// // Video.cpp // Clock Signal // // Created by Thomas Harte on 10/12/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "Video.hpp" using namespace Electron; namespace { static const unsigned int cycles_per_line = 128; static const unsigned int lines_per_frame = 625; static const unsigned int cycles_per_frame = lines_per_frame * cycles_per_line; static const unsigned int crt_cycles_multiplier = 8; static const unsigned int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line; static const unsigned int field_divider_line = 312; // i.e. the line, simultaneous with which, the first field's sync ends. So if // the first line with pixels in field 1 is the 20th in the frame, the first line // with pixels in field 2 will be 20+field_divider_line static const unsigned int first_graphics_line = 31; static const unsigned int first_graphics_cycle = 33; static const unsigned int display_end_interrupt_line = 256; static const unsigned int real_time_clock_interrupt_1 = 16704; static const unsigned int real_time_clock_interrupt_2 = 56704; } VideoOutput::VideoOutput(uint8_t *memory) : ram_(memory), current_pixel_line_(-1), output_position_(0), screen_mode_(6) { memset(palette_, 0xf, sizeof(palette_)); crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1)); crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "uint texValue = texture(sampler, coordinate).r;" "texValue >>= 4 - (int(icoordinate.x * 8) & 4);" "return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));" "}"); // TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate. crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f)); } std::shared_ptr VideoOutput::get_crt() { return crt_; } void VideoOutput::start_pixel_line() { current_pixel_line_ = (current_pixel_line_+1)&255; if(!current_pixel_line_) { start_line_address_ = start_screen_address_; current_character_row_ = 0; is_blank_line_ = false; } else { bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3); is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249))); if(!is_blank_line_) { start_line_address_++; if(current_character_row_ > 7) { start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8; current_character_row_ = 0; } } } current_screen_address_ = start_line_address_; current_pixel_column_ = 0; initial_output_target_ = current_output_target_ = nullptr; } void VideoOutput::end_pixel_line() { if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_); current_character_row_++; } void VideoOutput::output_pixels(unsigned int number_of_cycles) { if(!number_of_cycles) return; if(is_blank_line_) { crt_->output_blank(number_of_cycles * crt_cycles_multiplier); } else { unsigned int divider = 0; switch(screen_mode_) { case 0: case 3: divider = 2; break; case 1: case 4: case 6: divider = 4; break; case 2: case 5: divider = 8; break; } if(!initial_output_target_ || divider != current_output_divider_) { if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_); current_output_divider_ = divider; initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_); } #define get_pixel() \ if(current_screen_address_&32768)\ {\ current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\ }\ last_pixel_byte_ = ram_[current_screen_address_];\ current_screen_address_ = current_screen_address_+8 switch(screen_mode_) { case 0: case 3: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *(uint32_t *)current_output_target_ = palette_tables_.eighty1bpp[last_pixel_byte_]; current_output_target_ += 4; current_pixel_column_++; } } else current_output_target_ += 4*number_of_cycles; break; case 1: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *(uint16_t *)current_output_target_ = palette_tables_.eighty2bpp[last_pixel_byte_]; current_output_target_ += 2; current_pixel_column_++; } } else current_output_target_ += 2*number_of_cycles; break; case 2: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *current_output_target_ = palette_tables_.eighty4bpp[last_pixel_byte_]; current_output_target_ += 1; current_pixel_column_++; } } else current_output_target_ += number_of_cycles; break; case 4: case 6: if(initial_output_target_) { if(current_pixel_column_&1) { last_pixel_byte_ <<= 4; *(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 2; number_of_cycles--; current_pixel_column_++; } while(number_of_cycles > 1) { get_pixel(); *(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 2; last_pixel_byte_ <<= 4; *(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 2; number_of_cycles -= 2; current_pixel_column_+=2; } if(number_of_cycles) { get_pixel(); *(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 2; current_pixel_column_++; } } else current_output_target_ += 2 * number_of_cycles; break; case 5: if(initial_output_target_) { if(current_pixel_column_&1) { last_pixel_byte_ <<= 2; *current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 1; number_of_cycles--; current_pixel_column_++; } while(number_of_cycles > 1) { get_pixel(); *current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 1; last_pixel_byte_ <<= 2; *current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 1; number_of_cycles -= 2; current_pixel_column_+=2; } if(number_of_cycles) { get_pixel(); *current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 1; current_pixel_column_++; } } else current_output_target_ += number_of_cycles; break; } #undef get_pixel } } void VideoOutput::run_for_cycles(int number_of_cycles) { /* Odd field: Even field: |--S--| -S-| |--S--| |--S--| |-S-B-| = 3 |--S--| = 2.5 |--B--| |--B--| |--P--| |--P--| |--B--| = 312 |--B--| = 312.5 |-B- */ int final_position = output_position_ + number_of_cycles; int final_line = final_position >> 7; while(output_position_ < final_position) { int line = output_position_ >> 7; // Priority one: sync. // =================== // full sync lines are 0, 1, field_divider_line+1 and field_divider_line+2 if(line == 0 || line == 1 || line == field_divider_line+1 || line == field_divider_line+2) { // wait for the line to complete before