } mismatch |= oldState.status != newState.registers.status; mismatch |= oldState.program_counter != newState.registers.program_counter; mismatch |= oldState.user_stack_pointer != newState.registers.user_stack_pointer; mismatch |= oldState.supervisor_stack_pointer != newState.registers.supervisor_stack_pointer; if(mismatch) { failing_operations.insert(instruction.operation); printf("Registers don't match after %s, test %d\n", instruction.to_string().c_str(), test); for(const auto &transaction: newTransactions) { printf("n: "); transaction.print(); } printf("\n"); for(const auto &transaction: oldTransactions) { printf("o: "); transaction.print(); } printf("\n"); // TODO: more detail here! } } } printf("%d tests run\n", testsRun); if(failing_operations.empty()) { printf("No failures\n"); } else { printf("\nAll failing operations:\n"); for(const auto operation: failing_operations) { printf("%d,\n", int(operation)); } } } @end