// // MemoryController.hpp // Clock Signal // // Created by Thomas Harte on 20/03/2024. // Copyright © 2024 Thomas Harte. All rights reserved. // #pragma once #include "InputOutputController.hpp" #include "Video.hpp" #include "Sound.hpp" #include "../../../InstructionSets/ARM/Registers.hpp" #include "../../../Outputs/Log.hpp" namespace Archimedes { /// Provides the mask with all bits set in the range [start, end], where start must be >= end. template struct BitMask { static_assert(start >= end); static constexpr uint32_t value = ((1 << (start + 1)) - 1) - ((1 << end) - 1); }; static_assert(BitMask<0, 0>::value == 1); static_assert(BitMask<1, 1>::value == 2); static_assert(BitMask<15, 15>::value == 32768); static_assert(BitMask<15, 0>::value == 0xffff); static_assert(BitMask<15, 14>::value == 49152); /// Models the MEMC, making this the Archimedes bus. Owns various other chips on the bus as a result. template struct MemoryController { MemoryController(InterruptObserverT &observer, ClockRateObserverT &clock_rate_observer) : ioc_(observer, clock_rate_observer, ram_.data()) {} int interrupt_mask() const { return ioc_.interrupt_mask(); } void set_rom(const std::vector &rom) { std::copy( rom.begin(), rom.begin() + static_cast(std::min(rom.size(), rom_.size())), rom_.begin()); } template uint32_t aligned(uint32_t address) { if constexpr (std::is_same_v) { return address & static_cast(~3); } return address; } template bool write(uint32_t address, IntT source, InstructionSet::ARM::Mode mode, bool) { // User mode may only _write_ to logically-mapped RAM (subject to further testing below). if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000) { return false; } switch(write_zones_[(address >> 21) & 31]) { case Zone::DMAAndMEMC: { const auto buffer_address = [](uint32_t source) -> uint32_t { return (source & 0x1fffc0) << 2; }; // The MEMC itself isn't on the data bus; all values below should be taken from `address`. switch((address >> 17) & 0b111) { case 0b000: ioc_.video().set_frame_start(buffer_address(address)); return true; case 0b001: ioc_.video().set_buffer_start(buffer_address(address)); return true; case 0b010: ioc_.video().set_buffer_end(buffer_address(address)); return true; case 0b011: ioc_.video().set_cursor_start(buffer_address(address)); return true; case 0b100: ioc_.sound().set_next_start(buffer_address(address)); return true; case 0b101: ioc_.sound().set_next_end(buffer_address(address)); return true; case 0b110: ioc_.sound().swap(); return true; case 0b111: os_mode_ = address & (1 << 12); sound_dma_enable_ = address & (1 << 11); video_dma_enable_ = address & (1 << 10); switch((address >> 8) & 3) { default: dynamic_ram_refresh_ = DynamicRAMRefresh::None; break; case 0b01: case 0b11: dynamic_ram_refresh_ = DynamicRAMRefresh((address >> 8) & 3); break; } high_rom_access_time_ = ROMAccessTime((address >> 6) & 3); low_rom_access_time_ = ROMAccessTime((address >> 4) & 3); page_size_ = PageSize((address >> 2) & 3); logger.info().append("MEMC Control: %08x -> OS:%d sound:%d video:%d refresh:%d high:%d low:%d size:%d", address, os_mode_, sound_dma_enable_, video_dma_enable_, dynamic_ram_refresh_, high_rom_access_time_, low_rom_access_time_, page_size_); map_dirty_ = true; return true; } } break; case Zone::LogicallyMappedRAM: { const auto item = logical_ram(address, mode); if(!item) { return false; } *item = source; return true; } break; case Zone::IOControllers: // TODO: have I overrestricted the value type for the IOC area? ioc_.write(address, uint8_t(source)); return true; case Zone::VideoController: // TODO: handle byte writes correctly. ioc_.video().write(source); break; case Zone::PhysicallyMappedRAM: physical_ram(address) = source; return true; case Zone::AddressTranslator: // printf("Translator write at %08x; replaces %08x\n", address, pages_[address & 0x7f]); pages_[address & 0x7f] = address; map_dirty_ = true; break; default: // printf("TODO: write of %08x to %08x [%lu]\n", source, address, sizeof(IntT)); break; } return true; } template bool read(uint32_t address, IntT &source, InstructionSet::ARM::Mode mode, bool) { // User mode may only read logically-maped RAM and ROM. if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000 && address < 0x380'0000) { return false; } switch (read_zones_[(address >> 21) & 31]) { case Zone::PhysicallyMappedRAM: source = physical_ram(address); return true; case Zone::LogicallyMappedRAM: { if(!has_moved_rom_) { // TODO: maintain this state in the zones table. source = high_rom(address); return true; } const auto item = logical_ram(address, mode); if(!item) { return false; } source = *item; return true; } break; case Zone::LowROM: // logger.error().append("TODO: Low ROM read from %08x", address); source = IntT(~0); return true; case Zone::HighROM: // Real test is: require A24=A25=0, then A25=1. // TODO: as above, move this test into the zones tables. has_moved_rom_ = true; source = high_rom(address); return true; case Zone::IOControllers: { if constexpr (std::is_same_v) { ioc_.read(address, source); return true; } else { // TODO: generalise this adaptation of an 8-bit device to the 32-bit bus, which probably isn't right anyway. uint8_t value; ioc_.read(address, value); source = value; return true; } } default: logger.error().append("TODO: read from %08x", address); break; } source = 0; return false; } void tick_timers() { ioc_.tick_timers(); } auto &sound() { return ioc_.sound(); } const auto &sound() const { return ioc_.sound(); } auto &video() { return ioc_.video(); } const auto &video() const { return ioc_.video(); } private: Log::Logger logger; enum class Zone { LogicallyMappedRAM, PhysicallyMappedRAM, IOControllers, LowROM, HighROM, VideoController, DMAAndMEMC, AddressTranslator, }; static std::array zones(bool is_read) { std::array zones{}; for(size_t c = 0; c < zones.size(); c++) { const auto address = c << 21; if(address < 0x200'0000) { zones[c] = Zone::LogicallyMappedRAM; } else if(address < 0x300'0000) { zones[c] = Zone::PhysicallyMappedRAM; } else if(address < 0x340'0000) { zones[c] = Zone::IOControllers; } else if(address < 0x360'0000) { zones[c] = is_read ? Zone::LowROM : Zone::VideoController; } else if(address < 0x380'0000) { zones[c] = is_read ? Zone::LowROM : Zone::DMAAndMEMC; } else { zones[c] = is_read ? Zone::HighROM : Zone::AddressTranslator; } } return zones; } bool has_moved_rom_ = false; std::array ram_{}; std::array rom_; InputOutputController ioc_; template IntT &physical_ram(uint32_t address) { address = aligned(address); address &= (ram_.size() - 1); return *reinterpret_cast(&ram_[address]); } template IntT &high_rom(uint32_t address) { address = aligned(address); return *reinterpret_cast(&rom_[address & (rom_.size() - 1)]); } const std::array read_zones_ = zones(true); const std::array write_zones_ = zones(false); // Control register values. bool os_mode_ = false; bool sound_dma_enable_ = false; bool video_dma_enable_ = false; // "Unaffected" by reset, so here picked arbitrarily. enum class DynamicRAMRefresh { None = 0b00, DuringFlyback = 0b01, Continuous = 0b11, } dynamic_ram_refresh_ = DynamicRAMRefresh::None; // State at reset is undefined; constrain to a valid enum value. enum class ROMAccessTime { ns450 = 0b00, ns325 = 0b01, ns200 = 0b10, ns200with60nsNibble = 0b11, } high_rom_access_time_ = ROMAccessTime::ns450, low_rom_access_time_ = ROMAccessTime::ns450; enum class PageSize { kb4 = 0b00, kb8 = 0b01, kb16 = 0b10, kb32 = 0b11, } page_size_ = PageSize::kb4; // Address translator. // // MEMC contains one entry per a physical page number, indicating where it goes logically. // Any logical access is tested against all 128 mappings. So that's backwards compared to // the ideal for an emulator, which would map from logical to physical, even if a lot more // compact — there are always 128 physical pages; there are up to 8192 logical pages. // // So captured here are both the physical -> logical