// // TimedEventLoop.cpp // Clock Signal // // Created by Thomas Harte on 29/07/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "TimedEventLoop.hpp" #include "../NumberTheory/Factors.hpp" #include using namespace Storage; TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) : _input_clock_rate(input_clock_rate) {} void TimedEventLoop::run_for_cycles(int number_of_cycles) { _cycles_until_event -= number_of_cycles; while(_cycles_until_event <= 0) { process_next_event(); } } unsigned int TimedEventLoop::get_cycles_until_next_event() { return (unsigned int)std::max(_cycles_until_event, 0); } void TimedEventLoop::reset_timer() { _subcycles_until_event.set_zero(); _cycles_until_event = 0; } void TimedEventLoop::reset_timer_to_offset(Time offset) { // TODO: apply } void TimedEventLoop::jump_to_next_event() { reset_timer(); process_next_event(); } void TimedEventLoop::set_next_event_time_interval(Time interval) { // Calculate [interval]*[input clock rate] + [subcycles until this event]. int64_t denominator = (int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.clock_rate; int64_t numerator = (int64_t)_subcycles_until_event.clock_rate * (int64_t)_input_clock_rate * (int64_t)interval.length + (int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.length; // Simplify now, to prepare for stuffing into possibly 32-bit quantities int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator); denominator /= common_divisor; numerator /= common_divisor; // So this event will fire in the integral number of cycles from now, putting us at the remainder // number of subcycles _cycles_until_event = (int)(numerator / denominator); _subcycles_until_event.length = (unsigned int)(numerator % denominator); _subcycles_until_event.clock_rate = (unsigned int)denominator; } Time TimedEventLoop::get_time_into_next_event() { // TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left]) Time zero; return zero; }