signalling if(final_line == line) return; crt_->output_sync(128 * crt_cycles_multiplier); output_position_ += 128; continue; } // line 2 is a left-sync line if(line == 2) { // wait for the line to complete before signalling if(final_line == line) return; crt_->output_sync(64 * crt_cycles_multiplier); crt_->output_blank(64 * crt_cycles_multiplier); output_position_ += 128; continue; } // line field_divider_line is a right-sync line if(line == field_divider_line) { // wait for the line to complete before signalling if(final_line == line) return; crt_->output_sync(9 * crt_cycles_multiplier); crt_->output_blank(55 * crt_cycles_multiplier); crt_->output_sync(64 * crt_cycles_multiplier); output_position_ += 128; continue; } // Priority two: blank lines. // ========================== // // Given that it is not a sync line, this is a blank line if it is less than first_graphics_line, or greater // than first_graphics_line+255 and less than first_graphics_line+field_divider_line, or greater than // first_graphics_line+field_divider_line+255 (TODO: or this is Mode 3 or 6 and this should be blank) if( line < first_graphics_line || (line > first_graphics_line+255 && line < first_graphics_line+field_divider_line) || line > first_graphics_line+field_divider_line+255) { if(final_line == line) return; crt_->output_sync(9 * crt_cycles_multiplier); crt_->output_blank(119 * crt_cycles_multiplier); output_position_ += 128; continue; } // Final possibility: this is a pixel line. // ======================================== // determine how far we're going from left to right unsigned int this_cycle = output_position_&127; unsigned int final_cycle = final_position&127; if(final_line > line) { final_cycle = 128; } // output format is: // 9 cycles: sync // ... to 24 cycles: colour burst // ... to first_graphics_cycle: blank // ... for 80 cycles: pixels // ... until end of line: blank while(this_cycle < final_cycle) { if(this_cycle < 9) { if(final_cycle < 9) return; crt_->output_sync(9 * crt_cycles_multiplier); output_position_ += 9; this_cycle = 9; } if(this_cycle < 24) { if(final_cycle < 24) return; crt_->output_default_colour_burst((24-9) * crt_cycles_multiplier); output_position_ += 24-9; this_cycle = 24; // TODO: phase shouldn't be zero on every line } if(this_cycle < first_graphics_cycle) { if(final_cycle < first_graphics_cycle) return; crt_->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier); output_position_ += first_graphics_cycle - 24; this_cycle = first_graphics_cycle; start_pixel_line(); } if(this_cycle < first_graphics_cycle + 80) { unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle; output_pixels(length_to_output); output_position_ += length_to_output; this_cycle += length_to_output; } if(this_cycle >= first_graphics_cycle + 80) { if(final_cycle < 128) return; end_pixel_line(); crt_->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier); output_position_ += 128 - (first_graphics_cycle + 80); this_cycle = 128; } } } output_position_ %= cycles_per_frame; } void VideoOutput::set_register(int address, uint8_t value) { switch(address & 0xf) { case 0x02: start_screen_address_ = (start_screen_address_ & 0xfe00) | (uint16_t)((value & 0xe0) << 1); if(!start_screen_address_) start_screen_address_ |= 0x8000; break; case 0x03: start_screen_address_ = (start_screen_address_ & 0x01ff) | (uint16_t)((value & 0x3f) << 9); if(!start_screen_address_) start_screen_address_ |= 0x8000; break; case 0x07: { // update screen mode uint8_t new_screen_mode = (value >> 3)&7; if(new_screen_mode == 7) new_screen_mode = 4; if(new_screen_mode != screen_mode_) { screen_mode_ = new_screen_mode; switch(screen_mode_) { case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break; case 3: screen_mode_base_address_ = 0x4000; break; case 4: case 5: screen_mode_base_address_ = 0x5800; break; case 6: screen_mode_base_address_ = 0x6000; break; } } } break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: { static const int registers[4][4] = { {10, 8, 2, 0}, {14, 12, 6, 4}, {15, 13, 7, 5}, {11, 9, 3, 1}, }; const int index = (address >> 1)&3; const uint8_t colour = ~value; if(address&1) { palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4); palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4); palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4); palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4); palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2); palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2); } else { palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1); palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1); palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1); palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1); palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2); palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2); } // regenerate all palette tables for now #define pack(a, b) (uint8_t)((a << 4) | (b)) for(int byte = 0; byte < 256; byte++) { uint8_t *target = (uint8_t *)&palette_tables_.forty1bpp[byte]; target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]); target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]); target = (uint8_t *)&palette_tables_.eighty2bpp[byte]; target[0] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]); target[1] = pack(palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]); target = (uint8_t *)&palette_tables_.eighty1bpp[byte]; target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]); target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]); target[2] = pack(palette_[(byte&0x08) >> 0], palette_[(byte&0x04) << 1]); target[3] = pack(palette_[(byte&0x02) << 2], palette_[(byte&0x01) << 3]); palette_tables_.forty2bpp[byte] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]); palette_tables_.eighty4bpp[byte] = pack( palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)], palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]); } #undef pack } break; } }