map as representative of the real // hardware, and the reverse logical -> physical map, which is built (and rebuilt, and rebuilt) // from the other. // Physical to logical mapping. std::array pages_{}; // Logical to physical mapping. struct MappedPage { uint8_t *target = nullptr; uint8_t protection_level = 0; }; std::array mapping_; bool map_dirty_ = true; template IntT *logical_ram(uint32_t address, InstructionSet::ARM::Mode mode) { // Possibly TODO: this recompute-if-dirty flag is supposed to ameliorate for an expensive // mapping process. It can be eliminated when the process is improved. if(map_dirty_) { update_mapping(); map_dirty_ = false; } address = aligned(address); address &= 0x1ff'ffff; size_t page; // TODO: eliminate switch here. switch(page_size_) { default: case PageSize::kb4: page = address >> 12; address &= 0x0fff; break; case PageSize::kb8: page = address >> 13; address &= 0x1fff; break; case PageSize::kb16: page = address >> 14; address &= 0x3fff; break; case PageSize::kb32: page = address >> 15; address &= 0x7fff; break; } if(!mapping_[page].target) { return nullptr; } // TODO: eliminate switch here. // Top of my head idea: is_read, is_user and is_os_mode make three bits, so // keep a one-byte bitmap of permitted accesses rather than the raw protection // level? switch(mapping_[page].protection_level) { case 0b00: break; case 0b01: if(!is_read && mode == InstructionSet::ARM::Mode::User) { return nullptr; } break; default: if(mode == InstructionSet::ARM::Mode::User) { return nullptr; } if(!is_read && !os_mode_) { return nullptr; } break; } return reinterpret_cast(mapping_[page].target + address); } void update_mapping() { // For each physical page, project it into logical space. switch(page_size_) { default: case PageSize::kb4: update_mapping(); break; case PageSize::kb8: update_mapping(); break; case PageSize::kb16: update_mapping(); break; case PageSize::kb32: update_mapping(); break; } } template void update_mapping() { // Clear all logical mappings. std::fill(mapping_.begin(), mapping_.end(), MappedPage{}); // For each physical page, project it into logical space // and store it. for(const auto page: pages_) { uint32_t physical, logical; switch(size) { case PageSize::kb4: // 4kb: // A[6:0] -> PPN[6:0] // A[11:10] -> LPN[12:11]; A[22:12] -> LPN[10:0] i.e. 8192 logical pages physical = page & BitMask<6, 0>::value; physical <<= 12; logical = (page & BitMask<11, 10>::value) << 1; logical |= (page & BitMask<22, 12>::value) >> 12; break; case PageSize::kb8: // 8kb: // A[0] -> PPN[6]; A[6:1] -> PPN[5:0] // A[11:10] -> LPN[11:10]; A[22:13] -> LPN[9:0] i.e. 4096 logical pages physical = (page & BitMask<0, 0>::value) << 6; physical |= (page & BitMask<6, 1>::value) >> 1; physical <<= 13; logical = page & BitMask<11, 10>::value; logical |= (page & BitMask<22, 13>::value) >> 13; break; case PageSize::kb16: // 16kb: // A[1:0] -> PPN[6:5]; A[6:2] -> PPN[4:0] // A[11:10] -> LPN[10:9]; A[22:14] -> LPN[8:0] i.e. 2048 logical pages physical = (page & BitMask<1, 0>::value) << 5; physical |= (page & BitMask<6, 2>::value) >> 2; physical <<= 14; logical = (page & BitMask<11, 10>::value) >> 1; logical |= (page & BitMask<22, 14>::value) >> 14; break; case PageSize::kb32: // 32kb: // A[1] -> PPN[6]; A[2] -> PPN[5]; A[0] -> PPN[4]; A[6:3] -> PPN[3:0] // A[11:10] -> LPN[9:8]; A[22:15] -> LPN[7:0] i.e. 1024 logical pages physical = (page & BitMask<1, 1>::value) << 5; physical |= (page & BitMask<2, 2>::value) << 3; physical |= (page & BitMask<0, 0>::value) << 4; physical |= (page & BitMask<6, 3>::value) >> 3; physical <<= 15; logical = (page & BitMask<11, 10>::value) >> 2; logical |= (page & BitMask<22, 15>::value) >> 15; break; } // printf("%08x => physical %d -> logical %d\n", page, (physical >> 15), logical); // TODO: consider clashes. // TODO: what if there's less than 4mb present? mapping_[logical].target = &ram_[physical]; mapping_[logical].protection_level = (page >> 8) & 3; } } }; }